Melatonin Attenuates Oxidative Stress and Modulates Inflammatory Response After Experimental Burn Trauma
Highlights
- Thermal trauma significantly increased plasma TNF-α levels and TNF-α /IL-10 ratio but did not change IL-10.
- Melatonin attenuates oxidative stress and changes the disbalance between the pro- and anti-inflammatory mediators in favor of the anti-inflammatory ones.
Abstract
:Highlights
- Thermal trauma significantly increased plasma TNF-α levels and TNF-α /IL-10 ratio but did not change IL-10.
- Melatonin attenuates oxidative stress and changes the disbalance between the pro- and anti-inflammatory mediators in favor of the anti-inflammatory ones.
Abstract
Introduction
Materials and Methods
Experimental design
Melatonin treatment
Biochemical analysis
Determination of plasma cytokine levels
Statistical analysis
Results
Examination of MDA in thermal trauma and melatonin effect
Examination of TNF-α in thermal trauma and melatonin effect
Examination of IL-10 in thermal trauma and melatonin effect
Examination of TNF-α/IL-10 ratio in thermal trauma and melatonin effect
Discussions
Conclusions
Acronyms and abbreviations
References
- Wolf, S.E.; Rose, J.K.; Desai, M.H.; Mileski, J.P.; Barrow, R.E.; Herndon, D.N. Mortality determinants in massive pediatric burns. An analysis of 103 children with > or = 80% TBSA burns (> or = 70% full-thickness). Ann Surg. 1997, 225, 554–569. [Google Scholar] [CrossRef] [PubMed]
- Foubert, P.; Gonzalez, A.D.; Teodosescu, S.; Berard, F.; Doyle-Eisele, M.; Yekkala, K.; Tenenhaus, M.; Fraser, J.K. Adipose-Derived Regenerative Cell Therapy for Burn Wound Healing: A Comparison of Two Delivery Methods. Adv Wound Care (New Rochelle). 2016, 5, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.T.; Friedrich, E.; Heuslein, J.L.; Pferdehirt, R.E.; Dangelo, N.M.; Natesan, S.; Christy, R.J.; Washburn, N.R. Reduction of burn progression with topical delivery of (antitumor necrosis factor-α)-hyaluronic acid conjugates. Wound Repair Regen. 2012, 20, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Dinsdale, R.J.; Devi, A.; Hampson, P.; Wearn, C.M.; Bamford, A.L.; Hazeldine, J.; Bishop, J.; Ahmed, S.; Watson, C.; Lord JMMoiemen, N.; Harrison, P. Changes in novel haematological parameters following thermal injury: A prospective observational cohort study. Sci Rep. 2017, 7, 3211. [Google Scholar] [CrossRef] [PubMed]
- Wiggins-Dohlvik, K.; Han, M.S.; Stagg, H.W.; Alluri, H.; Shaji, C.A.; Oakley, R.P.; Davis, M.L.; Tharakan, B. Melatonin inhibits thermal injury-induced hyperpermeability in microvascular endothelial cells. J Trauma Acute Care Surg. 2014, 77, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Al-Roujayee, A.S. Naringenin improves the healing process of thermally-induced skin damage in rats. J Int Med Res. 2017, 45, 570–582. [Google Scholar] [CrossRef] [PubMed]
- Sehirli, O.; Sener, E.; Sener, G.; Cetinel, S.; Erzik, C.; Yeğen, B.C. Ghrelin improves burn-induced multiple organ injury by depressing neutrophil infiltration and the release of pro-inflammatory cytokines. Peptides. 2008, 29, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Avlan, D.; Taşkinlar, H.; Tamer, L.; Camdeviren, H.; Ozturhan, H.; Oztürk, C.; Aksöyek, S. Protective effect of trapidil against oxidative organ damage in burn injury. Burns. 2005, 31, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Schwacha, M.G.; Chaudry, I.H. The cellular basis of post- burn immunosuppression: macrophages and mediators. Int J Mol Med. 2002, 10, 239–243. [Google Scholar] [CrossRef] [PubMed]
- O'Dea, K.P.; Porter, J.R.; Tirlapur, N.; Katbeh, U.; Singh, S.; Handy, J.M.; Takata, M. Circulating Microvesicles Are Elevated Acutely following Major Burns Injury and Associated with Clinical Severity. PLoS One. 2016, 11, e0167801. [Google Scholar] [CrossRef] [PubMed]
- Ellerin, T.; Rubin, R.H.; Weinblatt, M.E. Infections and anti-tumor necrosis factor alpha therapy. Arthritis Rheum. 2003, 48, 3013–3022. [Google Scholar] [CrossRef] [PubMed]
