Is It Time to Expand Newborn Screening for Congenital Hypothyroidism to Other Rare Thyroid Diseases?
Abstract
1. Introduction
2. Italian NBS Program for CH
3. Central CH
4. Other Rare Congenital Thyroid Diseases
4.1. MCT8 Defects
4.2. Resistance to Thyroid Hormone Beta
4.3. Resistance to Thyroid Hormone Alfa
5. NBS for Rare Congenital Thyroid Diseases
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AHDS | Alan–Herndon–Dudley Syndrome |
CH | Congenital Hypothyroidism |
FT4 | Free Thyroxine |
FT3 | Free Triiodothyronine |
MCT8 | Transmembrane monocarboxylate transporter 8 |
NBS | Newborn Screening |
RTHα | Resistance to Thyroid Hormone alfa |
RTHβ | Resistance to Thyroid Hormone beta |
TRIAC | Triiodothyroacetic acid |
TSH | Thyroid-Stimulating Hormone |
TT4 | Total Thyroxine |
T3 | Triiodothyronine |
References
- van Trotsenburg, P.; Stoupa, A.; Léger, J.; Rohrer, T.; Peters, C.; Fugazzola, L.; Cassio, A.; Heinrichs, C.; Beauloye, V.; Pohlenz, J.; et al. Congenital Hypothyroidism: A 2020–2021 Consensus Guidelines Update-An ENDO-European Reference Network Initiative Endorsed by the European Society for Pediatric Endocrinology and the European Society for Endocrinology. Thyroid 2021, 31, 387–419. [Google Scholar] [CrossRef] [PubMed]
- Persani, L.; Brabant, G.; Dattani, M.; Bonomi, M.; Feldt-Rasmussen, U.; Fliers, E.; Gruters, A.; Maiter, D.; Schoenmakers, N.; van Trotsenburg, A.S.P. 2018 European Thyroid Association (ETA) Guidelines on the Diagnosis and Management of Central Hypothyroidism. Eur. Thyroid. J. 2018, 7, 225–237. [Google Scholar] [CrossRef]
- Persani, L.; Rodien, P.; Moran, C.; Visser, W.E.; Groeneweg, S.; Peeters, R.; Refetoff, S.; Gurnell, M.; Beck-Peccoz, P.; Chatterjee, K. 2024 European Thyroid Association Guidelines on diagnosis and management of genetic disorders of thyroid hormone transport, metabolism and action. Eur. Thyroid. J. 2024, 13, e240125. [Google Scholar] [CrossRef] [PubMed]
- Cheetham, T.; Wood, C. Pediatric thyroid disease. Clin. Endocrinol. 2024, 101, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Grob, F.; Lain, S.; Olivieri, A. Newborn screening for primary congenital hypothyroidism: Past, present and future. Eur. Thyroid. J. 2025, 14, e240358. [Google Scholar] [CrossRef]
- Garrelfs, M.R.; Mooij, C.F.; Boelen, A.; van Trotsenburg, A.S.P.; Zwaveling-Soonawala, N. Newborn screening for central congenital hypothyroidism: Past, present and future. Eur. Thyroid. J. 2025, 14, e240329. [Google Scholar] [CrossRef]
- Italia. Legge 5 Febbraio 1992, n. 104. Legge-Quadro per L’assistenza, L’integrazione Sociale e i Diritti Delle Persone Handicappate. GU Serie Generale n. 39, 17 Febbraio 1992 (Suppl. Ordinario n. 30). Available online: www.gazzettaufficiale.it/eli/id/1992/02/17/092G0108/sg (accessed on 5 August 2025).
- Italia. Legge 19 Agosto 2016, n. 167. Disposizioni in Materia di Accertamenti Diagnostici Neonatali Obbligatori per la Prevenzione e la cura Delle Malattie Metaboliche Ereditarie. (16G00180). GU Serie Generale n. 203, 31 Agosto 2016. Available online: www.gazzettaufficiale.it/eli/id/2016/08/31/16G00180/sg (accessed on 18 August 2025).
