A Systematic Literature Review on the Global Status of Newborn Screening for Mucopolysaccharidosis II
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Publication Eligibility
2.3. Data Extraction
3. Results
3.1. Included Studies
3.2. Status of NBS Programs for MPS II and Estimated Birth Prevalence Based on NBS
Region, Year | Technology | Cutoff Values | False Positive Rate | Estimated Birth Prevalence |
---|---|---|---|---|
Japan, 2020 [25] | DBS GAG (DS and HS) quantification by LC–MS/MS DBS I2S activity by fluorometric assay | >23 ng/mL for HS-NS, >88 ng/mL for DS, and/or >90 ng/mL for HS-0S | 1.64% a | 1/18,222 |
Japan, Tokyo, 2022 [79] | Quantification of lysosomal enzyme activity in urine samples by LC–MS/MS | NR | NR | ~1/15,000 b |
Taiwan, 2019 [39] | DBS I2S activity by multiplex MS/MS Gene sequencing | 30% of mean I2S activity, 6.5 μmol/L/h | 0.18% c | 1/43,391 |
Taiwan, 2019 [67] | DBS I2S activity by MS/MS Gene sequencing | Initial cutoff: 6.5 μmol/L/h I2S activity Retest cutoff: 2.2 μmol/L/h I2S activity d | 0.048% e | 1/51,000 e |
Taiwan, 2020 [23,66] | DBS I2S activity by multiplex LC–MS/MS Gene sequencing | ≤5% of normal mean I2S activity | 0.039% f | 1/24,581 |
Taiwan, 2021 [27] | Enzyme activity by MS/MS Total GAG quantification by DMB/Cre ratio GAG-derived disaccharide (CS, DS, HS, and KS) quantification by MS/MS Leukocyte enzyme activity by fluorometric assay Molecular DNA analysis | Normal reference value for DMB/Cre ratio for infants aged <6 months, <70.68 mg/mmol Cre (mean [2 SDs], 41.83 [28.85] mg/mmol Cre) >0.80 ng/mL for DS, <0.78 ng/mL for HS, >7.90 ng/mL for KS Individual enzyme activity ~5% lower than normal, defined as marked reduction | 0.06% g | 1/34,192 g |
Taiwan, 2022 [41] | Mutant gene expressions of enzyme activity by in vitro COS-7 cell transfection assay Quantification of urinary GAG-derived disaccharides (CS, DS, HS, and KS) by MS/MS | Normal reference value for DMB/Cre ratio for infants aged <6 months, <70.68 mg/mmol Cre (mean [2 SDs], 41.83 [28.85] mg/mmol Cre) | 0.04% h | 1/60,671 h |
Taiwan, 2022 [53] | I2S activity by MS/MS Leukocyte I2S enzyme activity by fluorometric assay Total GAG quantification by DMB/Cre ratio GAG-derived disaccharide (CS, DS, HS, and KS) quantification by MS/MS Nucleotide variation detected by Sanger sequencing I2S activity in extracts of COS-7 cells expressing I2S for mutant cDNAs | First DBS cutoff value: 6.5 μmol/L/h (based on 30% of mean I2S activity) Second DBS cutoff value: 2.2 μmol/L/h (based on 10% of mean I2S activity) Marked reduction in I2S activity (reference range 12.89–131.83 μmol/g protein/4 h) <0.80 μg/mL for DS, <0.78 μg/mL for HS, <7.90 μg/mL for KS | <0.50% | NR |
USA, California, 2014 [71] | Gene sequencing | NR | NR | 1/3500 i |
USA, Illinois, 2019 [36] | DBS I2S activity by MS/MS Gene sequencing | Initial cutoff: ≤10% of daily median I2S activity Retest cutoff: >10–13% of daily median I2S activity If retest borderline or positive, referred for diagnostic testing | 0.009% j | 1/162,000 |
USA, Illinois, 2020 [37] | DBS I2S activity by MS/MS Gene sequencing | Initial cutoff: ≤10% of daily median I2S activity Retest cutoff: >10–13% of daily median I2S activity If retest borderline or positive, referred for diagnostic testing | 0.007% k | 1/113,090 |
USA, Illinois, 2023 [38] | DBS I2S activity Total GAGs analysis using DMB incorporation and spectrophotometry GAG-derived disaccharide (HS and DS) quantification by ESI–MS/MS Molecular testing | Initial cutoff: ≤10% of daily median I2S activity Retest cutoff: >10–13% of daily median I2S activity If retest borderline or positive, referred for diagnostic testing | NR | 1/73,290 |
USA, Missouri, 2020 [34] | First-tier screening: DBS I2S activity by fluorometric assay Second-tier screening: gene sequencing/GAG analysis of DBS | Retest cutoff: 40 μmol/L/h I2S activity High-risk cutoff: 35 μmol/L/h I2S activity | 0.018% l | 1/73,477 |
USA, Washington, 2020 [22] | I2S activity by multiplex LC–MS/MS | I2S activity <10% of daily mean | 0.016% m | 1/105,214 |
USA, 2018 [47] | NA | NA | NA | 1/100,000–170,000 n |
USA, 2022 [30] | First-tier screening: DBS I2S activity by MS/MS or microfluorometry Second-tier screening: molecular and/or biochemical testing | NR | NR | 1/100,000–150,000 o |
3.3. Technologies Used in NBS for MPS II
3.4. MPS II NBS Implementation and Outcomes
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CIDAC | Congenital and Inherited Disorders Advisory Committee |
CS | chondroitin sulfate |
Cre | creatinine |
DBS | dried blood spot(s) |
DMB | dimethylmethylene blue |
DS | dermatan sulfate |
ESI | electrospray isotope dilution |
ERT | enzyme replacement therapy |
GAG | glycosaminoglycan |
HCP | healthcare professional |
HS | heparan sulfate |
HS-0S | heparan ΔDi-0S [2-acetamido-2-deoxy-4-O-(4-deoxy-α-L-threo-hex-4-enopyranosyluronic acid)-D-glucose] |
HS-NS | heparan ΔDi-NS [2-deoxy-2-sulfamino 4-O-(4-deoxy-α-L-threo-hex-4-enopyranosyluronic acid)-D-glucose] |
HSCT | hematopoietic stem cell transplantation |
IDS | iduronate-2-sulfatase gene |
I2S | iduronate-2-sulfatase |
INSP | Iowa Newborn Screening Program |
KS | keratan sulfate |
LAMP1 | lysosomal-associated membrane protein 1 |
LC | liquid chromatography |
LSD | lysosomal storage disease |
MPS | mucopolysaccharidosis |
MS/MS | tandem mass spectrometry |
NA | not applicable |
NBS | newborn screening |
NR | not reported |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
RUSP | Recommended Uniform Screening Panel |
SLR | systematic literature review |
