Prevalence and Mutation Analysis of Short-Chain acyl-CoA Dehydrogenase Deficiency Detected by Newborn Screening in Hefei, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Newborn Screening for SCADD
2.3. Genetic Analysis
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Biochemical Characteristics of Newborns with SCADD
3.3. Genetic Analysis of Newborns with SCADD
3.4. Results of Urinary Ethylmalonic Acid (EMA) Testing
3.5. Clinical Outcomes of Infants with SCADD
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACADS | acyl-CoA dehydrogenase gene |
C2 | acetylcarnitine |
C3 | propionyl carnitine |
C4 | butyrylcarnitine |
C5 | isovalerylcarnitine |
C6 | hexanoylcarnitine |
DBS | dried blood spot |
IBDD | isobutyryl-CoA dehydrogenase deficiency |
MADD | multiple acyl-CoA dehydrogenase deficiency |
NBS | newborn screening |
NGS | next-generation sequencing |
SCADD | short-chain acyl-CoA dehydrogenase deficiency |
References
- Shirao, K.; Okada, S.; Tajima, G.; Tsumura, M.; Hara, K.; Yasunaga, S.; Ohtsubo, M.; Hata, I.; Sakura, N.; Shigematsu, Y.; et al. Molecular pathogenesis of a novel mutation, G108D, in short-chain acyl-CoA dehydrogenase identified in subjects with short-chain acyl-CoA dehydrogenase deficiency. Hum. Genet. 2010, 127, 619–628. [Google Scholar] [CrossRef]
- Kanavin, O.J.; Woldseth, B.; Jellum, E.; Tvedt, B.; Andresen, B.S.; Stromme, P. 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation: A case report. J. Med. Case Rep. 2007, 1, 98. [Google Scholar] [CrossRef]
- Gallant, N.M.; Leydiker, K.; Tang, H.; Feuchtbaum, L.; Lorey, F.; Puckett, R.; Deignan, J.L.; Neidich, J.; Dorrani, N.; Chang, E.; et al. Biochemical, molecular, and clinical characteristics of children with short chain acyl-CoA dehydrogenase deficiency detected by newborn screening in California. Mol. Genet. Metab. 2012, 106, 55–61. [Google Scholar] [CrossRef]
- Pena, L.; Angle, B.; Burton, B.; Charrow, J. Follow-up of patients with short-chain acyl-CoA dehydrogenase and isobutyryl-CoA dehydrogenase deficiencies identified through newborn screening: One center’s experience. Genet. Med. 2012, 14, 342–347. [Google Scholar] [CrossRef]
- Sadat, R.; Hall, P.L.; Wittenauer, A.L.; Vengoechea, E.D.; Park, K.; Hagar, A.F.; Singh, R.; Moore, R.H.; Gambello, M.J. Increased parental anxiety and a benign clinical course: Infants identified with short-chain acyl-CoA dehydrogenase deficiency and isobutyryl-CoA dehydrogenase deficiency through newborn screening in Georgia. Mol. Genet. Metab. 2020, 129, 20–25. [Google Scholar] [CrossRef]
- Nochi, Z.; Olsen, R.K.J.; Gregersen, N. Short-chain acyl-CoA dehydrogenase deficiency: From gene to cell pathology and possible disease mechanisms. J. Inherit. Metab. Dis. 2017, 40, 641–655. [Google Scholar] [CrossRef]
- An, S.J.; Kim, S.Z.; Kim, G.H.; Yoo, H.W.; Lim, H.H. Compound heterozygous mutations of ACADS gene in newborn with short chain acyl-CoA dehydrogenase deficiency: Case report and literatures review. Korean J. Pediatr. 2016, 59, S45–S48. [Google Scholar] [CrossRef]
- Adhikari, A.N.; Currier, R.J.; Tang, H.; Turgeon, C.T.; Nussbaum, R.L.; Srinivasan, R.; Sunderam, U.; Kwok, P.Y.; Brenner, S.E.; Gavrilov, D.; et al. Genomic Analysis of Historical Cases with Positive Newborn Screens for Short-Chain Acyl-CoA Dehydrogenase Deficiency Shows That a Validated Second-Tier Biochemical Test Can Replace Future Sequencing. Int. J. Neonatal Screen. 2020, 6, 41. [Google Scholar] [CrossRef]
