SARS-CoV-2 Omicron (B.1.1.529) Variant: Structural Features, Biological Characteristics, Impact on Scientific Research, General Precautions and Protective Procedures; A Systematic Review
Abstract
:Introduction
Discussion
SARS-CoV-2 Omicron's (B.1.1.529) Havoc
Omicron's Structural Features
Symptoms, complications and diagnosis
Role of Booster Vaccination
- 1)
- Will this variant lead to more severe and fatal diseases?
- 2)
- Will prior vaccination protect against this new variant?
- 3)
- Will previous medicines be effective against this new variant?
Impact on biomedical research studies
Impact on life sciences studies
- Due to university and research organization closures, researchers may be unable to complete investigations in time for publication.
- Many academic accomplishments remain unreported owing to a lack of funding since their research output has been used in funding decision.
- In a scientific meeting, many academics may lose key career development opportunities for networking or research dissemination as most global scientific meetings move to a virtual platform. Also, young researchers may feel especially exposed when they share sensitive information and new ideas online.
- Employment closures and funding issues several institutions are facing financial difficulties due to a historic drop in foreign student enrollment and the associated drop in university income. Many have eliminated jobs and slowed or frozen hiring.
Impact on clinical studies
Precautions and Procedural Guidelines
Research significance
- General guidelines with specifications and description data [87].Always maintain a social distance of at least one meter with other humans in all directions.Minimal touch with the article and human; no handshake.Sanitize your hands as much as possible.Do not use another person's laptop, mobile phone, or desktop.Conducting online meetings from a workstation using a laptop or a mobile device.Do not use the meeting room for any meetings.All employees will be informed that they will be under CCTV surveillance to monitor the above guidelines, and any non-compliance will be reported.
- During transit [88].Using a mask and starting from home.It is best to work while keeping a social distance. Say nothing until absolutely required.It is better not to bring food or other goods from home to work.
- During entry [88].After exiting your vehicle, keep social distance. Keeping track of visitors' names, addresses, ages, and contact information.Undertake a thermal screening with an OHC representative.Hand sanitizing with sanitizer.
Guideline end-user
- During the meeting or event [88].The simplest method to accomplish this is to advice or inform participants about omicron and the procedures taken to ensure their safety.Encourage everyone to wash their hands often or use rubbing alcohol.Coughing or sneezing should be covered with a bent elbow or a handkerchief.Providing closed trash cans and wipes to dispose of them.Hand massagers with alcohol were conspicuously exhibited around the premises.Keep windows and doors open to provide proper ventilation during your performance.Providing a mask so they may safely return home or transport them to a recognized assessment facility.
- Before a meeting or event [87].Initially, identify and validate communication routes with key partners like public health and healthcare professionals.Ensure you have enough tissues, masks, and hand sanitizer for everyone attending.Ensure that all event organizers, participants, vendors, and visitors provide contact information, including mobile phone numbers, email addresses, as well as event locations.
Conclusions
Author’s contributions
Acknowledgments
Conflict of interest disclosure
Compliance with ethical standards
References
- Viana, R.; Moyo, S.; Amoako, D.G.; Tegally, H.; Scheepers, C.; et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature. 2022, 603, 679–686. [Google Scholar] [CrossRef] [PubMed]
- WHO Coronavirus disease (COVID-19) pandemic. (2020). Accessed: March 20, 2020. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
- Omicron variant detected in more countries as scientists race to find answers. Reuters 2021 Nov 28. Available online: https://www.reuters.com/world/new-coronavirus-variant-omicron-keeps-spreading-australia-detects-cases-2021-11-28/.
- Pascarella, S.; Ciccozzi, M.; Bianchi, M.; Benvenuto, D.; Cauda, R.; Cassone, A. The electrostatic potential of the Omicron variant spike is higher than in Delta and Delta-plus variants: A hint to higher transmissibility? J Med Virol. 2022, 94, 1277–1280. [Google Scholar] [CrossRef]
- Islam, M.R.; Hossain, M.J. Detection of SARS-CoV-2 Omicron (B.1.1.529) variant has created panic among the people across the world: What should we do right now? J Med Virol. 2022, 94, 1768–1769. [Google Scholar] [CrossRef] [PubMed]
- UNESCO. COVID-19 Educational disruption and response. (2020). Accessed: March 25, 2020. Available online: https://en.unesco.org/themes/education-emergencies/coronavirus-school-closures.