VUS | variant(s) of unknown significance |
WES | whole-exome sequencing |
WGS | whole-genome sequencing |
References
- Gelb, M.H.; Scott, C.R.; Turecek, F. Newborn screening for lysosomal storage diseases. Clin. Chem. 2015, 61, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Neufeld, E.; Muenzer, J. The mucopolysaccharidoses. In The Metabolic and Molecular Bases of Inherited Disease; Scriver, C., Beaudet, A., Sly, W., Valle, D., Eds.; McGraw-Hill: New York, NY, USA, 2001; pp. 3421–3452. [Google Scholar]
- Lau, H.; Harmatz, P.; Botha, J.; Audi, J.; Link, B. Clinical characteristics and somatic burden of patients with mucopolysaccharidosis II with or without neurological involvement: An analysis from the Hunter Outcome Survey. Mol. Genet. Metab. Rep. 2023, 37, 101005. [Google Scholar] [CrossRef] [PubMed]
- Baehner, F.; Schmiedeskamp, C.; Krummenauer, F.; Miebach, E.; Bajbouj, M.; Whybra, C.; Kohlschutter, A.; Kampmann, C.; Beck, M. Cumulative incidence rates of the mucopolysaccharidoses in Germany. J. Inherit. Metab. Dis. 2005, 28, 1011–1017. [Google Scholar] [CrossRef]
- Nelson, J.; Crowhurst, J.; Carey, B.; Greed, L. Incidence of the mucopolysaccharidoses in Western Australia. Am. J. Med. Genet. A 2003, 123A, 310–313. [Google Scholar] [CrossRef]
- Ferreira, C.R.; Gahl, W.A. Lysosomal storage diseases. Transl. Sci. Rare Dis. 2017, 2, 1–71. [Google Scholar] [CrossRef]
- Burton, B.K.; Giugliani, R. Diagnosing Hunter syndrome in pediatric practice: Practical considerations and common pitfalls. Eur. J. Pediatr. 2012, 171, 631–639. [Google Scholar] [CrossRef]
- Wraith, J.E.; Scarpa, M.; Beck, M.; Bodamer, O.A.; De Meirleir, L.; Guffon, N.; Meldgaard Lund, A.; Malm, G.; Van der Ploeg, A.T.; Zeman, J. Mucopolysaccharidosis type II (Hunter syndrome): A clinical review and recommendations for treatment in the era of enzyme replacement therapy. Eur. J. Pediatr. 2008, 167, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Scarpa, M.; Almássy, Z.; Beck, M.; Bodamer, O.; Bruce, I.A.; De Meirleir, L.; Guffon, N.; Guillen-Navarro, E.; Hensman, P.; Jones, S.; et al. Mucopolysaccharidosis type II: European recommendations for the diagnosis and multidisciplinary management of a rare disease. Orphanet J. Rare Dis. 2011, 6, 72. [Google Scholar] [CrossRef] [PubMed]
- Bunge, S.; Rathmann, M.; Steglich, C.; Bondeson, M.-L.; Tylki-Szymanska, A.; Popowska, E.; Gal, A. Homologous nonallelic recombinations between the iduronate-sulfatase gene and pseudogene cause various intragenic deletions and inversions in patients with mucopolysaccharidosis type II. Eur. J. Hum. Hum. Genet. 1998, 6, 492–500. [Google Scholar] [CrossRef]
- D’Avanzo, F.; Rigon, L.; Zanetti, A.; Tomanin, R. Mucopolysaccharidosis type II: One hundred years of research, diagnosis, and treatment. Int. J. Mol. Sci. 2020, 21, 1258. [Google Scholar] [CrossRef]
- Muenzer, J.; Wraith, J.E.; Beck, M.; Giugliani, R.; Harmatz, P.; Eng, C.M.; Vellodi, A.; Martin, R.; Ramaswami, U.; Gucsavas-Calikoglu, M.; et al. A phase II/III clinical study of enzyme replacement therapy with idursulfase in mucopolysaccharidosis II (Hunter syndrome). Genet. Med. 2006, 8, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Whiteman, D.A.; Kimura, A. Development of idursulfase therapy for mucopolysaccharidosis type II (Hunter syndrome): The past, the present and the future. Drug Des. Devel. Ther. 2017, 11, 2467–2480. [Google Scholar] [CrossRef] [PubMed]
- Muenzer, J.; Jones, S.A.; Tylki-Szymanska, A.; Harmatz, P.; Mendelsohn, N.J.; Guffon, N.; Giugliani, R.; Burton, B.K.; Scarpa, M.; Beck, M.; et al. Ten years of the Hunter Outcome Survey (HOS): Insights, achievements, and lessons learned from a global patient registry. Orphanet J. Rare Dis. 2017, 12, 82. [Google Scholar] [CrossRef] [PubMed]
- Muenzer, J.; Beck, M.; Eng, C.M.; Giugliani, R.; Harmatz, P.; Martin, R.; Ramaswami, U.; Vellodi, A.; Wraith, J.E.; Cleary, M.; et al. Long-term, open-labeled extension study of idursulfase in the treatment of Hunter syndrome. Genet. Med. 2011, 13, 95–101. [Google Scholar] [CrossRef]
- Muenzer, J.; Giugliani, R.; Scarpa, M.; Tylki-Szymanska, A.; Jego, V.; Beck, M. Clinical outcomes in idursulfase-treated patients with mucopolysaccharidosis type II: 3-year data from the hunter outcome survey (HOS). Orphanet J. Rare Dis. 2017, 12, 161. [Google Scholar] [CrossRef] [PubMed]
- Burton, B.K.; Jego, V.; Mikl, J.; Jones, S.A. Survival in idursulfase-treated and untreated patients with mucopolysaccharidosis type II: Data from the Hunter Outcome Survey (HOS). J. Inherit. Metab. Dis. 2017, 40, 867–874. [Google Scholar] [CrossRef]
- McBride, K.L.; Berry, S.A.; Braverman, N.; ACMG Therapeutics Committee. Treatment of mucopolysaccharidosis type II (Hunter syndrome): A Delphi derived practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2020, 22, 1735–1742. [Google Scholar] [CrossRef]
- Schulze-Frenking, G.; Jones, S.A.; Roberts, J.; Beck, M.; Wraith, J.E. Effects of enzyme replacement therapy on growth in patients with mucopolysaccharidosis type II. J. Inherit. Metab. Dis. 2011, 34, 203–208. [Google Scholar] [CrossRef]
- Muenzer, J. Overview of the mucopolysaccharidoses. Rheumatology 2011, 50, v4–v12. [Google Scholar] [CrossRef]
- Camargo Neto, E.; Schulte, J.; Pereira, J.; Bravo, H.; Sampaio-Filho, C.; Giugliani, R. Neonatal screening for four lysosomal storage diseases with a digital microfluidics platform: Initial results in Brazil. Genet. Mol. Biol. 2018, 41, 414–416. [Google Scholar] [CrossRef]