- McHugh, D.; Cameron, C.A.; Abdenur, J.E.; Abdulrahman, M.; Adair, O.; Al Nuaimi, S.A.; Ahlman, H.; Allen, J.J.; Antonozzi, I.; Archer, S.; et al. Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: A worldwide collaborative project. Genet. Med. 2011, 13, 230–254. [Google Scholar] [CrossRef]
- Zhao, P.; Lin, Q.; Chen, W.; Qiu, X.; Xu, L. Clinical biochemical and genetic analysis of patients with short/branched acyl-CoA dehydrogenase deficiency. J. Mod. Med. Health 2023, 39, 2386–2390. [Google Scholar]
- Yang, C.; Shi, C.; Zhou, C.; Wan, Q.; Zhou, Y.; Chen, X.; Jin, X.; Huang, C.; Xu, P. Screening and follow-up results of fatty acid oxidative metabolism disorders in 608 818 newborns in Jining, Shandong province. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021, 50, 472–480. [Google Scholar] [CrossRef]
- Hao, L.; Liang, L.; Gao, X.; Zhan, X.; Ji, W.; Chen, T.; Xu, F.; Qiu, W.; Zhang, H.; Gu, X.; et al. Screening of 1.17 million newborns for inborn errors of metabolism using tandem mass spectrometry in Shanghai, China: A 19-year report. Mol. Genet. Metab. 2024, 141, 108098. [Google Scholar] [CrossRef]
- Men, S.; Liu, S.; Zheng, Q.; Yang, S.; Mao, H.; Wang, Z.; Gu, Y.; Tang, X.; Wang, L. Incidence and genetic variants of inborn errors of metabolism identified through newborn screening: A 7-year study in eastern coastal areas of China. Mol. Genet. Genom. Med. 2023, 11, e2152. [Google Scholar] [CrossRef]
- Shen, Y.; Li, J.; Xiao, G. Screening results of neonatal short-chain acyl-CoA dehydrogenase deficiency from 79205 cases in Huaihua. Chin. J. Birth Health Hered. 2018, 26, 79–80+68. [Google Scholar]
- Gong, L.; Yang, N.; Zhao, J.; Yang, H.; Tang, Y.; Li, L.; Kong, Y. Clinical characteristics and related gene mutations of infants with short-chain acyl-CoA dehydrogenase deficiency by neonatal screening in Beijing. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022, 51, 278–283. [Google Scholar] [CrossRef]
- Hu, Q.; He, Y.; Ye, Q.; Jin, Z. Analysis of screening and diagnosis results of newborns with short-chain acyl-CoA dehy-drogenase deficiency in Zigong City. Chin. J. New Clin. Med. 2021, 14, 795–798. [Google Scholar]
- Li, X.; He, L.; Sun, Y.; Huang, X.; Luo, Y.; Li, Y.; Zhou, S.; Zeng, Y.; He, J. Analysis of screening results for genetic metabolic diseases among 352 449 newborns from Changsha. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2023, 40, 1075–1085. [Google Scholar] [CrossRef]
- Huang, X.W.; Zhang, Y.; Yang, J.B.; Hong, F.; Qian, G.L.; Tong, F.; Mao, H.Q.; Huang, X.L.; Zhou, X.L.; Yang, R.L.; et al. Clinical, biochemical and gene mutation characteristics of short chain acyl-coenzyme A dehydrogenase deficiency by neonatal screening. Zhonghua Er Ke Za Zhi 2016, 54, 927–930. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, L.; Zhao, Q.; Feng, X.; Hao, S.; Mi, L.; Wang, X. Diagnosis and gene mutation analysis of a case of short chain acyl CoA dehydrogenase deficiency in Gansu region. Chin. J. Birth Health Hered. 2023, 31, 2162–2165. [Google Scholar]
- Jia, L.; Feng, L.; Feng, J.; Gong, M.; Ma, C. Screening and gene mutation analysis of neonates with short-chain acyl-coenzyme A dehydrogenase deficiency in Shijiazhuang city of Hebei province. J. Dev. Med. (Electron. Version) 2023, 11, 14–18. [Google Scholar]