- Olivieri, A.; The Study Group for Congenital Hypothyroidism. The Italian National Register of infants with congenital hypothyroidism: Twenty years of surveillance and study of congenital hypothyroidism. Ital. J. Pediatr. 2009, 35, 2. [Google Scholar] [CrossRef]
- Olivieri, A.; Corbetta, C.; Weber, G.; Vigone, M.C.; Fazzini, C.; Medda, E. Congenital hypothyroidism due to defects of thyroid development and mild increase of TSH at screening: Data from the Italian National Registry of infants with congenital hypothyroidism. J. Clin. Endocrinol. Metab. 2013, 98, 1403–1408. [Google Scholar] [CrossRef]
- Olivieri, A.; Fazzini, C.; Medda, E.; Italian Study Group for Congenital Hypothyroidism. Multiple factors influencing the incidence of congenital hypothyroidism detected by neonatal screening. Horm. Res. Paediatr. 2015, 83, 86–93. [Google Scholar] [CrossRef]
- Medda, E.; Vigone, M.C.; Cassio, A.; Calaciura, F.; Costa, P.; Weber, G.; de Filippis, T.; Gelmini, G.; Di Frenna, M.; Caiulo, S.; et al. Neonatal Screening for Congenital Hypothyroidism: What Can We Learn From Discordant Twins? J. Clin. Endocrinol. Metab. 2019, 104, 5765–5779. [Google Scholar] [CrossRef]
- Caiulo, S.; Corbetta, C.; Di Frenna Met, a.l. Newborn screening for congenital hypothyroidism: The benefit of using differential cutoffs in a 2-screen program. J. Clin. Endocrinol. Metab. 2021, 106, e338–e349. [Google Scholar] [CrossRef]
- Hinton, C.F.; Harris, K.B.; Borgfeld, L.; Drummond-Borg, M.; Eaton, R.; Lorey, F.; Therrell, B.L.; Wallace, J.; Pass, K.A. Trends in incidence rates of congenital hypothyroidism related to select demographic factors: Data from the United States, California, Massachusetts, New York, and Texas. Pediatrics 2010, 125 (Suppl. S2), S37–S47. [Google Scholar] [CrossRef] [PubMed]
- Fisher, D.A. Thyroid system immaturities in very low birth weight premature infants. Semin. Perinatol. 2008, 32, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Larson, C.; Hermos, R.; Delaney, A.; Daley, D.; Mitchell, M. Risk factors associated with delayed thyrotropin elevations in congenital hypothyroidism. J. Pediatr. 2003, 143, 587–591. [Google Scholar] [CrossRef]
- Hyman, S.J.; Greig, F.; Holzman, I.; Patel, A.; Wallach, E.; Rapaport, R. Late rise of thyroid stimulating hormone in ill newborns. J. Pediatr. Endocrinol. Metab. 2007, 20, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Nagasaki, K.; Sato, H.; Sasaki, S.; Nyuzuki, H.; Shibata, N.; Sawano, K.; Hiroshima, S.; Asami, T. Re-evaluation of the prevalence of permanent congenital hypothyroidism in Niigata, Japan: A retrospective study. Int. J. Neon Screeen 2021, 7, 27. [Google Scholar] [CrossRef]
- McGrath, N.; Hawkes, C.P.; McDonnell, C.M.; Cody, D.; O’Connell, S.M.; Mayne, P.D.; Murphy, N.P. Incidence of congenital hypothyroidism over 37 years in Ireland. Pediatrics 2018, 142, e20181199. [Google Scholar] [CrossRef]
- Chen, J.; Lin, S.; Zeng, G.; Wang, W.; Lin, Z.; Xu, C.; He, Y.; Shi, J.; Zhou, X.; Niu, C.; et al. Epidemiologic characteristics and risk factors for congenital hypothyroidism from 2009 to 2018 in Xiamen, China. Endocr. Pract. 2020, 26, 585–594. [Google Scholar] [CrossRef]
- Gunnerbeck, A.; Lundholm, C.; von Döbeln, U.; Zetterström, R.H.; Almqvist, C.; Nordenström, A. Neonatal screening for congenital hypothyroidism in Sweden 1980–2013: Effects of lowering the thyroid-stimulating hormone threshold. Eur. J. Endocrinol. 2023, 188, 536–546. [Google Scholar] [CrossRef]