- Scott, C.R.; Elliott, S.; Hong, X.; Huang, J.Y.; Kumar, A.B.; Yi, F.; Pendem, N.; Chennamaneni, N.K.; Gelb, M.H. Newborn screening for mucopolysaccharidoses: Results of a pilot study with 100 000 dried blood spots. J. Pediatr. 2020, 216, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Chien, Y.H.; Lee, N.C.; Chen, P.W.; Yeh, H.Y.; Gelb, M.H.; Chiu, P.C.; Chu, S.Y.; Lee, C.H.; Lee, A.R.; Hwu, W.L. Newborn screening for Morquio disease and other lysosomal storage diseases: Results from the 8-plex assay for 70,000 newborns. Orphanet J. Rare Dis. 2020, 15, 38. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.C.; Chiang, C.C.; Niu, D.M.; Wang, C.H.; Kao, S.M.; Tsai, F.J.; Huang, Y.H.; Liu, H.C.; Huang, C.K.; Gao, H.J.; et al. Detecting multiple lysosomal storage diseases by tandem mass spectrometry—A national newborn screening program in Taiwan. Clin. Chim. Acta 2014, 431, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, M.; Kubaski, F.; Mason, R.W.; Shintaku, H.; Kobayashi, H.; Yamaguchi, S.; Taketani, T.; Suzuki, Y.; Orii, K.; Orii, T.; et al. Newborn screening for mucopolysaccharidoses: Measurement of glycosaminoglycans by LC-MS/MS. Mol. Genet. Metab. Rep. 2020, 22, 100563. [Google Scholar] [CrossRef]
- Paciotti, S.; Persichetti, E.; Pagliardini, S.; Deganuto, M.; Rosano, C.; Balducci, C.; Codini, M.; Filocamo, M.; Menghini, A.R.; Pagliardini, V.; et al. First pilot newborn screening for four lysosomal storage diseases in an Italian region: Identification and analysis of a putative causative mutation in the GBA gene. Clin. Chim. Acta 2012, 413, 1827–1831. [Google Scholar] [CrossRef] [PubMed]
- Chuang, C.K.; Lee, C.L.; Tu, R.Y.; Lo, Y.T.; Sisca, F.; Chang, Y.H.; Liu, M.Y.; Liu, H.Y.; Chen, H.J.; Kao, S.M.; et al. Nationwide newborn screening program for mucopolysaccharidoses in Taiwan and an update of the “gold standard” criteria required to make a confirmatory diagnosis. Diagnostics 2021, 11, 1583. [Google Scholar] [CrossRef]
- National MPS Society. Advisory Committee on Heritable Disorders in Newborns and Children Votes to Approve MPS II for Recommended Uniform Screening Panel. Available online: https://mpssociety.org/advisory-committee-on-heritable-disorders-in-newborns-and-children-votes-to-approve-mps-ii-for-recommended-uniform-screening-panel/ (accessed on 1 July 2022).
- Ream, M.A.; Lam, W.K.K.; Grosse, S.D.; Ojodu, J.; Jones, E.; Prosser, L.A.; Rose, A.M.; Comeau, A.M.; Tanksley, S.; Powell, C.M.; et al. Evidence and recommendation for mucopolysaccharidosis type II newborn screening in the United States. Genet. Med. 2023, 25, 100330. [Google Scholar] [CrossRef]
- Millington, D.S.; Ficicioglu, C. Addition of MPS-II to the recommended uniform screening panel in the United States. Int. J. Neonatal Screen. 2022, 8, 55. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- National Institute for Health and Care Research. International Prospective Register of Systematic Reviews (PROSPERO). Available online: https://www.crd.york.ac.uk/prospero/ (accessed on 21 February 2023).
- Alonso-Fernández, J.R.; Fidalgo, J.; Colón, C. Neonatal screening for mucopolysaccharidoses by determination of glycosaminoglycans in the eluate of urine-impregnated paper: Preliminary results of an improved DMB-based procedure. J. Clin. Lab. Anal. 2010, 24, 149–153. [Google Scholar] [CrossRef]
- Bilyeu, H.; Washburn, J.; Vermette, L.; Klug, T. Validation and implementation of a highly sensitive and efficient newborn screening assay for mucopolysaccharidosis type II. Int. J. Neonatal Screen. 2020, 6, 79. [Google Scholar] [CrossRef] [PubMed]
- Brower, A.; Chan, K.; Williams, M.; Berry, S.; Currier, R.; Rinaldo, P.; Caggana, M.; Gaviglio, A.; Wilcox, W.; Steiner, R.; et al. Population-based screening of newborns: Findings from the NBS Expansion study (Part One). Front. Genet. 2022, 13, 867337. [Google Scholar] [CrossRef] [PubMed]
- Burton, B.K.; Hoganson, G.E.; Fleischer, J.; Grange, D.K.; Braddock, S.R.; Hickey, R.; Hitchins, L.; Groepper, D.; Christensen, K.M.; Kirby, A.; et al. Population-based newborn screening for mucopolysaccharidosis type II in Illinois: The first year experience. J. Pediatr. 2019, 214, 165–167. [Google Scholar] [CrossRef]
- Burton, B.K.; Hickey, R.; Hitchins, L. Newborn screening for mucopolysaccharidosis type II in Illinois: An update. Int. J. Neonatal Screen. 2020, 6, 73. [Google Scholar] [CrossRef]
- Burton, B.K.; Shively, V.; Quadri, A.; Warn, L.; Burton, J.; Grange, D.K.; Christensen, K.; Groepper, D.; Ashbaugh, L.; Ehrhardt, J.; et al. Newborn screening for mucopolysaccharidosis type II: Lessons learned. Mol. Genet. Metab. 2023, 140, 107557. [Google Scholar] [CrossRef]
- Chan, M.J.; Liao, H.C.; Gelb, M.H.; Chuang, C.K.; Liu, M.Y.; Chen, H.J.; Kao, S.M.; Lin, H.Y.; Huang, Y.H.; Kumar, A.B.; et al. Taiwan National Newborn Screening Program by tandem mass spectrometry for mucopolysaccharidoses types I, II, and VI. J. Pediatr. 2019, 205, 176–182. [Google Scholar] [CrossRef]
- Chennamaneni, N.K.; Kumar, A.B.; Barcenas, M.; Spacil, Z.; Scott, C.R.; Turecek, F.; Gelb, M.H. Improved reagents for newborn screening of mucopolysaccharidosis types I, II, and VI by tandem mass spectrometry. Anal. Chem. 2014, 86, 4508–4514. [Google Scholar] [CrossRef] [PubMed]
- Chuang, C.K.; Tu, Y.R.; Lee, C.L.; Lo, Y.T.; Chang, Y.H.; Liu, M.Y.; Liu, H.Y.; Chen, H.J.; Kao, S.M.; Wang, L.Y.; et al. Updated confirmatory diagnosis for mucopolysaccharidoses in taiwanese infants and the application of gene variants. Int. J. Mol. Sci. 2022, 23, 9979. [Google Scholar] [CrossRef] [PubMed]