- Lindner, M.; Hoffmann, G.F.; Matern, D. Newborn screening for disorders of fatty-acid oxidation: Experience and recommendations from an expert meeting. J. Inherit. Metab. Dis. 2010, 33, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Lisyova, J.; Chandoga, J.; Jungova, P.; Repisky, M.; Knapkova, M.; Machkova, M.; Dluholucky, S.; Behulova, D.; Saligova, J.; Potocnakova, L.; et al. An unusually high frequency of SCAD deficiency caused by two pathogenic variants in the ACADS gene and its relationship to the ethnic structure in Slovakia. BMC Med. Genet. 2018, 19, 64. [Google Scholar] [CrossRef] [PubMed]
- Messina, M.; Arena, A.; Iacobacci, R.; La Spina, L.; Meli, C.; Raudino, F.; Ruggieri, M. Butyrylcarnitine Elevation in Newborn Screening: Reducing False Positives and Distinguishing between Two Rare Diseases through the Evaluation of New Ratios. Biomedicines 2023, 11, 3247. [Google Scholar] [CrossRef] [PubMed]
- Schulze, A.; Lindner, M.; Kohlmuller, D.; Olgemoller, K.; Mayatepek, E.; Hoffmann, G.F. Expanded newborn screening for inborn errors of metabolism by electrospray ionization-tandem mass spectrometry: Results, outcome, and implications. Pediatrics 2003, 111, 1399–1406. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, Q.; Rong, C.; Lin, Z. Screening of C5 acylcarnitine level determined by tandem mass spectrometry in neonatal short-chain acyl-CoA dehydrogenase deficiency. J. Guangdong Med. Univ. 2021, 39, 729–731. [Google Scholar]
- Schmidt, J.L.; Castellanos-Brown, K.; Childress, S.; Bonhomme, N.; Oktay, J.S.; Terry, S.F.; Kyler, P.; Davidoff, A.; Greene, C. The impact of false-positive newborn screening results on families: A qualitative study. Genet. Med. 2012, 14, 76–80. [Google Scholar] [CrossRef]
- Marquardt, G.; Currier, R.; McHugh, D.M.; Gavrilov, D.; Magera, M.J.; Matern, D.; Oglesbee, D.; Raymond, K.; Rinaldo, P.; Smith, E.H.; et al. Enhanced interpretation of newborn screening results without analyte cutoff values. Genet. Med. 2012, 14, 648–655. [Google Scholar] [CrossRef]
- Hall, P.L.; Marquardt, G.; McHugh, D.M.; Currier, R.J.; Tang, H.; Stoway, S.D.; Rinaldo, P. Postanalytical tools improve performance of newborn screening by tandem mass spectrometry. Genet. Med. 2014, 16, 889–895. [Google Scholar] [CrossRef]
- Karasinski, K. Removing Short-Chain Acyl-CoA Dehydrogenase (SCAD) Deficiency and Isobutyryl-CoA Dehydrogenase Deficiency (IBD) from the Newborn Screening Panel: Michigan’s Experience. Available online: https://www.aphl.org/conferences/proceedings/Documents/2017/NBS%202017/12Karasinski.pdf (accessed on 26 September 2024).
Year | Number of Live Births | Number of NBSs | Screening Rate (%) | Number of Suspected Cases | Number of Recall Suspected Cases | Number of Recall Positive Cases | Number of SCADD | Number of False-Positive Cases | False-Positive Rate (%) |
---|---|---|---|---|---|---|---|---|---|
2016 | 94,311 | 78,963 | 83.73 | 32 | 31 | 6 | 1 | 31 | 0.04 |
2017 | 136,528 | 130,940 | 95.91 | 55 | 52 | 9 | 2 | 53 | 0.04 |
2018 | 120,156 | 115,881 | 96.44 | 56 | 53 | 12 | 6 | 50 | 0.04 |
2019 | 118,594 | 116,657 | 98.37 | 45 | 43 | 7 | 3 | 42 | 0.04 |
2020 | 103,799 | 102,159 | 98.42 | 35 | 34 | 8 | 2 | 33 | 0.03 |
2021 | 87,784 | 87,239 | 99.38 | 33 | 32 | 4 | 1 | 32 | 0.04 |
2022 | 77,333 | 76,248 | 98.60 | 38 | 38 | 6 | 4 | 34 | 0.04 |
2023 | 75,517 | 74,843 | 99.11 | 28 | 28 | 5 | 2 | 26 | 0.03 |
Total | 814,022 | 782,930 | 96.18 | 322 | 311 | 57 | 21 | 301 | 0.04 |
No. | Gender | GA (w) | Birth Weight (g) | C4 (μmol/L) | Paternal | Maternal | |||
---|---|---|---|---|---|---|---|---|---|
Initial Screening | Secondary Screening | Locations | Variants DNA (Protein) | Locations | Variants DNA (Protein) | ||||
