The Role of Inflammation in Age-Related Macular Degeneration
Abstract
:Introduction
Discussions
Conclusions
Compliance with ethical standards
Conflict of interest disclosure
References
- Fleckenstein M, Keenan TDL, Guymer RH, Chakravarthy U, Schmitz-Valckenberg S, Klaver CC, Wong WT, Chew EY. Age-related macular degeneration. Nat Rev Dis Primers. 2021, 7, 31. [Google Scholar] [CrossRef]
- Thomas CJ, Mirza RG, Gill MK. Age-Related Macular Degeneration. Med Clin North Am. 2021, 105, 473–491. [Google Scholar] [CrossRef]
- Bourne RR, Stevens GA, White RA, et al. Causes of vision loss worldwide, 1990-2010: a systematic analysis. Lancet Glob Health. 2013, 1, e339–e349. [Google Scholar] [CrossRef]
- GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study [published correction appears in Lancet Glob Health. 2021 Apr;9(4):e408]. Lancet Glob Health. 2021, 9, e144–e160. [Google Scholar] [CrossRef]
- Bowes Rickman C, Farsiu S, Toth CA, Klingeborn M. Dry age-related macular degeneration: mechanisms, therapeutic targets, and imaging. Invest Ophthalmol Vis Sci. 2013, 54, ORSF68–ORSF80. [Google Scholar] [CrossRef]
- Liao DS, Metlapally R, Joshi P. Pegcetacoplan treatment for geographic atrophy due to age-related macular degeneration: a plain language summary of the FILLY study. Immunotherapy. 2022, 14, 995–1006. [Google Scholar] [CrossRef]
- Kaiser SM, Arepalli S, Ehlers JP. Current and Future Anti-VEGF Agents for Neovascular Age-Related Macular Degeneration. J Exp Pharmacol. 2021, 13, r905–r912. [Google Scholar] [CrossRef]
- Leung EH, Fan J, Flynn HW Jr, Albini TA. Ocular and Systemic Complications of COVID-19: Impact on Patients and Healthcare. Clin Ophthalmol. 2022, 16, r1–r13. [Google Scholar] [CrossRef]
- Dascalu AM, Tudosie MS, Smarandache GC, et al. Impact of COVID-19 pandemic upon ophthalmological clinical practice. Rom J Leg Med. 2020, 28, 96–100. [Google Scholar] [CrossRef]
- Nagarajan P, Vetrivel A, Kumar J, Howlader A, Rangarajalu K, Sabapathy SK, Gopal M, Kumar S. SARSCoV-2 Omicron (B.1.1.529) variant: structural features, biological characteristics, impact on scientific research, general precautions and protective procedures; a systematic review. J Mind Med Sci. 2022, 9, 224–235. [Google Scholar] [CrossRef]
- Szegedi S, Ebner C, Miháltz K, Wachter T, Vécsei- Marlovits PV. Long-term impact of delayed follow-up due to COVID-19 lockdown on patients with neovascular age-related macular degeneration. BMC Ophthalmol. 2022, 22, 228. [Google Scholar] [CrossRef]
- Mitchell P, Liew G, Gopinath B, Wong TY. Age-related macular degeneration. Lancet. 2018, 392, 1147–1159. [Google Scholar] [CrossRef] [PubMed]
- Davis MD, Gangnon RE, Lee LY, et al. The Age- Related Eye Disease Study severity scale for age- related macular degeneration: AREDS Report No. 17. Arch Ophthalmol. 2005, 123, 1484–1498. [Google Scholar] [CrossRef]
- Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K. Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci. 2016, 73, 1765–1786. [Google Scholar] [CrossRef]
- Khan AH, Pierce CO, De Salvo G, et al. The effect of systemic levels of TNF-alpha and complement pathway activity on outcomes of VEGF inhibition in neovascular AMD. Eye (Lond). 2022, 36, 2192–2199. [Google Scholar] [CrossRef]
- Izumi-Nagai K, Nagai N, Ozawa Y, et al. Interleukin-6 receptor-mediated activation of signal transducer and activator of transcription-3 (STAT3) promotes choroidal neovascularization. Am J Pathol. 2007, 170, 2149–2158. [Google Scholar] [CrossRef]
- Holan V, Hermankova B, Krulova M, Zajicova A. Cytokine interplay among the diseased retina, inflammatory cells and mesenchymal stem cells - a clue to stem cell-based therapy. World J Stem Cells. 2019, 11, 957–967. [Google Scholar] [CrossRef]