- Civallero, G.; Michelin, K.; de Mari, J.; Viapiana, M.; Burin, M.; Coelho, J.C.; Giugliani, R. Twelve different enzyme assays on dried-blood filter paper samples for detection of patients with selected inherited lysosomal storage diseases. Clin. Chim. Acta 2006, 372, 98–102. [Google Scholar] [CrossRef]
- de Ruijter, J.; de Ru, M.H.; Wagemans, T.; IJlst, L.; Lund, A.M.; Orchard, P.J.; Schaefer, G.B.; Wijburg, F.A.; van Vlies, N. Heparan sulfate and dermatan sulfate derived disaccharides are sensitive markers for newborn screening for mucopolysaccharidoses types I, II and III. Mol. Genet. Metab. 2012, 107, 705–710. [Google Scholar] [CrossRef]
- Fabie, N.A.V.; Pappas, K.B.; Feldman, G.L. The current state of newborn screening in the United States. Pediatr. Clin. N. Am. 2019, 66, 369–386. [Google Scholar] [CrossRef] [PubMed]
- Fdil, N.; Sabir, E.S.; Ezoubeiri, A.; Elqadiry, R.; Daoudi, A.; Lalaoui, A.; Fouad, A.; Rada, N.; Slitine, N.; Bennaoui, F.; et al. Implementation of an affordable method for MPS diagnosis from urine screening to enzymatic confirmation: Results of a pilot study in Morocco. Clin. Lab. 2020, 66, 3298. [Google Scholar] [CrossRef] [PubMed]
- Gelb, M.H.; Lukacs, Z.; Ranieri, E.; Schielen, P.C.J.I. Newborn screening for lysosomal storage disorders: Methodologies for measurement of enzymatic activities in dried blood spots. Int. J. Neonatal Screen. 2019, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Joseph, R.; DiCesare, E.B.; Miller, A. Hunter Syndrome: Is it time to make it part of newborn screening? Adv. Neonatal Care Off. J. Natl. Assoc. Neonatal Nurses 2018, 18, 480–487. [Google Scholar] [CrossRef]
- Jones, S.A.; Cheillan, D.; Chakrapani, A.; Church, H.J.; Heales, S.; Wu, T.H.Y.; Morton, G.; Roberts, P.; Sluys, E.F.; Burlina, A. Application of a novel algorithm for expanding newborn screening for inherited metabolic disorders across Europe. Int. J. Neonatal Screen. 2022, 8, 20. [Google Scholar] [CrossRef]
- Khaledi, H.; Gelb, M.H. Tandem mass spectrometry enzyme assays for multiplex detection of 10-mucopolysaccharidoses in dried blood spots and fibroblasts. Anal. Chem. 2020, 92, 11721–11727. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.B.; Masi, S.; Ghomashchi, F.; Chennamaneni, N.K.; Ito, M.; Scott, C.R.; Turecek, F.; Gelb, M.H.; Spacil, Z. Tandem mass spectrometry has a larger analytical range than fluorescence assays of lysosomal enzymes: Application to newborn screening and diagnosis of mucopolysaccharidoses types II, IVA, and VI. Clin. Chem. 2015, 61, 1363–1371. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.B.; Hong, X.; Yi, F.; Wood, T.; Gelb, M.H. Tandem mass spectrometry-based multiplex assays for α-mannosidosis and fucosidosis. Mol. Genet. Metab. 2019, 127, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Jun, S.H.; Song, S.H.; Park, H.D.; Park, K.U.; Song, J. Direct assay of iduronate-2-sulfatase for Hunter disease using UPLC-tandem mass spectrometry and fluorogenic substrate. Clin. Biochem. 2015, 48, 1350–1353. [Google Scholar] [CrossRef]
- Lin, H.Y.; Chang, Y.H.; Lee, C.L.; Tu, Y.R.; Lo, Y.T.; Hung, P.W.; Niu, D.M.; Liu, M.Y.; Liu, H.Y.; Chen, H.J.; et al. Newborn screening program for mucopolysaccharidosis type II and long-term follow-up of the screen-positive subjects in Taiwan. J. Pers. Med. 2022, 12, 1023. [Google Scholar] [CrossRef]
- Lisi, E.C.; McCandless, S.E. Newborn screening for lysosomal storage disorders: Views of genetic healthcare providers. J. Genet. Couns. 2016, 25, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yi, F.; Kumar, A.B.; Chennamaneni, N.K.; Hong, X.; Scott, C.R.; Gelb, M.H.; Turecek, F. Multiplex tandem mass spectrometry enzymatic activity assay for newborn screening of the mucopolysaccharidoses and type 2 neuronal ceroid lipofuscinosis. Clin. Chem. 2017, 63, 1118–1126. [Google Scholar] [CrossRef] [PubMed]
- Maccari, F.; Galeotti, F.; Mantovani, V.; Zampini, L.; Padella, L.; Rigon, L.; Concolino, D.; Fiumara, A.; Pascale, E.; Pittala, A.; et al. Composition and structure of glycosaminoglycans in DBS from 2-3-day-old newborns for the diagnosis of mucopolysaccharidosis. Anal. Biochem. 2018, 557, 34–41. [Google Scholar] [CrossRef]
- Meikle, P.J.; Ranieri, E.; Simonsen, H.; Rozaklis, T.; Ramsay, S.L.; Whitfield, P.D.; Fuller, M.; Christensen, E.; Skovby, F.; Hopwood, J.J. Newborn screening for lysosomal storage disorders: Clinical evaluation of a two-tier strategy. Pediatrics 2004, 114, 909–916. [Google Scholar] [CrossRef]
- Meikle, P.J.; Grasby, D.J.; Dean, C.J.; Lang, D.L.; Bockmann, M.; Whittle, A.M.; Fietz, M.J.; Simonsen, H.; Fuller, M.; Brooks, D.A.; et al. Newborn screening for lysosomal storage disorders. Mol. Genet. Metab. 2006, 88, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Menkovic, I.; Marchand, A.S.; Boutin, M.; Auray-Blais, C. Neonatal mass urine screening approach for early detection of mucopolysaccharidoses by UPLC-MS/MS. Diagnostics 2019, 9, 195. [Google Scholar] [CrossRef]
- Oguni, T.; Tomatsu, S.; Tanaka, M.; Orii, K.; Fukao, T.; Watanabe, J.; Fukuda, S.; Notsu, Y.; Vu, D.C.; Can, T.B.N.; et al. Validation of liquid chromatography-tandem mass spectrometry-based 5-plex assay for mucopolysaccharidoses. Int. J. Mol. Sci. 2020, 21, 2025. [Google Scholar] [CrossRef]
- Ruijter, G.J.G.; Goudriaan, D.A.; Boer, A.M.; Van den Bosch, J.; Van der Ploeg, A.T.; Elvers, L.H.; Weinreich, S.S.; Reuser, A.J. Newborn screening for Hunter disease: A small-scale feasibility study. JIMD Rep. 2014, 14, 23–27. [Google Scholar] [CrossRef]