- Klein, D.; Einspanier, R.; Bolder, U.; Jeschke, M.G. Differences in the hepatic signal transcription pathway and cytokine expression between thermal injury and sepsis. Shock. 2003, 20, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Kothari, N.; Bogra, J.; Abbas, H.; Kohli, M.; Malik, A.; Kothari, D.; Srivastava, S.; Singh, P.K. Tumor Necrosis Factor gene polymorphism results in high TNF level in sepsis and septic shock. Cytokine. 2013, 61, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Roumen, R.M.; Hendriks, T.; van der Ven-Jongekrijg, J.; Nieuwenhuijzen, G.A.; Sauerwein, R.W.; van der Meer, J.W.; Goris, R.J. Cytokine patterns in patients after major vascular surgery, hemorrhagic shock, and severe blunt trauma. Relation with subsequent adult respiratory distress syndrome and multiple organ failure. Ann Surg. 1993, 218, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.A.; Mughal, R.S.; Warburton, P.; O'Regan, D.J.; Ball, S.G.; Porter, K.E. Mechanism of TNFα-induced IL- 1α, IL-1β and IL-6 expression in human cardiac fibroblasts: Effects of statins and thiazolidinediones. Cardiovasc Res. 2007, 76, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Howard, M.; Muchamuel, T.; Andrade, S.; Menon, S. Interleukin 10 protects mice from lethal endotoxemia. J Exp Med. 1993, 177, 1205–1208. [Google Scholar] [CrossRef] [PubMed]
- Asadullah, K.; Sterry, W.; Volk, H.D. Interleukin-10 Therapy—Review of a New Approach. Pharmacol Rev. 2003, 55, 241–269. [Google Scholar] [CrossRef] [PubMed]
- de Waal Malefyt, R.; Abrams, J.; Bennett, B.; Figdor, C.G.; de Vries, J.E. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med. 1991, 174, 1209–1220. [Google Scholar] [CrossRef] [PubMed]
- Ward, N.S.; Casserly, B.; Ayala, A. The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clin Chest Med. 2008, 29, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Tan, D.X.; Terron, M.P.; Flores, L.J.; Czarnocki, Z. Melatonin and its metabolites: new findings regarding their production and their radical scavenging actions. Acta Biochim Pol. 2007, 54, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Laothong, U.; Pinlaor, P.; Hiraku, Y.; Boonsiri, P.; Prakobwong, S.; Khoontawad, J.; Pinlaor, S. Protective effect of melatonin against Opisthorchis viverrini- induced oxidative and nitrosative DNA damage and liver injury in hamsters. J Pineal Res. 2010, 49, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Alamili, M.; Bendtzen, K.; Lykkesfeldt, J.; Rosenberg, J.; Gögenur, I. Melatonin suppresses markers of inflammation and oxidative damage in a human daytime endotoxemia model. J Crit Care. 2014, 29, 184.e9–184.e13. [Google Scholar] [CrossRef] [PubMed]
- Lowes, D.A.; Webster, N.R.; Murphy, M.P.; Galley, H.F. Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. Br J Anaesth. 2013, 110, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.; Mohamed, M.; Kato, H. Melatonin in bacterial and viral infections with focus on sepsis: a review. Recent Pat Endocr Metab Immune Drug Discov. 2012, 6, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Bekyarova, G.; Tancheva, S.; Hristova, M. Protective effect of melatonin against oxidative hepatic injury after experimental thermal trauma. Methods Find Exp Clin Pharmacol. 2009, 31, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Bekyarova, G.; Apostolova, M.; Kotzev, I. Melatonin protection against burn-induced hepatic injury by down-regulation of nuclear factor kappa B activation. Int J Immunopathol Pharmacol. 2012, 25, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Porter, N.A.; Nixon, J.R.; Isaac, R. Cyclic peroxidase and thiobarbituric assay. Biochim Biophys Acta. 1976, 441, 596–599. [Google Scholar] [PubMed]
- Bianchi, M.E. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007, 81, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Friedl, H.P.; Till, G.O.; Trentz, O.; Ward, P.A. Roles of histamine, complement and xanthine oxidase in thermal injury of skin. Am J Pathol. 1989, 135, 203–217. [Google Scholar] [PubMed]