- Rose, S.R.; Blunden, C.E.; Jarrett, O.O.; Kaplan, K.; Caravantes, R.; Akinbi, H.T. Utility of repeat testing for congenital hypothyroidism in infants with very low birth weight. J. Pediatr. 2022, 242, 152–158.e1. [Google Scholar] [CrossRef]
- Feldt-Rasmussen, U.; Effraimidis, G.; Klose, M. The hypothalamus-pituitary-thyroid (HPT)-axis and its role in physiology and pathophysiology of other hypothalamus-pituitary functions. Mol. Cell Endocrinol. 2021, 525, 111173. [Google Scholar] [CrossRef] [PubMed]
- Beck-Peccoz, P.; Persani, L. Variable biological activity of thyroid-stimulating hormone. Eur. J. Endocrinol. 1994, 131, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Persani, L.; Ferretti, E.; Borgato, S.; Faglia, G.; Beck-Peccoz, P. Circulating thyrotropin bioactivity in sporadic central hypothyroidism. J. Clin. Endocrinol. Metab. 2000, 85, 3631–3635. [Google Scholar] [CrossRef] [PubMed]
- Grunenwald, S.; Caron, P. Central hypothyroidism in adults: Better understanding for better care. Pituitary 2014, 18, 169–175. [Google Scholar] [CrossRef]
- Persani, L. Clinical review: Central hypothyroidism: Pathogenic, diagnostic, and therapeutic challenges. J. Clin. Endocrinol. Metab. 2012, 97, 3068–3078. [Google Scholar] [CrossRef]
- Adachi, M.; Soneda, A.; Asakura, Y.; Muroya, K.; Yamagami, Y.; Hirahara, F. Mass screening of newborns for congenital hypothyroidism of central origin by free thyroxine measurement of blood samples on filter paper. Eur. J. Endocrinol. 2012, 166, 829–838. [Google Scholar] [CrossRef]
- Kempers, M.J.E.; Lanting, C.I.; van Heijst, A.F.J.; van Trostenburg, S.P.; Wiedijk, B.M.; de Vijlder, J.J.M.; Vulsma, T. Neonatal screening for congenital hypothyroidism based on thyroxine, thyrotropin, and thyroxine-binding globulin measurement: Potentials and pitfalls. J. Clin. Endocrinol. Metab. 2006, 91, 3370–3376. [Google Scholar] [CrossRef]
- Lauffer, P.; Zwaveling-Soonawala, N.; Naafs, J.C.; Boelen, A.; van Trotsenbourg, P. Diagnosis and management of central congenital hypothyroidism. Front. Endocrinol. 2021, 12, 686317. [Google Scholar] [CrossRef]
- Naafs, J.C.; Marchal, J.P.; Fliers, E.; Verkerk, P.H.; Luijten, M.A.J.; Boelen, A.; van Trotsenburg, A.S.P.; Zwaveling-Soonawala, N. Cognitive and Motor Outcome in Patients with Early-Detected Central Congenital Hypothyroidism Compared with Siblings. J. Clin. Endocrinol. Metab. 2021, 106, e1231–e1239. [Google Scholar] [CrossRef]
- Lanting, C.I.; van Tijn, D.A.; Loeber, J.G.; Vulsma, T.; de Vijlder, J.J.; Verkerk, P.H. Clinical effectiveness and cost-effectiveness of the use of the thyroxine/thyroxine-binding globulin ratio to detect congenital hypothyroidism of thyroidal and central origin in a neonatal screening program. Pediatrics 2005, 116, 168–173. [Google Scholar] [CrossRef]
- Naafs, J.C.; Verkerk, P.H.; Fliers, E.; van Trotsenburg, A.S.P.; Zwaveling-Soonawala, N. Clinical and genetic characteristics of Dutch children with central congenital hypothyroidism, early detected by neonatal screening. Eur. J. Endocrinol. 2020, 183, 627–636. [Google Scholar] [CrossRef]
- Boelen, A.; Zwaveling-Soonawala, N.; Heijboer, A.C.; van Trotsenburg, A.S.P. Neonatal screening for primary and central congenital hypothyroidism: Is it time to go Dutch? Eur. Thyroid. J. 2023, 12, e230041. [Google Scholar] [CrossRef]