- Karim, S.S.A.; Karim, Q.A. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic. Lancet. 2021, 398, 2126–2128. [Google Scholar] [CrossRef] [PubMed]
- Malik, J.A.; Ahmed, S.; Mir, A.; Shinde, M.; Bender, O.; Alshammari, F.; Ansari, M.; Anwar, S. The SARS-CoV-2 mutations versus vaccine effectiveness: New opportunities to new challenges. J Infect Public Health. 2022, 15, 228–240. [Google Scholar] [CrossRef]
- Singhal, T. The Emergence of Omicron: Challenging Times Are Here Again! Indian J Pediatr. 2022, 89, 490–496. [Google Scholar] [CrossRef]
- Price, A.M.; Olson, S.M.; Newhams, M.M.; Halasa, N.B.; Boom, J.A.; et al.; Overcoming Covid-19 Investigators BNT162b2 Protection against the Omicron Variant in Children and Adolescents. N Engl J Med. 2022, 386, 1899–1909. [Google Scholar] [CrossRef]
- Fleming-Dutra, K.E.; Britton, A.; Shang, N.; Derado, G.; Link-Gelles, R.; Accorsi, E.K.; Smith, Z.R.; Miller, J.; Verani, J.R.; Schrag, S.J. Association of Prior BNT162b2 COVID-19 Vaccination With Symptomatic SARS-CoV-2 Infection in Children and Adolescents During Omicron Predominance. JAMA. 2022, 327, 2210–2219. [Google Scholar] [CrossRef]
- Shukla, S.C.; Pandit, S.; Soni, D.; Gogtay, N.J. Evaluation of Allergic Reactions following COVID-19 Vaccination in Patients with Documented Allergies. J Assoc Physicians India. 2021, 69, 11–12. [Google Scholar]
- Kannan, S.R.; Spratt, A.N.; Sharma, K.; Chand, H.S.; Byrareddy, S.N.; Singh, K. Omicron SARS-CoV-2 variant: Unique features and their impact on pre-existing antibodies. J Autoimmun. 2022, 126, 102779. [Google Scholar] [CrossRef]
- Lubin, J.H.; Markosian, C.; Balamurugan, D.; Pasqualini, R.; Arap, W.; Burley, S.K.; Khare, S.D. Structural models of SARS-CoV-2 Omicron variant in complex with ACE2 receptor or antibodies suggest altered binding interfaces. bioRxiv. 2021, 2021.12.12.472313. [Google Scholar] [CrossRef]
- Saxena, S.K.; Kumar, S.; Ansari, S.; Paweska, J.T.; Maurya, V.K.; Tripathi, A.K.; Abdel-Moneim, A.S. Characterization of the novel SARS-CoV-2 Omicron (B.1.1.529) variant of concern and its global perspective. J Med Virol. 2022, 94, 1738–1744. [Google Scholar] [CrossRef]
- Mannar, D.; Saville, J.W.; Zhu, X.; Srivastava, S.S.; Berezuk, A.M.; Tuttle, K.S.; Marquez, A.C.; Sekirov, I.; Subramaniam, S. SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM structure of spike protein-ACE2 complex. Science. 2022, 375, 760–764. [Google Scholar] [CrossRef]
- Kumar, S.; Thambiraja, T.S.; Karuppanan, K.; Subramaniam, G. Omicron and Delta variant of SARS-CoV-2: A comparative computational study of spike protein. J Med Virol. 2022, 94, 1641–1649. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Rai, H.; Gautam, D.N.S.; Prajapati, P.K.; Sharma, R. Emerging evidence on Omicron (B.1.1.529) SARS-CoV-2 variant. J Med Virol. 2022, 94, 1876–1885. [Google Scholar] [CrossRef] [PubMed]
- Scialo, F.; Daniele, A.; Amato, F.; Pastore, L.; Matera, M.G.; Cazzola, M.; Castaldo, G.; Bianco, A. ACE2: The Major Cell Entry Receptor for SARS-CoV-2. Lung. 2020, 198, 867–877. [Google Scholar] [CrossRef]
- Joseph, S.; Nair, B.; Nath, L.R. The Ineluctable Role of ACE-2 Receptors in SARS COV-2 Infection and Drug Repurposing as a Plausible SARS COV-2 Therapy: A Concise Treatise. Curr Mol Med. 2021, 21, 888–913. [Google Scholar] [CrossRef]
- Tan, Z.; Chen, Z.; Yu, A.; Li, X.; Feng, Y.; Zhao, X.; Xu, W.; Su, X. The First Two Imported Cases of SARS-CoV-2 Omicron Variant-Tianjin Municipality, China, December 13, 2021. China CDC Wkly. 2022, 4, 76–77. [Google Scholar] [CrossRef]
