Acetaminophen, a Therapeutic or an Extremely Toxic Remedy—A Review
Abstract
:Introduction
Discussion
Pharmacokinetics and the mechanism of action
Mechanism of action
Mechanisms of toxicity in paracetamol overdose
Clinical signs of Paracetamol overdose
- −
- Onset - during the first stage (30 min. to 24 hours), the patient may be asymptomatic or may have nausea, vomiting, anorexia, lethargy, diaphoresis.
- −
- In the second stage - the latency stage (24 hours to 48 hours), the symptoms seem to be reduced almost entirely, but, paraclinically, the transaminases, bilirubin, and prothrombin time change.
- −
- In the third stage (72 hours to 96 hours), liver dysfunction is significant, which might lead to renal failure, coagulopathies, metabolic acidosis, and encephalopathy. In this stage, renal tubular necrosis may occur, these features being known as the hepatorenal syndrome. Gastrointestinal (GI) symptoms reappear, and death is most common at this stage.
- −
- The fourth stage (4 days to 3 weeks) is marked by recovery.
The diagnosis and management of Paracetamol intoxication
The therapeutic approach in suspected Paracetamol toxicity
Highlights
- ✓
- Paracetamol is one of the most used over-the-counter medicines, but also a leading cause of toxic liver failure.
- ✓
- The evaluation of serum acetaminophen levels by analytical methods is extremely useful both for the diagnosis and the therapeutic monitoring.
Conclusions
Conflict of interest disclosure
Compliance with ethical standards
References
- Costea, D.O.; Enache, F.D.; Baz, R.; Suceveanu, A.P.; Suceveanu, A.I.; Ardeleanu, V.; Mazilu, L.; Costea, A.C.; Botea, F.; Voinea, F. Confirmed child patient with covid-19 infection, opperated for associated surgical pathology – first pediatric case in Romania. Rom Biotechnol Lett. 2020, 25, 2107–2110. [Google Scholar] [CrossRef]
- Dascalu, A.M.; Tudosie, M.S.; Smarandache, G.C.; Serban, D. Impact of COVID-19 pandemic upon ophthalmological clinical practice. Rom J Leg Med. 2020, 28, 96–100. [Google Scholar] [CrossRef]
- Serban, D.; Socea, B.; Badiu, C.D.; Tudor, C.; Balasescu, S.A.; Dumitrescu, D.; Trotea, A.M.; Spataru, R.I.; Vancea, G.; Dascalu, A.M.; Tanasescu, C. Acute surgical abdomen during the COVID-19 pandemic: Clinical and therapeutic challenges. Exp Ther Med. 2021, 21, 519. [Google Scholar] [CrossRef] [PubMed]
- Prescott, L.F. Paracetamol: past, present, and future. Am J Ther. 2000, 7, 143–147. [Google Scholar] [CrossRef]
- Blondell, R.D.; Azadfard, M.; Wisniewski, A.M. Pharmacologic therapy for acute pain. Am Fam Physician. 2013, 87, 766–772. [Google Scholar]
- Șerban, D.; Brănescu, C.M.; Smarandache, G.C.; Tudor, C.; Tănăsescu, C.; Tudosie, M.S.; Stana, D.; Costea, D.O.; Dascălu, A.M.; Spătaru, R.I. Safe surgery in day care centers: focus on preventing medical legal issues. Rom J Leg Med. 2021, 29, 60–64. [Google Scholar] [CrossRef]
- Bailey, E.; Worthington, H.V.; van Wijk, A.; Yates, J.M.; Coulthard, P.; Afzal, Z. Ibuprofen and/or paracetamol (acetaminophen) for pain relief after surgical removal of lower wisdom teeth. Cochrane Database Syst Rev. 2013, CD004624. [Google Scholar] [CrossRef]