- Rawlingson, A.; Shendi, K.; Greenacre, S.A.; England, T.G.; Jenner, A.M.; Poston, R.N.; Halliwell, B.; Brain, S.D. Functional Significance of Inducible Nitric Oxide Synthase Induction and Protein Nitration in the Thermally Injured Cutaneous Microvasculature. Am J Pathol. 2003, 162, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Ravat, F.; Payre, J.; Peslages, P.; Fontaine, M.; Sens, N. Burn: An inflammatory process. Pathol Biol (Paris). 2011, 59, e63–72. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.A.; Mughal, R.S.; Warburton, P.; O'Regan, D.J.; Ball, S.G.; Porter, K.E. Mechanism of TNFα-induced IL- 1α, IL-1β and IL-6 expression in human cardiac fibroblasts: Effects of statins and thiazolidinediones. Cardiovasc Res. 2007, 76, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Standiford, T.J.; Strieter, R.M.; Lukacs, N.W.; Kunkel, S.L. Neutralization of IL-10 increases lethality in endotoxemia. Cooperative effects of macrophage inflammatory protein-2 and tumor necrosis factor. J Immunol. 1995, 155, 2222–2229. [Google Scholar] [CrossRef] [PubMed]
- Sehirli, O.; Sener, E.; Sener, G.; Cetinel, S.; Erzik, C.; Yeğen, B.C. Ghrelin improves burn-induced multiple organ injury by depressing neutrophil infiltration and the release of pro-inflammatory cytokines. Peptides. 2008, 29, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Bekyarova, G.; Atanasova, M.; Tzaneva, M.; Dimitrova, A. Melatonin modulates inflammatory response and suppresses burn-induced apoptotic injury. J Mind Med Sci. 2017, 4, 59–66. [Google Scholar] [CrossRef]
- Agay, D.; Andriollo-Sanchez, M.; Claeyssen, R.; Touvard, L.; Denis, J.; Roussel, A.M.; Chancerelle, Y. Interleukin-6, TNF-alpha and interleukin-1 beta levels in blood and tissue in severely burned rats. Eur Cytokine Netw. 2008, 19, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Kim, J.H.; Yim, H.; Kim, D. Changes in the Levels of Interleukins 6, 8, and 10, Tumor Necrosis Factor Alpha, and Granulocyte-colony Stimulating Factor in Korean Burn Patients: Relation to Burn Size and Postburn Time. Ann Lab Med. 2012, 32, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Finnerty, C.C.; Przkora, R.; Herndon, D.N.; Jeschke, M.G. Cytokine expression profile over time in burned mice. Cytokine. 2009, 45, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Gauglitz, G.G.; Finnerty, C.C.; Herndon, D.N.; Mlcak, R.P.; Jeschke, M.G. Are serum cytokines early predictors for the outcome of burn patients with inhalation injuries who do not survive? Crit Care. 2008, 12, R81. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, M.; Kaneko, N.; Anada, H.; Terai, C.; Okada, Y. Measurement of interleukin-6, interleukin-10, and tumor necrosis factor-alpha levels in tissues and plasma after thermal injury in mice. Surgery. 1997, 121, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, M.G.; Einspanier, R.; Klein, D.; Jauch, K.W. Insulin Attenuates the Systemic Inflammatory Response to Thermal Trauma. Mol Med. 2002, 8, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Asadullah, K.; Sterry, W.; Volk, H.D. Interleukin-10 therapy-review of a new approach. Pharmacol Rev. 2003, 55, 241–269. [Google Scholar] [CrossRef] [PubMed]
- Schottelius, A.J.; Mayo, M.W.; Sartor, R.B.; Baldwin, A.S., Jr. Interleukin-10 signaling blocks inhibitor of kappaB kinase activity and nuclear factor kappaB DNA binding. J Biol Chem. 1999, 274, 31868–31874. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.T.; Luo, S.F.; Lee, C.W.; Wang, S.W.; Lin, C.C.; Chang, C.C.; Chen, Y.L.; Chau, L.Y.; Yang, C.M. Overexpression of HO-1 protects against TNF-alpha-mediated airway inflammation by down-regulation of TNFR1- dependent oxidative stress. Am J Pathol. 2009, 175, 519–532. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, T.; Koido, Y.; Aiboshi, J.; Yamashita, T.; Suzaki, S.; Kurokawa, A. The ratio of interleukin-6 to interleukin-10 correlates with severity in patients with chest and abdominal trauma. Am J Emerg Med. 1999, 17, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Cesur, S.; Şengül, A.; Kurtoğlu, Y.; Kalpakçı, Y.; Özel, S.A.; Bilgetürk AErdem, H.; Aslan, T.; Kınıklı, S.; Eyigün, C.P.; Bıyıklı, Z. Prognostic value of cytokines (TNF-α, IL- 10, Leptin) and C-reactive protein serum levels in adult patients with nosocomial sepsis. J Microbiol Infect Dis. 2011, 1, 101–109. [Google Scholar] [CrossRef]