- Stroek, K.; Heijboer, A.C.; van Veen-Sijne, M.; Bosch, A.M.; van der Ploeg, C.P.B.; Zwaveling-Soonawala, N.; de Jonge, R.; van Trotsenburg, A.S.P.; Boelen, A. Improving the Dutch Newborn screening for central congenital hypothyroidism by using 95% reference intervals for thyroxine-binding globulin. Eur. Thyroid. J. 2021, 10, 222–229. [Google Scholar] [CrossRef]
- Stroek, K.; Heijboer, A.C.; Bouva, M.J.; van der Ploeg, C.P.B.; Heijnen, M.A.; Weijman, G.; Bosch, A.M.; de Jonge, R.; Schielen, P.C.J.I.; van Trotsenburg, A.S.P.; et al. Critical evaluation of the newborn screening for congenital hypothyroidism in the Netherlands. Eur. J. Endocrinol. 2020, 183, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Groeneweg, S.; van Geest, F.S.; Abaci, A.; Alcantud, A.; Ambegaonkar, G.P.; Armour, C.M.; Bakhtiani, P.; Barca, D.; Bertini, E.S.; van Beynum, I.M.; et al. Disease characteristics of MCT8 deficiency: An international, retrospective, multicentre cohort study. Lancet Diab. Endocrinol. 2020, 8, 594–605. [Google Scholar] [CrossRef] [PubMed]
- Friesema, E.C.; Grueters, A.; Biebermann, H.; Krude, H.; von Moers, A.; Reeser, M.; Barrett, T.G.; E Mancilla, E.; Svensson, J.; Kester, M.H.; et al. Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet 2004, 364, 1435–1437. [Google Scholar] [CrossRef] [PubMed]
- Dumitrescu, A.M.; Liao, X.H.; Best, T.B.; Brockmann, K.; Refetoff, S. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am. J. Hum. Genet. 2004, 74, 168–175. [Google Scholar] [CrossRef]
- Vatine, G.D.; Al-Ahmad, A.; Barriga, B.K.; Svendsen, S.; Salim, A.; Garcia, L.; Garcia, V.J.; Ho, R.; Yucer, N.; Qian, T.; et al. Modeling Psychomotor Retardation using iPSCs from MCT8-Deficient Patients Indicates a Prominent Role for the Blood-Brain Barrier. Cell Stem Cell 2017, 20, 831–843.e5. [Google Scholar] [CrossRef]
- Iwayama, H.; Kakita, H.; Iwasa, M.; Adachi, S.; Takano, K.; Kikuchi, M.; Fujisawa, Y.; Osaka, H.; Yamada, Y.; Okumura, A.; et al. Measurement of Reverse Triiodothyronine Level and the Triiodothyronine to Reverse Triiodothyronine Ratio in Dried Blood Spot Samples at Birth May Facilitate Early Detection of Monocarboxylate Transporter 8 Deficiency. Thyroid 2021, 31, 1316–1321. [Google Scholar] [CrossRef]
- Groeneweg, S.; Peeters, R.P.; Moran, C.; Stoupa, A.; Auriol, F.; Tonduti, D.; Dica, A.; Paone, L.; Rozenkova, K.; Malikova, J.; et al. Effectiveness and safety of the tri-iodothyronine analogue Triac in children and adults with MCT8 deficiency: An international, single-arm, open-label, phase 2 trial. Lancet Diab. Endocrinol. 2019, 7, 695–706. [Google Scholar] [CrossRef]
- Refetoff, S.; Pappa, T.; Williams, M.K.; Matheus, M.G.; Liao, X.H.; Hansen, K.; Nicol, L.; Pierce, M.; Blasco, P.A.; Jensen, M.W.; et al. Prenatal Treatment of Thyroid Hormone Cell Membrane Transport Defect Caused by MCT8 Gene Mutation. Thyroid 2021, 31, 713–720. [Google Scholar] [CrossRef]
- Refetoff, S.; Bassett, J.H.D.; Beck-Peccoz, P.; Bernal, J.; Brent, G.; Chatterjee, K.; De Groot, L.J.; Dumitrescu, A.M.; Jameson, J.L.; Kopp, P.A.; et al. Classification and Proposed Nomenclature for Inherited Defects of Thyroid Hormone Action, Cell Transport, and Metabolism. Eur. Thyroid. J. 2014, 3, 7–9. [Google Scholar] [CrossRef]
- Persani, L.; Campi, I. Syndromes of Resistance to Thyroid Hormone Action. Exp. Suppl. 2019, 111, 55–84. [Google Scholar] [PubMed]
- Hauser, P.; Zametkin, A.J.; Martinez, P.; Vitiello, B.; Matochik, J.A.; Mixson, A.J.; Weintraub, B.D. Attention deficit-hyperactivity disorder in people with generalized resistance to thyroid hormone. N. Eng. J. Med. 1993, 328, 997–1001. [Google Scholar] [CrossRef] [PubMed]