- Sabir, E.S.; Lafhal, K.; Ezoubeiri, A.; Harkati, I.; Sbyea, S.; Aldamiz-Echevarria, L.; Andrade, F.; Ait Babram, M.; Maoulainine, F.M.R.; Draiss, G.; et al. Usefulness of urinary glycosaminoglycans assay for a mucopolysaccharidosis-specific screening. Pediatr. Int. 2020, 62, 1077–1085. [Google Scholar] [CrossRef]
- Shimada, T.; Kelly, J.; LaMarr, W.A.; van Vlies, N.; Yasuda, E.; Mason, R.W.; Mackenzie, W.; Kubaski, F.; Giugliani, R.; Chinen, Y.; et al. Novel heparan sulfate assay by using automated high-throughput mass spectrometry: Application to monitoring and screening for mucopolysaccharidoses. Mol. Genet. Metab. 2014, 113, 92–99. [Google Scholar] [CrossRef]
- Wang, D.; Wood, T.; Sadilek, M.; Scott, C.R.; Turecek, F.; Gelb, M.H. Tandem mass spectrometry for the direct assay of enzymes in dried blood spots: Application to newborn screening for mucopolysaccharidosis II (Hunter disease). Clin. Chem. 2007, 53, 137–140. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, S. Newborn screening in Japan: Restructuring for the new era. Ann. Acad. Med. Singap. 2008, 37, 13–15. [Google Scholar] [PubMed]
- Chien, Y.H.; Hwu, W.L.; Chen, P.W.; Chiu, P.C.; Chu, S.Y.; Yeh, H.Y.; Lee, A.R.; Lee, N.C.; Gelb, M. Newborn screening for Morquio syndrome: Results from the 8-plex assay for 70,000 newborns. Mol. Genet. Metab. 2020, 129, S40–S41. [Google Scholar] [CrossRef]
- Chuang, C.K.; Lin, H.Y.; Lo, Y.T.; Tu, R.Y.; Lin, S.P. Status of newborn screening for mucopolysaccharidoses I, II, and VI in Taiwan, including follow up investigations. J. Inherit. Metab. Dis. 2019, 42, 67. [Google Scholar] [CrossRef]
- Gelb, M.H. Newborn screening and post-screening diagnosis of lysosomal diseases. Mol. Genet. Metab. 2017, 120, S50–S51. [Google Scholar] [CrossRef]
- Gelb, M.H. A universal newborn and diagnostic screening platform for lysosomal diseases and beyond. Mol. Genet. Metab. 2020, 129, S61. [Google Scholar] [CrossRef]
- Gelb, M.H. Glycosaminoglycan biomarkers in newborn dried blood spots to support newborn screening of MPS disorders. Mol. Genet. Metab. 2020, 129, S61. [Google Scholar] [CrossRef]
- Matern, D.; Tortorelli, S.; Gavrilov, D.; Raymond, K.; Tang, H.; Lorey, F.; Rinaldo, P.; Oglesbee, D. The (surprising) prevalence of 12 lysosomal storage disorders, Friedreich ataxia, Wilson disease and X-adrenoleukodystrophy in California. Mol. Genet. Metab. 2014, 111, 271. [Google Scholar] [CrossRef]
- Pollard, L.; Wood, T. High prevalence of pseudodeficiency for MPS I and MPS II and the impact on newborn screening. Mol. Genet. Metab. 2020, 129, S130–S131. [Google Scholar] [CrossRef]
- Quadri, A.M.; Kim, K.H.; Hickey, R.E.; Paras, A.; Baker, J.; Charrow, J.; Burton, B.K. Population-based newborn screening for mucopolysaccharidosis type II: A single center’s experience. Mol. Genet. Metab. 2021, 132, S89–S90. [Google Scholar] [CrossRef]
- Tomatsu, S.; Kubaski, F.; Mason, R.W. Newborn screening for mucopolysaccharidoses by GAG assay with tandem mass spectrometry. Mol. Genet. Metab. 2019, 126, S145. [Google Scholar] [CrossRef]
- Ullal, A.; Ng, R.; Nuffer, M.; Graham, C.; Nelson, L.; Singh, R.; Pamula, V. Flexible digital microfluidic platform to multiplex various combinations of enzymatic assays for newborn screening of Pompe, mucopolysaccharidosis types I and II, biotinidase deficiency and galactosemia disorders. Mol. Genet. Metab. 2017, 120, S132–S133. [Google Scholar] [CrossRef]
- Van Vlies, N.; De Ruijter, J.; De Ru, M.H.; Wagemans, T.; Ijlst, L.; Wijburg, F.A. Heparan sulfate and dermatan sulfate disaccharide levels for newborn screening in MPS I, MPS II and MPS III. Mol. Genet. Metab. 2013, 108, S95. [Google Scholar] [CrossRef]
- Wasserstein, M.; Caggana, M.; Gelb, M.H.; Goldenberg, A.; Kelly, N.; Matern, D.; Orsini, J.J. ScreenPlus: A comprehensive, dynamic, multi-disorder newborn screening pilot program. Mol. Genet. Metab. 2020, 129, S160. [Google Scholar] [CrossRef]
- Pique, D. eP504: A novel visualization of state-by-state variability in newborn screening highlights underrepresentation of lysosomal storage disorders. Genet. Med. 2022, 24, S321–S322. [Google Scholar] [CrossRef]
- Okuyama, T.; Seo, J.H.; Ohtake, A. 219: Current status of newborn screening for lysosomal diseases in Japan: Importance of novel therapies for central nervous system manifestation in MPS II, and importance of family screening of Fabry disease after newborn screening. Mol. Genet. Metab. 2022, 135, S15–S132. [Google Scholar] [CrossRef]
- Taiwan Ministry of Health and Welfare Health Promotion Administration. The First Line of Defense for Health: Three Decades of Newborn Screening in Taiwan. 2016. Available online: https://www.hpa.gov.tw/Pages/ashx/File.ashx?FilePath=~/File/Attach/6471/File_6142.pdf (accessed on 20 February 2023).
- World Population Review. Birth Rate by Country 2022. Available online: https://worldpopulationreview.com/country-rankings/birth-rate-by-country (accessed on 21 February 2023).
- Center for Disease Control and Prevention National Center for Health Statistics. Life Stages and Population: State and Territorial Data. Available online: https://www.cdc.gov/nchs/fastats/state-and-territorial-data.htm (accessed on 21 February 2023).
- Illinois Department of Public Health. Birth Statistics. Available online: https://dph.illinois.gov/data-statistics/vital-statistics/birth-statistics.html (accessed on 1 May 2024).
- MedLine Plus. Mucopolysaccharidosis Type II. Available online: https://medlineplus.gov/genetics/condition/mucopolysaccharidosis-type-ii/ (accessed on 16 April 2024).
- National MPS Society. MPS II (Hunter Syndrome). Available online: https://mpssociety.org/learn-about-mps/diseases/mps-ii/ (accessed on 16 April 2024).