- Tian, D.; Sun, Y.; Xu, H.; Ye, Q. The emergence and epidemic characteristics of the highly mutated SARS-CoV-2 Omicron variant. J Med Virol. 2022, 94, 2376–2383. [Google Scholar] [CrossRef]
- Fehr, A.R.; Perlman, S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015, 1282, 1–23. [Google Scholar] [CrossRef]
- Barlan, A.; Zhao, J.; Sarkar, M.K.; Li, K.; McCray, P.B., Jr; Perlman, S.; Gallagher, T. Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection. J Virol. 2014, 88, 4953–4961. [Google Scholar] [CrossRef] [PubMed]
- Del Águila-Mejía, J.; Wallmann, R.; Calvo-Montes, J.; Rodríguez-Lozano, J.; Valle-Madrazo, T.; Aginagalde-Llorente, A. Secondary Attack Rate, Transmission and Incubation Periods, and Serial Interval of SARS-CoV-2 Omicron Variant, Spain. Emerg Infect Dis. 2022, 28, 1224–1228. [Google Scholar] [CrossRef]
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. A new coronavirus associated with human respiratory disease in China. Nature. 2020, 579, 265–269. [Google Scholar] [CrossRef]
- de Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V.J. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016, 14, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020, 395, 565–574. [Google Scholar] [CrossRef]
- Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019, 17, 181–192. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Chowell, G.; Abdirizak, F.; Lee, S.; Lee, J.; Jung, E.; Nishiura, H.; Viboud, C. Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study. BMC Med. 2015, 13, 210. [Google Scholar] [CrossRef] [PubMed]
- Stroe, A.Z.; Stuparu, A.F.; Axelerad, S.D.; Axelerad, D.D.; Moraru, A. Neuropsychological symptoms related to the COVID-19 pandemic experienced by the general population and particularly by the healthcare personnel. J Mind Med Sci. 2021, 8, 197–208. [Google Scholar] [CrossRef]
- Cameroni, E.; Bowen, J.E.; Rosen, L.E.; Saliba, C.; Zepeda, S.K.; et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature. 2022, 602, 664–670. [Google Scholar] [CrossRef]
- Dejnirattisai, W.; Shaw, R.H.; Supasa, P.; Liu, C.; Stuart, A.S.; Pollard, A.J.; Liu, X.; Lambe, T.; Crook, D.; Stuart, D.I.; Mongkolsapaya, J.; Nguyen-Van-Tam, J.S.; Snape, M.D.; Screaton, G.R.; Com-COV2 study group. Reduced neutralisation of SARS-CoV-2 omicron B.1.1.529 variant by post-immunisation serum. Lancet. 2022, 399, 234–236. [Google Scholar] [CrossRef] [PubMed]
- Cele, S.; Jackson, L.; Khoury, D.S.; Khan, K.; Moyo-Gwete, T.; et al. Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature. 2022, 602, 654–656. [Google Scholar] [CrossRef]
- Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; et al. Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N Engl J Med. 2022, 386, 1532–1546. [Google Scholar] [CrossRef]
- Lopez Bernal, J.; Andrews, N.; Gower, C.; Robertson, C.; Stowe, J.; et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on covid-19 related symptoms, hospital admissions, and mortality in older adults in England: test negative case-control study. BMJ. 2021, 373, n1088. [Google Scholar] [CrossRef] [PubMed]
- Collie, S.; Champion, J.; Moultrie, H.; Bekker, L.G.; Gray, G. Effectiveness of BNT162b2 Vaccine against Omicron Variant in South Africa. N Engl J Med. 2022, 386, 494–496. [Google Scholar] [CrossRef]