- Uter, J.; Heldmann, M.; Rogge, B.; Obst, M.; Steinhardt, J.; Brabant, G.; Moran, C.; Chatterjee, K.; Munte, T.F. Patients with mutations of the Thyroid hormone beta-receptor show an ADHD-like phenotype for performance monitoring: An electrophysiological study. NeuroImage Clin. 2020, 26, 102250. [Google Scholar] [CrossRef]
- Mixson, A.J.; Parrilla, R.; Ransom, S.C.; Wiggs, E.A.; McClaskey, J.H.; Hauser, P.; Weintraub, B.D. Correlations of language abnormalities with localization of mutations in the beta-thyroid hormone receptor in 13 kindreds with generalized resistance to thyroid hormone: Identification of four new mutations. J. Clin. Endocrinol. Metab. 1992, 75, 1039–1045. [Google Scholar]
- Stein, M.A.; Weiss, R.E.; Refetoff, S. Neurocognitive characteristics of individuals with resistance to thyroid hormone: Comparisons with individuals with attention-deficit hyperactivity disorder. J. Dev. Behav. Pediat 1995, 16, 406–411. [Google Scholar] [CrossRef]
- Ferrara, A.M.; Onigata, K.; Ercan, O.; Woodhead, H.; Weiss, R.E.; Refetoff, S. Homozygous thyroid hormone receptor beta-gene mutations in resistance to thyroid hormone: Three new cases and review of the literature. J. Clin. Endocrinol. Metab. 2012, 97, 1328–1336. [Google Scholar] [CrossRef]
- Refetoff, S.; DeWind, L.T.; DeGroot, L.J. Familial syndrome combining deaf-mutism, stuppled epiphyses, goiter and abnormally high PBI: Possible target organ refractoriness to thyroid hormone. J. Clin. Endocrinol. Metab. 1967, 27, 279–294. [Google Scholar] [CrossRef]
- Okosieme, O.E.; Usman, D.; Taylor, P.N.; Dayan, C.M.; Lyons, G.; Moran, C.; Chatterjee, K.; Rees, D.A. Cardiovascular morbidity and mortality in patients in Wales, UK with resistance to thyroid hormone beta (RTHbeta): A linked-record cohort study. Lancet Diab. Endocrinol. 2023, 11, 657–666. [Google Scholar] [CrossRef]
- Campi, I.; Censi, S.; Prodam, F.; Petrone, L.; Brigante, G.; Porcelli, T.; Ruggeri, R.M.; Vigone, M.C.; Rurale, G.; Lio, S.; et al. Increased cardiovascular morbidity and reduced life expectancy in a large Italian cohort of patients with resistance to thyroid hormone β (RTHβ). Eur. J. Endocrinol. 2024, 191, 407–415. [Google Scholar] [CrossRef]
- Radetti, G.; Persani, L.; Molinaro, G.; Mannavola, D.; Cortelazzi, D.; Chatterjee, V.K.; Beck-Peccoz, P. Clinical and hormonal outcome after two years of triiodothyroacetic acid treatment in a child with thyroid hormone resistance. Thyroid 1997, 7, 775–778. [Google Scholar] [CrossRef]
- Takeda, T.; Suzuki, S.; Liu, R.T.; DeGroot, L.J. Triiodothyroacetic acid has unique potential for therapy of resistance to thyroid hormone. J. Clin. Endocrinol. Metab. 1995, 80, 2033–2040. [Google Scholar] [PubMed]
- Groeneweg, S.; Peeters, R.P.; Visser, T.J.; Visser, W.E. Therapeutic applications of thyroid hormone analogues in resistance to thyroid hormone (RTH) syndromes. Mol. Cel. Endocrinol. 2017, 458, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Torre, P.; Bertoli, M.; Di Giovanni, S.; Scommegna, S.; Conte, C.; Novelli, G.; Cianfarani, S. Endocrine and neuropsychological assessment in a child with a novel mutation of thyroid hormone receptor: Response to 12-month triiodothyroacetic acid (TRIAC) therapy. J. Endocrinol. Investig. 2005, 28, 657–662. [Google Scholar] [CrossRef] [PubMed]