- Moore, P.A.; Hersh, E.V. Combining ibuprofen and acetaminophen for acute pain management after third-molar extractions: translating clinical research to dental practice. J Am Dent Assoc. 2013, 144, 898–908. [Google Scholar] [CrossRef]
- Ekremoğlu, M.; Severcan, C.; Pasaoğlu, Ö.T.; Şen, B.; Pasaoğlu, H. An investigation of acute effects at various doses of malathion on glucose homeostasis and insulin resistance in rat liver, pancreas and serum. J Mind Med Sci. 2020, 7, 85–93. [Google Scholar] [CrossRef]
- Graham, G.G.; Davies, M.J.; Day, R.O.; Mohamudally, A.; Scott, K.F. The modern pharmacology of paracetamol: therapeutic actions, mechanism of action, metabolism, toxicity and recent pharmacological findings. Inflammopharmacology. 2013, 21, 201–232. [Google Scholar] [CrossRef]
- Sharma, C.V.; Long, J.H.; Shah, S.; Rahman, J.; Perrett, D.; Ayoub, S.S.; Mehta, V. First evidence of the conversion of paracetamol to AM404 in human cerebrospinal fluid. J Pain Res. 2017, 10, 2703–2709. [Google Scholar] [CrossRef] [PubMed]
- Brănescu, C.; Serban, D.; Dascălu, A.M.; Oprescu, S.M.; Savlovschi, C. Interleukin 6 and lipopolysaccharide binding protein - markers of inflammation in acute appendicitis. Chirurgia (Bucur). 2013, 108, 206–214. [Google Scholar]
- Chiumello, D.; Gotti, M.; Vergani, G. Paracetamol in fever in critically ill patients-an update. J Crit Care. 2017, 38, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Honarmand, H.; Abdollahi, M.; Ahmadi, A.; Javadi, M.R.; Khoshayand, M.R.; Tabeefar, H.; Mousavi, S.; Mahmoudi, L.; Radfar, M.; Najafi, A.; Mojtahedzadeh, M. Randomized trial of the effect of intravenous paracetamol on inflammatory biomarkers and outcome in febrile critically ill adults. Daru. 2012, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.J.; Collaku, A. Bioequivalence and Safety of Twice-Daily Sustained-Release Paracetamol (Acetaminophen) Compared With 3- and 4-Times-Daily Paracetamol: A Repeat-Dose, Crossover Pharmacokinetic Study in Healthy Volunteers. Clin Pharmacol Drug Dev. 2018, 7, 77–86. [Google Scholar] [CrossRef]
- Bannwarth, B.; Péhourcq, F. Bases pharmacologiques de l'emploi du paracétamol: aspects pharmacocinétiques et pharmacodynamiques [Pharmacologic basis for using paracetamol: pharmacokinetic and pharmacodynamic issues]. Drugs. 2003, 63, 5–13. [Google Scholar] [CrossRef]
- McGill, M.R.; Jaeschke, H. Biomarkers of drug-induced liver injury: progress and utility in research, medicine, and regulation. Expert Rev Mol Diagn. 2018, 18, 797–807. [Google Scholar] [CrossRef]
- Pereira, C.V.; Nadanaciva, S.; Oliveira, P.J.; Will, Y. The contribution of oxidative stress to drug-induced organ toxicity and its detection in vitro and in vivo. Expert Opin Drug Metab Toxicol. 2012, 8, 219–237. [Google Scholar] [CrossRef]
- Stipanuk, M.H.; Dominy, J.E., Jr.; Lee, J.I.; Coloso, R.M. Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J Nutr. 2006, 136 (Suppl. 6), 1652S–1659S. [Google Scholar] [CrossRef]
- Caparrotta, T.M.; Antoine, D.J.; Dear, J.W. Are some people at increased risk of paracetamol-induced liver injury? A critical review of the literature. Eur J Clin Pharmacol. 2018, 74, 147–160. [Google Scholar] [CrossRef]