- Mohapatra, R.K.; El-Shall, N.A.; Tiwari, R.; Nainu, F.; Kandi, V.; Sarangi, A.K.; Mohammed, T.A.; Desingu, P.A.; Chakraborty, C.; Dhama, K. Need of booster vaccine doses to counteract the emergence of SARS-CoV-2 variants in the context of the Omicron variant and increasing COVID-19 cases: An update. Hum Vaccin Immunother. 2022, 18, 2065824. [Google Scholar] [CrossRef]
- Chiu, N.C.; Chi, H.; Tu, Y.K.; Huang, Y.N.; Tai, Y.L.; Weng, S.L.; Chang, L.; Huang, D.T.; Huang, F.Y.; Lin, C.Y. To mix or not to mix? A rapid systematic review of heterologous prime-boost covid-19 vaccination. Expert Rev Vaccines. 2021, 20, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- AlKetbi, L.M.B.; Al Hosani, F.; Al Memari, S.; Al Mazrouei, S.; Al Shehhi, B.; AlShamsi, N.; AlKwuiti, M.M.; Saleheen, H.N.; Al Mutairi, H.; Al Hajeri, O.M. Parents' views on the acceptability of a COVID-19 vaccine for their children: A cross-sectional study in Abu Dhabi-United Arab Emirates. Vaccine. 2022, 40, 5562–5568. [Google Scholar] [CrossRef]
- Martínez-Baz, I.; Miqueleiz, A.; Casado, I.; Navascués, A.; Trobajo-Sanmartín, C.; Burgui, C.; Guevara, M.; Ezpeleta, C.; Castilla, J.; Working Group for the Study of COVID-19 in Navarra. Effectiveness of COVID-19 vaccines in preventing SARS-CoV-2 infection and hospitalisation, Navarre, Spain, January to April 2021. Euro Surveill. 2021, 26, 2100438. [Google Scholar] [CrossRef]
- Martínez-Baz, I.; Trobajo-Sanmartín, C.; Miqueleiz, A.; Guevara, M.; Fernández-Huerta, M.; Burgui, C.; Casado, I.; Portillo, M.E.; Navascués, A.; Ezpeleta, C.; Castilla, J.; Working Group for the Study of COVID-19 in Navarre; Investigators, other members of the Working Group for the Study of COVID-19 in Navarre. Product-specific COVID-19 vaccine effectiveness against secondary infection in close contacts, Navarre, Spain, April to August 2021. Euro Surveill. 2021, 26, 2100894. [Google Scholar] [CrossRef]
- Sima, R.M.; Olaru, O.G.; Cazaceanu, A.; Scheau, C.; Dimitriu, M.T.; Popescu, M.; Ples, L. Stress and anxiety among physicians and nurses in Romania during the COVID-19 pandemic. J Mind Med Sci. 2021, 8, 252–258. [Google Scholar] [CrossRef]
- Keskin, A.; Karslioglu, B. Did Covid-19 pandemic narrow the spectrum of surgical indications? J Clin Invest Surg. 2021, 6, 58–63. [Google Scholar] [CrossRef]
- Tang, P.; Hasan, M.R.; Chemaitelly, H.; Yassine, H.M.; Benslimane, F.M.; et al. BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the SARS-CoV-2 Delta variant in Qatar. Nat Med. 2021, 27, 2136–2143. [Google Scholar] [CrossRef] [PubMed]
- Pouwels, K.B.; Pritchard, E.; Matthews, P.C.; Stoesser, N.; Eyre, D.W.; et al. Effect of Delta variant on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK. Nat Med. 2021, 27, 2127–2135. [Google Scholar] [CrossRef] [PubMed]
- Pilishvili, T.; Gierke, R.; Fleming-Dutra, K.E.; Farrar, J.L.; Mohr, N.M.; et al.; Vaccine Effectiveness among Healthcare Personnel Study Team Effectiveness of mRNA Covid-19 Vaccine among U.S. Health Care Personnel. N Engl J Med. 2021, 385, e90. [Google Scholar] [CrossRef]
- Feikin, D.R.; Higdon, M.M.; Abu-Raddad, L.J.; Andrews, N.; Araos, R.; Goldberg, Y.; Groome, M.J.; Huppert, A.; O'Brien, K.L.; Smith, P.G.; Wilder-Smith, A.; Zeger, S.; Deloria Knoll, M.; Patel, M.K. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regression. Lancet. 2022, 399, 924–944. [Google Scholar] [CrossRef]
- Hitchings, M.D.T.; Ranzani, O.T.; Dorion, M.; D'Agostini, T.L.; de Paula, R.C.; et al. Effectiveness of ChAdOx1 vaccine in older adults during SARS-CoV-2 Gamma variant circulation in São Paulo. Nat Commun. 2021, 12, 6220. [Google Scholar] [CrossRef]