- LaFranchi, S.H.; Snyder, D.B.; Sesser, D.E.; Skeels, M.R.; Singh, N.; Brent, G.A.; Nelson, J.C. Follow-up of newborns with elevated screening T4 concentrations. J. Pediatr. 2003, 143, 296–301. [Google Scholar] [CrossRef]
- Vela, A.; Perez-Nanclares, G.; Rios, I.; Rica, I.; Portillo, N.; Castano, L. Spanish Group for the Study of RTH. Thyroid hormone resistance from newborns to adults: A Spanish experience. J. Endocrinol. Investig. 2019, 42, 941–949. [Google Scholar] [CrossRef]
- Bochukova, E.; Schoenmakers, N.; Agostini, M.; Schoenmakers, E.; Rajanayagam, O.; Keogh, J.M.; Henning, E.; Reinemund, J.; Gevers, E.; Sarri, M.; et al. A mutation in the thyroid hormone receptor alpha gene. N. Engl. J. Med. 2012, 366, 243–249. [Google Scholar] [CrossRef]
- van Mullem, A.; van Heerebeek, R.; Chrysis, D.; Visser, E.; Medici, M.; Andrikoula, M.; Tsatsoulis, A.; Peeters, R.; Visser, T.J. Clinical phenotype and mutant TRα1. N. Engl. J. Med. 2012, 366, 1451–1453. [Google Scholar] [CrossRef]
- van Mullem, A.A.; Chrysis, D.; Eythimiadou, A.; Chroni, E.; Tsatsoulis, A.; de Rijke, Y.B.; Visser, W.E.; Visser, T.J.; Peeters, R.P. Clinical phenotype of a new type of thyroid hormone resistance caused by a mutation of the TRα1 receptor: Consequences of LT4 treatment. J. Clin. Endocrinol. Metab. 2013, 98, 3029–3038. [Google Scholar] [CrossRef]
- Van Gucht, A.L.M.; Meima, M.E.; Zwaveling-Soonawala, N.; Visser, W.E.; Fliers, E.; Wennink, J.M.B.; Henny, C.; Visser, T.J.; Peeters, R.P.; van Trotsenburg, A.S.P. Resistance to Thyroid Hormone Alpha in an 18-month-old Girl: Clinical, Therapeutic and Molecular Characteristics. Thyroid 2016, 26, 338–346. [Google Scholar] [CrossRef]
- Furman, A.E.; Dumitrescu, A.M.; Refetoff, S.; Weiss, R.E. Early diagnosis and treatment of an infant with a novel thyroid hormone receptor alpha gene (cC380SfsX9) mutation. Thyroid 2021, 31, 1003–1005. [Google Scholar] [CrossRef]
- Erbas, M.; Çakir, M.D.; Yener, A.S.; Demir, K. Long-term follow-up results and treatment outcomes of children and adults with resistance to thyroid hormone alpha. J. Endocrinol. Investig. 2023, 46, 1855–1863. [Google Scholar] [CrossRef] [PubMed]
- Musolino, A.; Grifoni, G.F.A.; Rodolfi, S.; Andreasi, M.; Bulgarelli, I.; Fanelli, F.; Morelli, V.; Persani, L.; Campi, I. Variable diagnoses in cases referred for discordant thyroid function tests: Focus on lymphoproliferative disorders. Thyroid 2025, in press.
- Westbye, A.B.; Aas, F.E.; Kelp, O.; Dahll, L.K.; Thorsby, P.M. Analysis of free, unbound thyroid hormones by liquid chromatography-tandem mass spectrometry: Amini-review of the medical rationale and analytical methods. Anal. Sci. Adv. 2023, 4, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Gelb, M.H.; Basheeruddin, K.; Burlina, A.; Chen, H.J.; Chien, Y.H.; Dizikes, G.; Dorley, C.; Giugliani, R.; Hietala, A.; Hong, X.; et al. Liquid Chromatography–Tandem Mass Spectrometry in Newborn Screening Laboratories. Int. J. Neonatal Screen. 2022, 8, 62. [Google Scholar] [CrossRef]
- Wilson, J.M.G.; Jungner, G. Principles and Practice of Screening for Disease; WHO: Geneva, Switzerland, 1968; Available online: https://iris.who.int/handle/10665/37650 (accessed on 18 August 2025).
- EURORDIS-Rare Diseases Europe. Key Principles for Newborn Screening. A EURORDIS Position Paper. 2021. Available online: https://www.eurordis.org/publications/key-principles-for-newborn-screening/ (accessed on 18 August 2025).