1 | female | 39 + 6 | 2600 | 1.29 | 2.69 | exon5 | c.578C>T (p.S193L) | exon9 | c.1031A>G (p.E344G) |
2 | female | 38 + 3 | 3500 | 1.20 | 1.23 | exon8 | c.989G>A (p.R330H) | exon8 | c.989G>A (p.R330H) |
3 | female | 36 + 0 | 2300 | 1.37 | 1.07 | exon2 | c.203C>G (p.A68V) | exon4 | c.373G>C (p.G125R) |
4 | female | 36 + 0 | 2000 | 1.63 | 1.03 | exon2 | c.203C>G (p.A68V) | exon4 | c.373G>C (p.G125R) |
5 | female | 37 + 0 | 3300 | 1.25 | 0.99 | exon8 | c.991G>A (p.A331T) | exon9 | c.1031A>G (p.E344G) |
6 | female | 39 + 4 | 3030 | 1.45 | 1.14 | exon10 | c.1157G>A (p.R386H) | exon9 | c.1031A>G (p.E344G) |
7 | male | 39 + 6 | 3400 | 1.29 | 1.04 | exon10 | c.1130C>T (p.P377L) | exon10 | c.1130C>T (p.P377L) |
8 | male | 41 + 3 | 3800 | 1.28 | 1.47 | exon9 | c.1031A>G (p.E344G) | exon10 | c.1156C>T (p.R386C) |
9 | female | 37 + 5 | 3450 | 1.99 | 1.82 | exon2 | c.164C>T (p.P55L) | exon10 | c.1192C>T (p.Q398 *) |
10 | male | 33 + 4 | 1600 | 1.32 | 2.09 | exon9 | c.1066G>A (p.A356T) | exon7 | c.815G>A (p.R272H) |
11 | male | 39 + 0 | 3500 | 2.07 | 1.75 | exon10 | c.1192C>T (p.Q398 *) | exon10 | c.1192C>T (p.Q398 *) |
12 | male | 39 + 2 | 3300 | 1.08 | 0.75 | exon10 | c.1130C>T (p.P377L) | exon10 | c.1130C>T (p.P377L) |
13 | male | 38 + 6 | 3000 | 0.74 | 1.13 | intron7 | c.933+1G>A | exon9 | c.1031A>G (p.E344G) |
14 | male | 39 + 2 | 4150 | 1.41 | 1.38 | exon2 | c.164C>T (p.P55L) | exon5 | c.570G>A (p.W190) |
15 | male | 40 + 1 | 3740 | 1.01 | 1.14 | exon9 | c.1031A>G (p.E344G) | exon10 | c.1130C>T (p.P377L) |
16 | female | 39 + 4 | 3300 | 1.18 | 1.08 | exon10 | c.1130C>T (p.P377L) | exon10 | c.1130C>T (p.P377L) |
17 | female | 39 + 3 | 3545 | 1.23 | 1.56 | exon3 | c.242C>A (p.A81D) | exon9 | c.1054G>A (p.A352T) |
18 | female | 38 + 2 | 2700 | 1.95 | 3.12 | intron6 | c.795+1G>A | exon9 | c.1031A>G (p.E344G) |
19 | male | 39 + 3 | 3970 | 2.42 | 2.33 | exon3 | c.320G>A (p.R107H) | exon9 | c.1031A>G (p.E344G) |
20 | female | 38 + 6 | 3320 | 1.96 | 1.55 | exon9 | c.1054G>A (p.A352T) | exon9 | c.1031A>G (p.E344G) |
21 | male | 39 + 2 | 3800 | 0.71 | 0.87 | intron5 | c.624+1G>T | exon10 | c.1210G>A (p.G404R) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Society for Neonatal Screening. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Ma, Q.; Li, W.; Wang, Y.; Song, W.; Huang, Y. Prevalence and Mutation Analysis of Short-Chain acyl-CoA Dehydrogenase Deficiency Detected by Newborn Screening in Hefei, China. Int. J. Neonatal Screen. 2024, 10, 68. https://doi.org/10.3390/ijns10040068
Hu H, Ma Q, Li W, Wang Y, Song W, Huang Y. Prevalence and Mutation Analysis of Short-Chain acyl-CoA Dehydrogenase Deficiency Detected by Newborn Screening in Hefei, China. International Journal of Neonatal Screening. 2024; 10(4):68. https://doi.org/10.3390/ijns10040068
Chicago/Turabian StyleHu, Haili, Qingqing Ma, Weidong Li, Yan Wang, Wangsheng Song, and Yong Huang. 2024. "Prevalence and Mutation Analysis of Short-Chain acyl-CoA Dehydrogenase Deficiency Detected by Newborn Screening in Hefei, China" International Journal of Neonatal Screening 10, no. 4: 68. https://doi.org/10.3390/ijns10040068
APA StyleHu, H., Ma, Q., Li, W., Wang, Y., Song, W., & Huang, Y. (2024). Prevalence and Mutation Analysis of Short-Chain acyl-CoA Dehydrogenase Deficiency Detected by Newborn Screening in Hefei, China. International Journal of Neonatal Screening, 10(4), 68. https://doi.org/10.3390/ijns10040068