- Hall, V.; Foulkes, S.; Insalata, F.; Kirwan, P.; Saei, A.; et al.; SIREN Study Group Protection against SARS-CoV-2 after Covid-19 Vaccination and Previous Infection. N Engl J Med. 2022, 386, 1207–1220. [Google Scholar] [CrossRef]
- Cheng, S.M.S.; Mok, C.K.P.; Leung, Y.W.Y.; Ng, S.S.; Chan, K.C.K.; Ko, F.W.; Chen, C.; Yiu, K.; Lam, B.H.S.; Lau, E.H.Y.; Chan, K.K.P.; Luk, L.L.H.; Li, J.K.C.; Tsang, L.C.H.; Poon, L.L.M.; Hui, D.S.C.; Peiris, M. Neutralizing antibodies against the SARS-CoV-2 Omicron variant BA.1 following homologous and heterologous CoronaVac or BNT162b2 vaccination. Nat Med. 2022, 28, 486–489. [Google Scholar] [CrossRef]
- Cele, S.; Jackson, L.; Khoury, D.S.; Khan, K.; Moyo-Gwete, T.; et al. SARS-CoV-2 Omicron has extensive but incomplete escape of Pfizer BNT162b2 elicited neutralization and requires ACE2 for infection. medRxiv 2021, 2021.12.08.21267417. [Google Scholar] [CrossRef]
- Voysey, M.; Costa Clemens, S.A.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; et al.; Oxford COVID Vaccine Trial Group Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet. 2021, 397, 881–891. [Google Scholar] [CrossRef]
- Beatty, A.L.; Peyser, N.D.; Butcher, X.E.; Cocohoba, J.M.; Lin, F.; Olgin, J.E.; Pletcher, M.J.; Marcus, G.M. Analysis of COVID-19 Vaccine Type and Adverse Effects Following Vaccination. JAMA Netw Open. 2021, 4, e2140364. [Google Scholar] [CrossRef] [PubMed]
- Burki, T.K. Omicron variant and booster COVID-19 vaccines. Lancet Respir Med. 2022, 10, e17. [Google Scholar] [CrossRef] [PubMed]
- LR, B.; HM, E.S.; Essink B; Kotloff K; Frey S; Novak R; Diemert, D. ; et al.; COVE Study Group. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Tartof, S.Y.; Slezak, J.M.; Fischer, H.; Hong, V.; Ackerson, B.K.; et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. Lancet. 2021, 398, 1407–1416. [Google Scholar] [CrossRef]
- Agency, E.M. WHO adds Janssen vaccine to list of safe and effective emergency tools against COVID-19. Saudi Med J. 2021, 42, 463–464. [Google Scholar]
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; et al.; Oxford COVID Vaccine Trial Group Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021, 397, 99–111. [Google Scholar] [CrossRef]
- Madhi, S.A.; Baillie, V.; Cutland, C.L.; Voysey, M.; Koen, A.L.; et al.; NGS-SA Group; Wits-VIDA COVID Group Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. N Engl J Med. 2021, 384, 1885–1898. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, G.; Pan, H.; Li, C.; Hu, Y.; et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis. 2021, 21, 181–192. [Google Scholar] [CrossRef]
- Jara, A.; Undurraga, E.A.; González, C.; Paredes, F.; Fontecilla, T.; Jara, G.; Pizarro, A.; Acevedo, J.; Leo, K.; Leon, F.; Sans, C.; Leighton, P.; Suárez, P.; García-Escorza, H.; Araos, R. Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile. N Engl J Med. 2021, 385, 875–884. [Google Scholar] [CrossRef]
- Momin, T.; Kansagra, K.; Patel, H.; Sharma, S.; Sharma, B.; et al. Safety and Immunogenicity of a DNA SARS-CoV-2 vaccine (ZyCoV-D): Results of an open-label, non-randomized phase I part of phase I/II clinical study by intradermal route in healthy subjects in India. EClinicalMedicine. 2021, 38, 101020. [Google Scholar] [CrossRef] [PubMed]
- Baraniuk, C. Covid-19: What do we know about Sputnik V and other Russian vaccines? BMJ. 2021, 372, n743. [Google Scholar] [CrossRef]
- Serum Institute of India. News. Seruminstitute.com. [cited 2022 Jul 10]. Available online: https://www.seruminstitute.com/news.php.