- Serban D, Popa Cherecheanu A, Dascalu AM, et al. Hypervirulent Klebsiella pneumoniae Endogenous Endophthalmitis-A Global Emerging Disease. Life (Basel). 2021, 11, 676. [Google Scholar] [CrossRef]
- Olivares-González L, Velasco S, Campillo I, Rodrigo R. Retinal Inflammation, Cell Death and Inherited Retinal Dystrophies. Int J Mol Sci. 2021, 22, 2096. [Google Scholar] [CrossRef]
- Brănescu C, Serban D, Dascălu AM, et al. Interleukin 6 and lipopolysaccharide binding protein - markers of inflammation in acute appendicitis. Chirurgia (Bucur). 2013, 108, 206–214. [Google Scholar]
- Kang S, Kishimoto T. Interplay between interleukin-6 signaling and the vascular endothelium in cytokine storms. Exp Mol Med. 2021, 53, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Sparrow JR, Hicks D, Hamel CP. The retinal pigment epithelium in health and disease. Curr Mol Med. 2010, 10, 802–823. [Google Scholar] [CrossRef] [PubMed]
- Strauss, O. The retinal pigment epithelium in visual function. Physiol Rev. 2005, 85, 845–881. [Google Scholar] [CrossRef] [PubMed]
- Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullins RF. An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch's membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res. 2001, 20, 705–732. [Google Scholar] [CrossRef]
- Tan W, Zou J, Yoshida S, Jiang B, Zhou Y. The Role of Inflammation in Age-Related Macular Degeneration. Int J Biol Sci. 2020, 16, 2989–3001. [Google Scholar] [CrossRef]
- Parmeggiani F, Romano MR, Costagliola C, et al. Mechanism of inflammation in age-related macular degeneration. Mediators Inflamm. 2012, 2012, r546786. [Google Scholar] [CrossRef]
- Pan C, Banerjee K, Lehmann GL, et al. Lipofuscin causes atypical necroptosis through lysosomal membrane permeabilization. Proc Natl Acad Sci U S A. 2021, 118, e2100122118. [Google Scholar] [CrossRef]
- Höhn A, Grune T. Lipofuscin: formation, effects and role of macroautophagy. Redox Biol. 2013, 1, 140–144. [Google Scholar] [CrossRef]
- Kauppinen A, Niskanen H, Suuronen T, Kinnunen K, Salminen A, Kaarniranta K. Oxidative stress activates NLRP3 inflammasomes in ARPE-19 cells-implications for age-related macular degeneration (AMD). Immunol Lett, 2: 147(1-2). [CrossRef]
- Lentsch AB, Ward PA. Regulation of inflammatory vascular damage. J Pathol. 2000, 190, 343–348. [Google Scholar] [CrossRef]
- Blann, AD. Endothelial cell activation, injury, damage and dysfunction: separate entities or mutual terms? Blood Coagul Fibrinolysis. 2000, 11, 623–630. [Google Scholar] [CrossRef]
- Kobayashi, Y. The role of chemokines in neutrophil biology. Front Biosci. 2008, 13, r2400–r2407. [Google Scholar] [CrossRef] [PubMed]
- Ng EW, Adamis AP. Targeting angiogenesis, the underlying disorder in neovascular age-related macular degeneration. Can J Ophthalmol. 2005, 40, 352–368. [Google Scholar] [CrossRef]
- Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 2011, 11, 762–774. [Google Scholar] [CrossRef]
- Viola A, Munari F, Sánchez-Rodríguez R, Scolaro T, Castegna A. The Metabolic Signature of Macrophage Responses. Front Immunol. 2019, 10, r1462. [Google Scholar] [CrossRef]
- Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation [published correction appears in Nat Rev Immunol.2010 Jun;10(6):460]. Nat Rev Immunol. 2008, 8, 958–969. [Google Scholar] [CrossRef]
- Gordon, S. Alternative activation of macrophages. Nat Rev Immunol. 2003, 3, 23–35. [Google Scholar] [CrossRef]
- Arrigo A, Aragona E, Bandello F. The Role of Inflammation in Age-Related Macular Degeneration: Updates and Possible Therapeutic Approaches. Asia Pac J Ophthalmol (Phila). 2023, 12, 158–167. [Google Scholar] [CrossRef]