- Durmayüksel, E.; Çinar, F.; Guven, B.B.; Aslan, F.E. Risk factors for the development of delirium in elderly patients undergoing orthopaedic surgery: A systematic review and meta-analysis. J Clin Invest Surg. 2021, 6, 94–103. [Google Scholar] [CrossRef]
- Hinson, J.A.; Roberts, D.W.; James, L.P. Mechanisms of acetaminophen-induced liver necrosis. Handb Exp Pharmacol. 2010, 369–405. [Google Scholar] [CrossRef]
- Mazaleuskaya, L.L.; Sangkuhl, K.; Thorn, C.F.; FitzGerald, G.A.; Altman, R.B.; Klein, T.E. PharmGKB summary: pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharmacogenet Genomics. 2015, 25, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Yoon, E.; Babar, A.; Choudhary, M.; et al. Acetaminophen-Induced Hepatotoxicity: a Comprehensive Update. J Clin Transl Hepatol. 2016, 4, 131–142. [Google Scholar] [CrossRef]
- Schiødt, F.V.; Ott, P.; Christensen, E.; Bondesen, S. The value of plasma acetaminophen half-life in antidote-treated acetaminophen overdosage. Clin Pharmacol Ther. 2002, 71, 221–225. [Google Scholar] [CrossRef]
- Grand-Guillaume Perrenoud, A.; Guillarme, D.; Boccard, J.; Veuthey, J.L.; Barron, D.; Moco, S. Ultra-high performance supercritical fluid chromatography coupled with quadrupole-time-of-flight mass spectrometry as a performing tool for bioactive analysis. J Chromatogr A. 2016, 1450, 101–111. [Google Scholar] [CrossRef]
- Polson, J.; Wians, F.H., Jr.; Orsulak, P.; Fuller, D.; Murray, N.G.; Koff, J.M.; Khan, A.I.; Balko, J.A.; Hynan, L.S.; Lee, W.M. Acute Liver Failure Study Group. False positive acetaminophen concentrations in patients with liver injury. Clin Chim Acta. 2008, 391, 24–30. [Google Scholar] [CrossRef]
- Gupta, R.N.; Pickersgill, R.; Stefanec, M. Colorimetric determination of acetaminophen. Clin Biochem. 1983, 16, 220–221. [Google Scholar] [CrossRef]
- Afshari, J.T.; Liu, T.Z. Rapid spectrophotometric method for the quantitation of acetaminophen in serum. Analytica Chimica Acta. 2001, 443, 165–169. [Google Scholar] [CrossRef]
- Youssef, S.H.; Mohamed, D.; Hegazy, M.A.M.; Badawey, A. Analytical methods for the determination of paracetamol, pseudoephedrine and brompheniramine in Comtrex tablets. BMC Chem. 2019, 13, 78. [Google Scholar] [CrossRef]
- Sukanya, S.D.; Swamy, B.E.K.; Shashikumara, J.K.; Sharma, S.C.; Hariprasad, S.A. Poly (Orange CD) sensor for paracetamol in presence of folic acid and dopamine. Sci Rep. 2021, 11, 22332. [Google Scholar] [CrossRef] [PubMed]
- Montaseri, H.; Forbes, P.B.C. Analytical techniques for the determination of acetaminophen. Trends Analyt Chem. 2018, 108, 122–134. [Google Scholar] [CrossRef]
- Ohriac Popa, V.; Cimpoesu, D.; Spac, A.F.; Nedelea, P.; Lazureanu, V.; Suciu, O.; Popa, T.O.; Butnaru, E. The Determination of Paracetamol by HPLC Validation of the Method and Application on Serum Samples. Rev Chim. (Bucharest). 2018, 69, 627–631. [Google Scholar] [CrossRef]
- Krauss, M.; Singer, H.; Hollender, J. LC-high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal Bioanal Chem. 2010, 397, 943–951. [Google Scholar] [CrossRef]