- Gogos, C.A.; Drosou, E.; Bassaris, H.P.; Skoutelis, A. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J Infect Dis. 2000, 181, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Jaffer, U.; Wade, R.G.; Gourlay, T. Cytokines in the systemic inflammatory response syndrome: a review. HSR Proc Intensive Care Cardiovasc Anesth. 2010, 2, 161–175. [Google Scholar] [PubMed]
- Toklu, H.Z.; Tunali-Akbay, T.; Erkanli, G.; Yüksel, M.; Ercan, F.; Sener, G. Silymarin, the antioxidant component of Silybum marianum, protects against burn-induced oxidative skin injury. Burns. 2007, 33, 908–916. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.R.; Lin, J.Y. Quercetin intraperitoneal administration ameliorates lipopolysaccharide-induced systemic inflammation in mice. Life Sci. 2015, 137, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Vico, A.; Lardone, P.J.; Naji, L.; Fernández-Santos, J.M.; Martín-Lacave, I.; Guerrero, J.M.; Calvo, J.R. Beneficial pleiotropic actions of melatonin in an experimental model of septic shock in mice: regulation of pro-/anti-inflammatory cytokine network, protection against oxidative damage and anti-apoptotic effects. J Pineal Res. 2005, 39, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, J.J.; Diaz-Castro, J.; Kajarabille, N.; et al. Melatonin supplementation ameliorates oxidative stress and inflammatory signaling induced by strenuous exercise in adult human males. J Pineal Res. 2011, 51, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Jordan, P.; Joh, T.; Itoh, M.; Jenkins, M.; Pavlick, K.; Minagar, A.; Alexander, S.J. Melatonin reduces TNF- a induced expression of MAdCAM-1 via inhibition of NF-kappaB. BMC Gastroenterol. 2002, 2, 9. [Google Scholar] [CrossRef] [PubMed]
- Cherng, J.Y.; Liu, C.C.; Shen, C.R.; Lin, H.H.; Shih, M.F. Beneficial effects of Chlorella-11 peptide on blocking LPS-induced macrophage activation and alleviating thermal injury-induced inflammation in rats. Int J Immunopathol Pharmacol. 2010, 23, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Hoşnuter, M.; Gürel, A.; Babucçu, O.; Armutcu, F.; Kargi, E.; Işikdemir, A. The effect of CAPE on lipid peroxidation and nitric oxide levels in the plasma of rats following thermal injury. Burns. 2004, 30, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Hernekamp, J.F.; Hu, S.; Schmidt, K.; Walther, A.; Lehnhardt, M.; Kremer, T. Methysergide attenuates systemic burn edema in rats. Microvasc Res. 2013, 89, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Al-Jawad, F.H.; Sahib, A.S.; Al-Kaisy, A.A. Role of Antioxidants in the Treatment of Burn Lesions. Ann Burns Fire Disasters. 2008, 21, 186–191. [Google Scholar] [PubMed]
© 2018 by the author. 2018 Minka Hristova1, Ganka Bekyarova, Milena Atanasova, Maria Tzaneva
Share and Cite
Hristova, M.; Bekyarova, G.; Atanasova, M.; Tzaneva, M. Melatonin Attenuates Oxidative Stress and Modulates Inflammatory Response After Experimental Burn Trauma. J. Mind Med. Sci. 2018, 5, 93-100. https://doi.org/10.22543/7674.51.P93100
Hristova M, Bekyarova G, Atanasova M, Tzaneva M. Melatonin Attenuates Oxidative Stress and Modulates Inflammatory Response After Experimental Burn Trauma. Journal of Mind and Medical Sciences. 2018; 5(1):93-100. https://doi.org/10.22543/7674.51.P93100
Chicago/Turabian StyleHristova, Minka, Ganka Bekyarova, Milena Atanasova, and Maria Tzaneva. 2018. "Melatonin Attenuates Oxidative Stress and Modulates Inflammatory Response After Experimental Burn Trauma" Journal of Mind and Medical Sciences 5, no. 1: 93-100. https://doi.org/10.22543/7674.51.P93100
APA StyleHristova, M., Bekyarova, G., Atanasova, M., & Tzaneva, M. (2018). Melatonin Attenuates Oxidative Stress and Modulates Inflammatory Response After Experimental Burn Trauma. Journal of Mind and Medical Sciences, 5(1), 93-100. https://doi.org/10.22543/7674.51.P93100