- Pamula, V.; Sista, R.; Wang, T.; Graham, C.; Eckhardt, A.; Winger, T.; Wu, N.; Xiong, Y.; Srinivasan, V.; Millington, D.; et al. Digital microfluidic platform for multiplexing LSD assays in newborn screening. Mol. Genet. Metab. 2011, 102, S33. [Google Scholar] [CrossRef]
- Sista, R.; Eckhardt, A.E.; Wang, T.; Séllos-Moura, M.; Pamula, V.K. Rapid, single-step assay for Hunter syndrome in dried blood spots using digital microfluidics. Clin. Chim. Acta 2011, 412, 1895–1897. [Google Scholar] [CrossRef]
- Pamula, V.; Sista, R.; Wang, T.; Graham, C.; Wu, N.; Eckhardt, A.; Winger, T.; Xiong, Y.; Millington, D.; Ali, D. Rapid LSD assays on a multiplex digital microfluidic platform for newborn screening. Mol. Genet. Metab. 2012, 105, S49. [Google Scholar] [CrossRef]
- Monachesi, C.; Zampini, L.; Padella, L.; Marchesiello, R.L.; Galeazzi, T.; Santoro, L.; Catassi, C.; Gasparrini, E.; Carnielli, V.P.; Volpi, N.; et al. False positive screen test for mucopolysaccharidoses in healthy female newborns. Clin. Chim. Acta 2018, 486, 221–223. [Google Scholar] [CrossRef]
- Burlina, A.; Jones, S.A.; Chakrapani, A.; Church, H.J.; Heales, S.; Wu, T.H.Y.; Morton, G.; Roberts, P.; Sluys, E.F.; Cheillan, D. A new approach to objectively evaluate inherited metabolic diseases for inclusion on newborn screening programmes. Int. J. Neonatal Screen. 2022, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Olney, R.S.; Bonham, J.R.; Schielen, P.C.J.I.; Slavin, D.; Ojodu, J. 2023 APHL/ISNS Newborn Screening Symposium. Int. J. Neonatal Screen. 2023, 9, 54. [Google Scholar] [CrossRef] [PubMed]
- Maternal and Child Health Bureau of the Health and Resources and Services Administration. Newborn Screening for Mucopolysaccharidosis Type I. A Summary of the Evidence and Advisory Committee Decision. Available online: https://www.hrsa.gov/sites/default/files/hrsa/advisory-committees/heritable-disorders/mps-i-27-june-2018.pdf (accessed on 1 July 2022).
- Puckett, Y.; Mallorga-Hernandez, A.; Montano, A.M. Epidemiology of mucopolysaccharidoses (MPS) in United States: Challenges and opportunities. Orphanet J. Rare Dis. 2021, 16, 241. [Google Scholar] [CrossRef]
- Association of Public Health Laboratories. Newborn Screening Status for All Disorders. Available online: https://www.newsteps.org/resources/data-visualizations/newborn-screening-status-all-disorders (accessed on 1 November 2023).
- Wraith, J.E.; Beck, M.; Giugliani, R.; Clarke, J.; Martin, R.; Muenzer, J. Initial report from the Hunter Outcome Survey. Genet. Med. 2008, 10, 508–516. [Google Scholar] [CrossRef]
- National Organization for Rare Disorders (NORD). Mucopolysaccharidosis Type II. Available online: https://rarediseases.org/rare-diseases/mucopolysaccharidosis-type-ii-2/ (accessed on 20 October 2023).
- Chen, X.; Qiu, W.; Ye, J.; Han, L.; Gu, X.; Zhang, H. Demographic characteristics and distribution of lysosomal storage disorder subtypes in Eastern China. J. Hum. Human. Genet. 2016, 61, 345–349. [Google Scholar] [CrossRef]
- Lin, S.-P.; Chang, J.-H.; Lee-Chen, G.-J.; Lin, D.-S.; Lin, H.-Y.; Chuang, C.-K. Detection of hunter syndrome (mucopolysaccharidosis type II) in Taiwanese: Biochemical and linkage studies of the iduronate-2-sulfatase gene defects in MPS II patients and carriers. Clin. Chim. Acta 2006, 369, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Isogai, K.; Sukegawa, K.; Tomatsu, S.; Fukao, T.; Song, X.-Q.; Yamada, Y.; Fukuda, S.; Orii, T.; Kondo, N. Mutation analysis in the iduronate-2-sulphatase gene in 43 Japanese patients with mucopolysaccharidosis type II (Hunter disease). J. Inherit. Metab. Dis. 1998, 21, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Millington, D.; Norton, S.; Singh, R.; Sista, R.; Srinivasan, V.; Pamula, V. Digital microfluidics comes of age: High-throughput screening to bedside diagnostic testing for genetic disorders in newborns. Expert. Rev. Mol. Diagn. 2018, 18, 701–712. [Google Scholar] [CrossRef]
- Gelb, M.H. Newborn screening for lysosomal storage diseases: Methodologies, screen positive rates, normalization of datasets, second-tier tests, and post-analysis tools. Int. J. Neonatal Screen. 2018, 4, 23. [Google Scholar] [CrossRef]
- Herbst, Z.M.; Urdaneta, L.; Klein, T.; Burton, B.K.; Basheeruddin, K.; Liao, H.C.; Fuller, M.; Gelb, M.H. Evaluation of two methods for quantification of glycosaminoglycan biomarkers in newborn dried blood spots from patients with severe and attenuated mucopolysaccharidosis type II. Int. J. Neonatal Screen. 2022, 8, 9. [Google Scholar] [CrossRef]
- Saville, J.T.; McDermott, B.K.; Fletcher, J.M.; Fuller, M. Disease and subtype specific signatures enable precise diagnosis of the mucopolysaccharidoses. Genet. Med. 2019, 21, 753–757. [Google Scholar] [CrossRef] [PubMed]
- Arunkumar, N.; Vu, D.C.; Khan, S.; Kobayashi, H.; Ngoc Can, T.B.; Oguni, T.; Watanabe, J.; Tanaka, M.; Yamaguchi, S.; Taketani, T.; et al. Diagnosis of mucopolysaccharidoses and mucolipidosis by assaying multiplex enzymes and glycosaminoglycans. Diagnostics 2021, 11, 1347. [Google Scholar] [CrossRef] [PubMed]
- Polo, G.; Gueraldi, D.; Giuliani, A.; Rubert, L.; Cazzorla, C.; Salviati, L.; Marzollo, A.; Biffi, A.; Burlina, A.P.; Burlina, A.B. The combined use of enzyme activity and metabolite assays as a strategy for newborn screening of mucopolysaccharidosis type I. Clin. Chem. Lab. Med. 2020, 58, 2063–2072. [Google Scholar] [CrossRef] [PubMed]
- Ficicioglu, C.; Giugliani, R.; Harmatz, P.; Mendelsohn, N.J.; Jego, V.; Parini, R. Intrafamilial variability in the clinical manifestations of mucopolysaccharidosis type II: Data from the Hunter Outcome Survey (HOS). Am. J. Med. Genet. A 2018, 176, 301–310. [Google Scholar] [CrossRef]
- Josahkian, J.A.; Brusius-Facchin, A.C.; Netto, A.B.O.; Leistner-Segal, S.; Malaga, D.R.; Burin, M.G.; Michelin-Tirelli, K.; Trapp, F.B.; Cardoso-Dos-Santos, A.C.; Ribeiro, E.M.; et al. Genotype–phenotype studies in a large cohort of Brazilian patients with Hunter syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 2021, 187, 349–356. [Google Scholar] [CrossRef]
- Vollebregt, A.A.M.; Hoogeveen-Westerveld, M.; Kroos, M.A.; Oussoren, E.; Plug, I.; Ruijter, G.J.; van der Ploeg, A.T.; Pijnappel, W. Genotype–phenotype relationship in mucopolysaccharidosis II: Predictive power of IDS variants for the neuronopathic phenotype. Dev. Med. Child. Neurol. 2017, 59, 1063–1070. [Google Scholar] [CrossRef]