- Millington, D.S.; Kodo, N.; Norwood, D.L.; Roe, C.R. Tandem Mass Spectrometry: A New Method for Acylcarnitine Profiling with Potential for Neonatal Screening for Inborn Errors of Metabolism. J. Inher Metab. Dis. 1990, 13, 321–324. [Google Scholar] [CrossRef]
- Rashed, M.S.; Ozand, P.T.; Harrison, M.E.; Watkins, P.J.F.; Evans, S.; Baillie, T.A. Electrospray Tandem Mass Spectrometry in the Diagnosis of Organic Acidemias. Rapid Commun. Mass. Spectrom. 1994, 8, 129–133. [Google Scholar] [CrossRef]
- Schulze, A.; Lindner, M.; Kohlmü, D.; Olgemö, K.; Mayatepek, E.; Hoffmann, G.F. Expanded Newborn Screening for Inborn Errors of Metabolism by Electrospray Ionization-Tandem Mass Spectrometry: Results, Outcome, and Implications. Pediatrics 2003, 111, 1399–1406. [Google Scholar] [CrossRef]
- Ruoppolo, M.; Malvagia, S.; Boenzi, S.; Carducci, C.; Dionisi-Vici, C.; Teofoli, F.; Burlina, A.; Angeloni, A.; Aronica, T.; Bordugo, A.; et al. Expanded Newborn Screening in Italy Using Tandem Mass Spectrometry: Two Years of National Experience. Int. J. Neonatal Screen. 2022, 8, 47. [Google Scholar] [CrossRef]
- Oliver-Petit, I.; Edouard, T.; Jacques, V.; Bournez, M.; Cartault, A.; Grunenwald, S.; Savagner, F. Next-Generation Sequencing analysis reveals frequent familial origin and oligogenism in congenital hypothyroidism with dyshormonogenesis. Front. Endocrinol. 2021, 12, 657913. [Google Scholar] [CrossRef]
Molecular and Biochemical Signature and Treatment | Central Hypothyroidism | Resistance to Thyroid Hormone Beta (RTHβ) | Resistance to Thyroid Hormone Alpha (RTHα) | Monocarboxylate Transporter 8 (MCT8) Deficiency |
---|---|---|---|---|
Gene | several | THRB | THRA | SLC16A2 |
Inheritance pattern | Variable * | Dominant | Dominant | X-linked |
Serum Free T4 | low | high | low-normal or low | low-normal or low |
Serum Free T3 | low or normal | high | high-normal or high | high or high-normal |
Serum Reverse T3 | -- | -- | -- | low |
Serum TSH | low or normal (rarely, mildly raised) | normal or high | normal (rarely, mildly raised) | normal (rarely, mildly raised) |
Treatment | LT4 | TRIAC | LT4 | TRIAC |
Screening tests on DBS and expected results | ||||
Current Screening tests | TSH + TT4 | -- | -- | -- |
Possible future screening tests ** | TSH + FT4 | TSH, FT4 + FT3, and calculation of FT3/FT4 ratio | TSH, FT3, rT3, and calculation of FT3/rT3 ratio | |
Expected results of screening tests | low/normal TSH and low TT4 | normal/high TSH and high FT4 | low FT3/FT4 ratio | high FT3/rT3 ratio |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Neonatal Screening. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivieri, A.; Vigone, M.C.; Salerno, M.; Persani, L. Is It Time to Expand Newborn Screening for Congenital Hypothyroidism to Other Rare Thyroid Diseases? Int. J. Neonatal Screen. 2025, 11, 65. https://doi.org/10.3390/ijns11030065
Olivieri A, Vigone MC, Salerno M, Persani L. Is It Time to Expand Newborn Screening for Congenital Hypothyroidism to Other Rare Thyroid Diseases? International Journal of Neonatal Screening. 2025; 11(3):65. https://doi.org/10.3390/ijns11030065
Chicago/Turabian StyleOlivieri, Antonella, Maria Cristina Vigone, Mariacarolina Salerno, and Luca Persani. 2025. "Is It Time to Expand Newborn Screening for Congenital Hypothyroidism to Other Rare Thyroid Diseases?" International Journal of Neonatal Screening 11, no. 3: 65. https://doi.org/10.3390/ijns11030065
APA StyleOlivieri, A., Vigone, M. C., Salerno, M., & Persani, L. (2025). Is It Time to Expand Newborn Screening for Congenital Hypothyroidism to Other Rare Thyroid Diseases? International Journal of Neonatal Screening, 11(3), 65. https://doi.org/10.3390/ijns11030065