- Komalatha, N.; Shilpa, G.; Laddha, K.S. Isolation of starch from curcuma longa and its characterization. Int J Pharm Sci Res. 2020, 11, 5712–5717. [Google Scholar] [CrossRef]
- Luo, W.; Li, Y.P.; He, Y.; Huang, S.L.; Li, D.; Gu, L.Q.; Huang, Z.S. Synthesis and evaluation of heterobivalent tacrine derivatives as potential multi-functional anti-Alzheimer agents. Eur J Med Chem. 2011, 46, 2609–2616. [Google Scholar] [CrossRef]
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int J Surg. 2020, 78, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Röhrig, B.; du Prel, J.B.; Wachtlin, D.; Blettner, M. Types of study in medical research: part 3 of a series on evaluation of scientific publications. Dtsch Arztebl Int. 2009, 106, 262–268. [Google Scholar] [CrossRef]
- Omary, M.B.; Hassan, M. Opinion: Here's how we restore productivity and vigor to the biomedical research workforce in the midst of COVID-19. Proc Natl Acad Sci U S A. 2020, 117, 19612–19614. [Google Scholar] [CrossRef]
- Ahmet, V.; Nedim, K.A. D-dimer levels and acute pulmonary embolism development in COVID-19 patients. J Mind Med Sci. 2021, 8, 133–138. [Google Scholar] [CrossRef]
- Sohrabi, C.; Mathew, G.; Franchi, T.; Kerwan, A.; Griffin, M.; Soleil CDel Mundo, J.; Ali, S.A.; Agha, M.; Agha, R. Impact of the coronavirus (COVID-19) pandemic on scientific research and implications for clinical academic training - A review. Int J Surg. 2021, 86, 57–63. [Google Scholar] [CrossRef]
- Madhusoodanan, J. Frozen cells and empty cages: researchers struggle to revive stalled experiments after the lockdown. Nature. 2020. [Google Scholar] [CrossRef]
- Emanuel, E.J.; Persad, G.; Upshur, R.; Thome, B.; Parker, M.; Glickman, A.; Zhang, C.; Boyle, C.; Smith, M.; Phillips, J.P. Fair Allocation of Scarce Medical Resources in the Time of Covid-19. N Engl J Med. 2020, 382, 2049–2055. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, S. "Slow research" in the time of Covid-19. Indian J Med Ethics. 2020, V, 212–214. [Google Scholar] [CrossRef] [PubMed]
- Zeggini, E.; Baumann, M.; Götz, M.; Herzig, S.; Hrabe de Angelis, M.; Tschöp, M.H. Biomedical Research Goes Viral: Dangers and Opportunities. Cell. 2020, 181, 1189–1193. [Google Scholar] [CrossRef]
- Paula, J.R. Lockdowns due to COVID-19 threaten PhD students' and early-career researchers' careers. Nat Ecol Evol. 2020, 4, 999. [Google Scholar] [CrossRef]
- Woolston, C. Pandemic darkens postdocs' work and career hopes. Nature. 2020, 585, 309–312. [Google Scholar] [CrossRef]
- Termini, C.M.; Traver, D. Impact of COVID-19 on early career scientists: an optimistic guide for the future. BMC Biol. 2020, 18, 95. [Google Scholar] [CrossRef]
- Woolston, C. Junior researchers hit by coronavirus-triggered hiring freezes. Nature. 2020, 582, 449–450. [Google Scholar] [CrossRef]
- Singh, J.A.; Bandewar, S.V.; Bukusi, E.A. The impact of the COVID-19 pandemic response on other health research. Bull World Health Organ. 2020, 98, 625–631. [Google Scholar] [CrossRef]