- Friedman, J.M.; Cornel, M.C.; Goldenberg, A.J.; Lister, K.J.; Senecal, K.; Vears, D.F.; the Global Alliance for Genomics and Health Regulatory and Ethics Working Group Paediatric Task Team. Genomic newborn screening: Public health policy considerations and recommendations. BMC Med. Genom. 2017, 10, 9. [Google Scholar] [CrossRef]
- Johnston, J.; Lantos, J.D.; Goldenberg, A.; Chen, F.; Parens, E.; Koenig, B.A.; members of the NSIGHT Ethics and Policy Advisory Board. Sequencing newborns: A call for nuanced use of genomic technologies. Hastings Cent. Rep. 2018, 48, S2–S6. [Google Scholar] [CrossRef]
- Bick, D.; Ahmed, A.; Deen, D.; Ferlini, A.; Garnier, N.; Kasperaviciute, D.; Leblond, M.; Pichini, A.; Rendon, A.; Satija, A.; et al. Newborn screening by genomic sequencing: Opportunities and challenges. Int. J. Neonatal Screen. 2022, 8, 40. [Google Scholar] [CrossRef]
- Kanungo, S.; Patel, D.R.; Neelakantan, M.; Ryali, B. Newborn screening and changing face of inborn errors of metabolism in the United States. Ann. Transl. Med. 2018, 6, 468. [Google Scholar] [CrossRef]
- Lin, H.Y.; Lee, C.L.; Chang, C.Y.; Chiu, P.C.; Chien, Y.H.; Niu, D.M.; Tsai, F.J.; Hwu, W.L.; Lin, S.J.; Lin, J.L.; et al. Survival and diagnostic age of 175 Taiwanese patients with mucopolysaccharidoses (1985–2019). Orphanet J. Rare Dis. 2020, 15, 314. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, K.; Gelb, M.H.; Grantham, A.; Spencer, N.; Webb, C.; West, T. Family attitudes regarding newbornscreening for Krabbe Disease: Results from a survey of leukodystrophy registries. Int. J. Neonatal Screen. 2020, 6, 66. [Google Scholar] [CrossRef] [PubMed]
- Bouwman, M.G.; de Ru, M.H.; Linthorst, G.E.; Hollak, C.E.M.; Wijburg, F.A.; van Zwieten, M.C.B. Fabry patients’ experiences with the timing of diagnosis relevant for the discussion on newborn screening. Mol. Genet. Metab. 2013, 109, 201–207. [Google Scholar] [CrossRef]
- DeLuca, J.M. Public attitudes toward expanded newborn screening. J. Pediatr. Nurs. 2018, 38, e19–e23. [Google Scholar] [CrossRef] [PubMed]
- Tao-Nishida, E.; Seo, J.H.; Sohn, Y.B.; Yotsumoto, J.; Kosuga, M.; Tanaka, T.; Omori, M.; Kawame, H.; Jin, D.K.; Okuyama, T. What do you think of enzyme replacement therapy and newborn screening for mucopolysaccharidoses? Opinions from patients and families of patients in Japan and Korea. J. Inherit. Metab. Dis. 2010, 33, S128. [Google Scholar] [CrossRef]
- Hayes, I.M.; Collins, V.; Sahhar, M.; Wraith, J.E.; Delatycki, M.B. Newborn screening for mucopolysaccharidoses: Opinions of patients and their families. Clin. Genet. 2007, 71, 446–450. [Google Scholar] [CrossRef]
- Lisi, E.C.; Ali, N. Opinions of adults affected with later-onset lysosomal storage diseases regarding newborn screening: A qualitative study. J. Genet. Couns. 2021, 30, 1544–1558. [Google Scholar] [CrossRef]
- Lisi, E.C.; Gillespie, S.; Laney, D.; Ali, N. Patients’ perspectives on newborn screening for later-onset lysosomal storage diseases. Mol. Genet. Metab. 2016, 119, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Lisi, E.C.; Long, V.; Laney, D. Do the benefits outweigh the harms? Views of patients with later onset LSD on newborn screening. Mol. Genet. Metab. 2015, 114, S74. [Google Scholar] [CrossRef]
- Peterson, L.; Siemon, A.; Olewiler, L.; McBride, K.L.; Allain, D.C. A qualitative assessment of parental experiences with false-positive newborn screening for Krabbe disease. J. Genet. Couns. 2022, 31, 252–260. [Google Scholar] [CrossRef]
- Hall, J.G. The role of patient advocacy/parent support groups. S. Afr. Med. J. 2013, 103, 1020–1022. [Google Scholar] [CrossRef] [PubMed]
- Nicholl, H.; Tracey, C.; Begley, T.; King, C.; Lynch, A.M. Internet use by parents of children with rare conditions: Findings from a study on parents’ web information needs. J. Med. Internet Res. 2017, 19, e51. [Google Scholar] [CrossRef] [PubMed]
Region | NBS Program Details | Program Initiation |
---|---|---|
Existing NBS programs | ||
Taiwan [23,27,39,41,53,66,67] | The Taiwanese NBS program was established in 2015 and screens approximately 35% of newborns per year. From August 2015 to April 2022, 546,040 infants were screened for MPS II using MS/MS for I2S enzyme activity in DBS. For newborns with consistent below-cutoff results, genotyping was performed on DNA extracted from DBS. In total, 223 positive screens were referred and nine cases were subsequently confirmed. Samples with I2S activity below the predefined threshold (6.5 μmol/L/h) were retested in duplicate. Samples with I2S activity below a lower threshold of 2.2 μmol/L/h were designated as positive screens and referred for MPS confirmation at the Mackay Memorial Hospital. | 2015 |
USA, Illinois [36,37,38,73] | Illinois became the first state in the USA to implement population-based NBS for MPS II in December 2017. As of April 2022, 700,616 samples from 586,323 infants had been tested, leading to eight confirmed diagnoses. A positive screen for MPS II was defined as I2S activity ≤10% of the daily median activity. Samples with I2S activity >10–13% of the daily median activity were classified as borderline, and a second specimen was requested. Infants with a positive result were referred for diagnostic testing, which was performed at commercial laboratories determined by the consultant evaluating the patient. | 2017 |
USA, Missouri [34] | In Missouri, prospective NBS for MPS II began in November 2018 using a fluorometric enzyme assay to measure I2S activity in DBS samples. By June 2020, 146,954 samples had been screened, and two newborns had received a diagnosis of severe MPS II after positive first- and second-tier screens and positive confirmatory test results. Samples with I2S activity below the “retest cutoff” (initially 40 μmol/L/h; adjusted to 25 μmol/L/h from 2 August 2019) were repeated in duplicate; of these, samples with average activity below the “high-risk cutoff” (initially 35 μmol/L/h; adjusted to 20 μmol/L/h from 2 August 2019) were sent for second-tier testing. From November 2018 to December 2019, second-tier screening was performed via molecular sequencing at Greenwood Genetic Center; from January to June 2020, second-tier screening was performed by evaluation of DBS GAG concentrations at Mayo Clinic Laboratories. For samples with a positive second-tier result, the newborn was referred to a contracted follow-up center for confirmatory diagnostic testing. | 2018 |