- Boghitoiu, D.; Grama, A.; Pop, T.; Simionescu, A.; Ghita, I.; Ulmeanu, E.C.; Nitescu, V. The role of micro-RNAS as a diagnostic biomarker in the early prediction of acetaminophen-induced liver injury. Farmacia. 2021, 69, 785–791. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, S.; Zhou, H.; Shen, G.; Gan, X.; Zhou, S.; Qiu, J.; Shi, C.; Lu, L. Hyperglycemia exacerbates acetaminophen-induced acute liver injury by promoting liver-resident macrophage proinflammatory response via AMPK/PI3K/AKT-mediated oxidative stress. Cell Death Discov. 2019, 5, 119. [Google Scholar] [CrossRef]
- Dascalu, A.M.; Stoian, A.P.; Cherecheanu, A.P.; Serban, D.; Costea, D.O.; Tudosie, M.S.; Stana, D.; Tanasescu, D.; Sabau, A.D.; Gangura, G.A.; Costea, A.C.; Nicolae, V.A.; Smarandache, C.G. Outcomes of Diabetic Retinopathy Post-Bariatric Surgery in Patients with Type 2 Diabetes Mellitus. J Clin Med. 2021, 10, 3736. [Google Scholar] [CrossRef]
- Serban, D.; Papanas, N.; Dascalu, A.M.; Stana, D.; Nicolae, V.A.; Vancea, G.; Badiu, C.D.; Tanasescu, D.; Tudor, C.; Balasescu, S.A.; Pantea-Stoian, A. Diabetic Retinopathy in Patients With Diabetic Foot Ulcer: A Systematic Review. Int J Low Extrem Wounds. 2021, 20, 98–103. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Jiao, F.Z.; Yang, F.; Li, X.; Wang, L.W. Sinomenine Attenuates Acetaminophen-Induced Acute Liver Injury by Decreasing Oxidative Stress and Inflammatory Response via Regulating TGF-β/Smad Pathway in vitro and in vivo. Drug Des Devel Ther. 2020, 14, 2393–2403. [Google Scholar] [CrossRef]
- Wei, S.; Ma, W.; Zhang, B.; Li, W. NLRP3 Inflammasome: A Promising Therapeutic Target for Drug-Induced Toxicity. Front Cell Dev Biol. 2021, 9, 634607. [Google Scholar] [CrossRef]
- Suceveanu, A.I.; Mazilu, L.; Katsiki, N.; Parepa, I.; Voinea, F.; Pantea-Stoian, A.; Rizzo, M.; Botea, F.; Herlea, V.; Serban, D.; Suceveanu, A.P. NLRP3 Inflammasome Biomarker-Could Be the New Tool for Improved Cardiometabolic Syndrome Outcome. Metabolites. 2020, 10, 448. [Google Scholar] [CrossRef] [PubMed]
- Imaeda, A.B.; Watanabe, A.; Sohail, M.A.; Mahmood, S.; Mohamadnejad, M.; Sutterwala, F.S.; Flavell, R.A.; Mehal, W.Z. Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J Clin Invest. 2009, 119, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Tudosie, M.S.; Truta, E.; Davitoiu, A.M.; Stanciulescu, L.; Jinescu, G.; Mitu, A.M.; Forje, M.; Horhota, L.; Bojescu, A.A.; Mares, A.M.; Ionica, M. The Impact of Copper in Children with Attention Deficit Hyperactivity Disorder. Rev. Chim. 2017, 68, 279–283. [Google Scholar] [CrossRef]
- Alemany, S.; Avella-García, C.; Liew, Z.; García-Esteban, R.; Inoue, K.; Cadman, T.; López-Vicente, M.; González, L.; Riaño Galán, I.; Andiarena, A.; Casas, M.; Margetaki, K.; Strandberg-Larsen, K.; Lawlor, D.A.; El Marroun, H.; Tiemeier, H.; Iñiguez, C.; Tardón, A.; Santa-Marina, L.; Júlvez, J.; Porta, D.; Chatzi, L.; Sunyer, J. Prenatal and postnatal exposure to acetaminophen in relation to autism spectrum and attention-deficit and hyperactivity symptoms in childhood: Meta-analysis in six European population-based cohorts. Eur J Epidemiol. 2021, 36, 993–1004. [Google Scholar] [CrossRef]
- Shao, X.; Wang, P.; Bao, Y.; Chen, L.; Zhong, X.B. Phenobarbital Increased Hepatic Toxicity of Acetaminophen due to Cytochrome P450 Induction in Young and Adult Mice. The FASEB Journal. 2019, 33, 506.7–506.7. [Google Scholar] [CrossRef]