- Harrop, C.; Bal, V.; Carpenter, K.; Halladay, A. A lost generation? The impact of the COVID-19 pandemic on early career ASD researchers. Autism Res. 2021, 14, 1078–1087. [Google Scholar] [CrossRef]
- López-Vergès. S.; Urbani, B.; Fernández Rivas, D.; Kaur-Ghumaan, S.; Coussens, A.K.; et al. Mitigating losses: how scientific organisations can help address the impact of the COVID-19 pandemic on early-career researchers. Humanit Soc Sci Commun. 2021, 8, 284. [Google Scholar] [CrossRef]
- Chenneville, T.; Schwartz-Mette, R. Ethical considerations for psychologists in the time of COVID-19. Am Psychol. 2020, 75, 644–654. [Google Scholar] [CrossRef] [PubMed]
- Coltey, E.; Alonso, D.; Vassigh, S.; Chen, S.C. Towards an AI-Driven Marketplace for Small Businesses During COVID-19. SN Comput Sci. 2022, 3, 441. [Google Scholar] [CrossRef] [PubMed]
- Sodhi, S. Precautions for omicron virus - the new covid variant - PharmEasy. PharmEasy Blog. 2021 [cited 2022 Jul 10]. Available online: https://pharmeasy.in/blog/omicron-the-new-variant-of-covid-19-risks-and-safety-precautions/.
- Yamey, G.; Hanage, W.; Moultrie, T. Let’s not be fatalistic about Omicron. We know how to fight it. Time. 2021 Dec 15 [cited 2022 Jul 10]. Available online: https://time.com/6128506/omicron-covid-19-how-to-fight/.
© 2022 by the author. 2022 Prithiviraj Nagarajan, Anitha Vetrivel, Jayanthi Kumar, Anusheela Howlader, Kumar Rangarajalu, Satheesh Kumar Sabapathy, Muthu Gopal, Saravanaavel Kumar
Share and Cite
Nagarajan, P.; Vetrivel, A.; Kumar, J.; Howlader, A.; Rangarajalu, K.; Sabapathy, S.K.; Gopal, M.; Kumar, S. SARS-CoV-2 Omicron (B.1.1.529) Variant: Structural Features, Biological Characteristics, Impact on Scientific Research, General Precautions and Protective Procedures; A Systematic Review. J. Mind Med. Sci. 2022, 9, 224-235. https://doi.org/10.22543/2392-7674.1343
Nagarajan P, Vetrivel A, Kumar J, Howlader A, Rangarajalu K, Sabapathy SK, Gopal M, Kumar S. SARS-CoV-2 Omicron (B.1.1.529) Variant: Structural Features, Biological Characteristics, Impact on Scientific Research, General Precautions and Protective Procedures; A Systematic Review. Journal of Mind and Medical Sciences. 2022; 9(2):224-235. https://doi.org/10.22543/2392-7674.1343
Chicago/Turabian StyleNagarajan, Prithivi, Anitha Vetrivel, Jayanthi Kumar, Anusheela Howlader, Kumar Rangarajalu, Satheesh Kumar Sabapathy, Muthu Gopal, and Saravanaavel Kumar. 2022. "SARS-CoV-2 Omicron (B.1.1.529) Variant: Structural Features, Biological Characteristics, Impact on Scientific Research, General Precautions and Protective Procedures; A Systematic Review" Journal of Mind and Medical Sciences 9, no. 2: 224-235. https://doi.org/10.22543/2392-7674.1343
APA StyleNagarajan, P., Vetrivel, A., Kumar, J., Howlader, A., Rangarajalu, K., Sabapathy, S. K., Gopal, M., & Kumar, S. (2022). SARS-CoV-2 Omicron (B.1.1.529) Variant: Structural Features, Biological Characteristics, Impact on Scientific Research, General Precautions and Protective Procedures; A Systematic Review. Journal of Mind and Medical Sciences, 9(2), 224-235. https://doi.org/10.22543/2392-7674.1343