Pilot NBS programs | ||
Japan, Tokyo [79] | As a result of more treatments becoming available in Japan, NBS for treatable LSDs is being piloted in Tokyo metropolitan and surrounding areas using LC–MS/MS as the screening method for detecting LSDs. | NR |
USA, New York [77] | ScreenPlus is a comprehensive NBS program expected to enroll approximately 150,000–175,000 infants born at eight hospitals in New York over a 5-year period. Using a megaplex LC–MS/MS screening platform for first-tier testing, ScreenPlus will also include second-tier biomarkers and third-tier DNA testing to enhance the accuracy of screening for a range of disorders, including MPS II. | 2020 |
USA, Washington [22] | A pilot program was initiated in Washington in 2019 using a two-tier strategy comprising LC–MS/MS and subsequent genotype sequencing on anonymized DBS. | NR |
Region, Year | Technology |
---|---|
Argentina, Spain, 2010 [33] | Urine GAG quantification by multiplex DMB assay |
USA, 2020 [34] | First-tier screening: DBS I2S activity by fluorometric assay Second-tier screening: gene sequencing/GAG analysis of DBS |
USA, 2019 [36], 2020 [37], and 2023 [38] | DBS I2S activity by MS/MS Total GAG analysis using DMB incorporation and spectrophotometry GAG-derived disaccharide (HS and DS) quantification by ESI–MS/MS Molecular testing |
Taiwan, 2019 [39] | DBS I2S activity by multiplex MS/MS Gene sequencing |
USA, 2014 [40] | DBS I2S activity by multiplex LC–MS/MS |
Taiwan, 2020 [23] and 2020 [66] | DBS I2S activity by multiplex LC–MS/MS Gene sequencing |
Taiwan, 2019 [67] | DBS I2S activity by MS/MS Gene sequencing |
Taiwan, 2021 [27] | DBS I2S activity by MS/MS |
Taiwan, 2022 [41] | DBS I2S activity by MS/MS |
Brazil, 2006 [42] | DBS I2S activity by fluorometric assay |
Netherlands, 2012 [43] | DBS GAG-derived disaccharide quantification by LC–MS/MS |
Morocco, a 2020 [45] | Urine GAG quantification by DMB assay Urine GAG quantification by semi-quantitative colorimetric assay Urine GAG quantification by thin-layer chromatography Urine I2S activity by fluorometric assay |
USA, 2017 [68] | DBS I2S activity by multiplex MS/MS |
Italy, Taiwan, USA, 2019 [46] | DBS I2S activity by multiplex MS/MS DBS I2S activity by multiplex DMF |
USA, 2020 [69] | DBS I2S activity by multiplex LC–MS/MS |
USA, 2020 [70] | Quantification of GAG-derived biomarkers by LC–MS/MS of DBS (proposed as a second-tier strategy) |
USA, 2020 [49] | DBS/fibroblast lysate I2S activity by multiplex LC–MS/MS |
USA, 2015 [50] | DBS I2S activity by multiplex MS/MS DBS I2S activity by multiplex fluorometric assay |
USA, 2019 [51] | DBS I2S activity by multiplex MS/MS |
South Korea, 2015 [52] | DBS I2S activity by multiplex LC–MS/MS |
Taiwan, 2022 [53] | DBS I2S activity by MS/MS |
USA, 2017 [55] | DBS I2S activity by multiplex LC–MS/MS |
Italy, 2018 [56] | DBS GAG quantification by capillary electrophoresis using laser-induced fluorescence separation |
Australia, 2004 [57] | DBS protein biomarker (LAMP1 and saposin C) quantification by time-resolved fluorescence dual assay and metabolite markers by LC–MS/MS |
Australia, 2006 [58] | DBS I2S, LAMP1 and saposin C quantification by multiplex immunoassay |
Canada, 2019 [59] | Urine GAG (DS and HS) quantification by ultra-performance LC–MS/MS |
USA, 2022 [30] | First-tier screening: DBS I2S activity by MS/MS or microfluorometry Second-tier screening: molecular and/or biochemical testing |
Japan, 2020 [60] | DBS I2S activity by multiplex LC–MS/MS assay |
Japan, 2022 [79] | Quantification of lysosomal enzyme activity in urine samples by LC–MS/MS |
USA, 2020 [72] | First-tier screening: plasma I2S activity by multiplex MS/MS Second-tier screening: urine GAGs and/or molecular analysis (method not defined) |
USA, 2021 [73] | DBS I2S activity by multiplex MS/MS Urine GAG quantification (method not defined) Gene sequencing |
Netherlands, 2014 [61] | DBS I2S activity by fluorometric assay |
Morocco, 2020 [62] | Urine GAG (CS) quantification by DMB assay |
USA, 2020 [22] | First-tier screening: DBS I2S activity by multiplex LC–MS/MS Second-tier screening: gene sequencing |
NR, 2014 [63] | DBS GAG (HS) quantification by multiplex high-throughput MS/MS DBS GAG (HS) quantification by multiplex LC–MS/MS |
Japan, 2020 [25] | DBS GAG (DS and HS) quantification by LC–MS/MS DBS I2S activity by fluorometric assay |
NR, 2019 [74] | DBS GAG (not defined) quantification by LC–MS/MS |
USA, 2017 [75] | DBS I2S assay by multiplex digital microfluidics |
NR, 2013 [76] | DBS GAG (DS and HS) and disaccharide (not defined) quantification by LC–MS/MS |
USA, 2007 [64] | DBS I2S activity by MS/MS |
USA, 2020 [77] | First-tier screening: I2S activity by LC–MS/MS (sample type NR) Second-tier screening: biomarker quantification (method not defined) Third-tier screening: gene sequencing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Society for Neonatal Screening. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayodele, O.; Fertek, D.; Evuarherhe, O.; Siffel, C.; Audi, J.; Yee, K.S.; Burton, B.K. A Systematic Literature Review on the Global Status of Newborn Screening for Mucopolysaccharidosis II. Int. J. Neonatal Screen. 2024, 10, 71. https://doi.org/10.3390/ijns10040071
Ayodele O, Fertek D, Evuarherhe O, Siffel C, Audi J, Yee KS, Burton BK. A Systematic Literature Review on the Global Status of Newborn Screening for Mucopolysaccharidosis II. International Journal of Neonatal Screening. 2024; 10(4):71. https://doi.org/10.3390/ijns10040071
Chicago/Turabian StyleAyodele, Olulade, Daniel Fertek, Obaro Evuarherhe, Csaba Siffel, Jennifer Audi, Karen S. Yee, and Barbara K. Burton. 2024. "A Systematic Literature Review on the Global Status of Newborn Screening for Mucopolysaccharidosis II" International Journal of Neonatal Screening 10, no. 4: 71. https://doi.org/10.3390/ijns10040071
APA StyleAyodele, O., Fertek, D., Evuarherhe, O., Siffel, C., Audi, J., Yee, K. S., & Burton, B. K. (2024). A Systematic Literature Review on the Global Status of Newborn Screening for Mucopolysaccharidosis II. International Journal of Neonatal Screening, 10(4), 71. https://doi.org/10.3390/ijns10040071