- Hołyńska-Iwan, I.; Wróblewski, M.; Olszewska-Słonina, D.; Tyrakowski, T. The application of N-acetylcysteine in optimization of specific pharmacological therapies. Pol Merkur Lekarski. 2017, 43, 140–144. [Google Scholar]
- Acharya, M.; Lau-Cam, C.A. Comparison of the protective actions of N-acetylcysteine, hypotaurine and taurine against acetaminophen-induced hepatotoxicity in the rat. J Biomed Sci. 2010, 17 (Suppl. 1), S35. [Google Scholar] [CrossRef]
- Guicciardi, M.E.; Malhi, H.; Mott, J.L.; Gores, G.J. Apoptosis and necrosis in the liver. Compr Physiol. 2013, 3, 977–1010. [Google Scholar] [CrossRef]
- Kale, I. The predictive role of monocyte-lymphocyte ratio and platelet-lymphocyte ratio in postmenopausal osteoporosis. J Clin Invest Surg. 2021, 6, 141–147. [Google Scholar] [CrossRef]
- Rumack, B.H.; Peterson, R.C.; Koch, G.G.; Amara, I.A. Acetaminophen overdose. 662 cases with evaluation of oral acetylcysteine treatment. Arch Intern Med. 1981, 141, 380–385. [Google Scholar] [CrossRef]
- Rumack, B.H. Acetaminophen hepatotoxicity: the first 35 years. J Toxicol Clin Toxicol. 2002, 40, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Ergin, B.; Guerci, P.; Zafrani, L.; Nocken, F.; Kandil, A.; Gurel-Gurevin, E.; Demirci-Tansel, C.; Ince, C. Effects of N-acetylcysteine (NAC) supplementation in resuscitation fluids on renal microcirculatory oxygenation, inflammation, and function in a rat model of endotoxemia. Intensive Care Med Exp. 2016, 4, 29. [Google Scholar] [CrossRef] [PubMed]
- Külcü, D.B.; Yolcu, Ö.C. Consciousness level determination of red meat consumption of pregnant women, Giresun/Turkey province. J Mind Med Sci. 2020, 7, 79–84. [Google Scholar] [CrossRef]
- Gosselin, S.; Juurlink, D.N.; Kielstein, J.T.; Ghannoum, M.; Lavergne, V.; Nolin, T.D.; Hoffman, R.S. Extrip Workgroup. Extracorporeal treatment for acetaminophen poisoning: recommendations from the EXTRIP workgroup. Clin Toxicol (Phila). 2014, 52, 856–867. [Google Scholar] [CrossRef]
The identified compound | Molecular weight (atomic mass units) | Retention time (min) | CAS. No. |
Ibuprofen | 206 | 14,864 | 15687-27-1 |
Acetaminophen | 151 | 18,783 | 103-90-2 |
Caffeine | 194 | 19,550 | 58-08-2 |
Chlorphenamine | 274 | 22,717 | 132-22-9 |
© 2022 by the author. 2022 Genica Caragea, Oana Avram, Andreea Pauna, Andreea Cristina Costea, Miruna Tudosie
Share and Cite
Caragea, G.; Avram, O.; Pauna, A.; Costea, A.C.; Tudosie, M. Acetaminophen, a Therapeutic or an Extremely Toxic Remedy—A Review. J. Mind Med. Sci. 2022, 9, 102-110. https://doi.org/10.22543/7674.91.P102110
Caragea G, Avram O, Pauna A, Costea AC, Tudosie M. Acetaminophen, a Therapeutic or an Extremely Toxic Remedy—A Review. Journal of Mind and Medical Sciences. 2022; 9(1):102-110. https://doi.org/10.22543/7674.91.P102110
Chicago/Turabian StyleCaragea, Genica, Oana Avram, Andreea Pauna, Andreea Cristina Costea, and Miruna Tudosie. 2022. "Acetaminophen, a Therapeutic or an Extremely Toxic Remedy—A Review" Journal of Mind and Medical Sciences 9, no. 1: 102-110. https://doi.org/10.22543/7674.91.P102110
APA StyleCaragea, G., Avram, O., Pauna, A., Costea, A. C., & Tudosie, M. (2022). Acetaminophen, a Therapeutic or an Extremely Toxic Remedy—A Review. Journal of Mind and Medical Sciences, 9(1), 102-110. https://doi.org/10.22543/7674.91.P102110