- Ambati J, Fowler BJ. Mechanisms of age-related macular degeneration. Neuron. 2012, 75, 26–39. [Google Scholar] [CrossRef]
- Azad MB, Chen Y, Gibson SB. Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal. 2009, 11, 777–790. [Google Scholar] [CrossRef]
- Ciucă Anghel DM, Anghel EE, Stan M, Tudor G, Dumitriu AS, Paunica S, Baconi DL. Psychological and psychiatric characterization of various groups of drugs users. J Mind Med Sci. 2022, 9, 255–265. [CrossRef]
- Chan CC, Ardeljan D. Molecular pathology of macrophages and interleukin-17 in age-related macular degeneration. Adv Exp Med Biol. 2014, 801, r193–r198. [Google Scholar] [CrossRef]
- Spindler J, Zandi S, Pfister IB, Gerhardt C, Garweg JG. Cytokine profiles in the aqueous humor and serum of patients with dry and treated wet age-related macular degeneration. PLoS One. 2018, 13, e0203337. [Google Scholar] [CrossRef]
- Crabb JW, Miyagi M, Gu X, et al. Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A. 2002, 99, 14682–14687. [Google Scholar] [CrossRef]
- Nassar K, Grisanti S, Elfar E, et al. Serum cytokines as biomarkers for age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2015, 253, 699–704. [Google Scholar] [CrossRef]
- Heloterä H, Kaarniranta K. A Linkage between Angiogenesis and Inflammation in Neovascular Age- Related Macular Degeneration. Cells. 2022, 11, 3453. [Google Scholar] [CrossRef]
- Eelen G, Treps L, Li X, Carmeliet P. Basic and Therapeutic Aspects of Angiogenesis Updated. Circ Res. 2020, 127, 310–329. [Google Scholar] [CrossRef]
- Chen Y, Zhong M, Yuan G, Peng H. Interleukin-17 induces angiogenesis in vitro via CXCL8 and CCL2 in retinal pigment epithelium. Mol Med Rep. 2018, 17, 4627–4632. [Google Scholar] [CrossRef]
- Wang H, Han X, Wittchen ES, Hartnett ME. TNF-α mediates choroidal neovascularization by upregulating VEGF expression in RPE through ROS-dependent β- catenin activation. Mol Vis. 2016, 22, r116–r128. [Google Scholar]
- Yi X, Ogata N, Komada M, et al. Vascular endothelial growth factor expression in choroidal neovascularization in rats. Graefes Arch Clin Exp Ophthalmol. 1997, 235, 313–319. [Google Scholar] [CrossRef]
- Papadopoulos N, Martin J, Ruan Q, et al. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis. 2012, 15, 171–185. [Google Scholar] [CrossRef]
- Ferrara, N. Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol. 2009, 29, 789–791. [Google Scholar] [CrossRef] [PubMed]
- Roberts WG, Palade GE. Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res. 1997, 57, 765–772. [Google Scholar]
- Hiratsuka S, Nakamura K, Iwai S, et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell. 2002, 2, 289–300. [Google Scholar] [CrossRef]
- Joussen AM, Ricci F, Paris LP, Korn C, Quezada-Ruiz C, Zarbin M. Angiopoietin/Tie2 signalling and its role in retinal and choroidal vascular diseases: a review of preclinical data. Eye (Lond). 2021, 35, 1305–1316. [Google Scholar] [CrossRef]
- Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin- 2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997, 277, 55–60. [Google Scholar] [CrossRef]
- Felcht M, Luck R, Schering A, et al. Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling. J Clin Invest. 2012, 122, 1991–2005. [Google Scholar] [CrossRef]
- Ionescu M, Stoian AP, Rizzo M, et al. The Role of Endothelium in COVID-19. Int J Mol Sci. 2021, 22, 11920. [Google Scholar] [CrossRef]
- Wynn TA, Vannella KM. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity. 2016, 44, 450–462. [Google Scholar] [CrossRef]
- Zandi S, Nakao S, Chun KH, et al. ROCK-isoform- specific polarization of macrophages associated with age-related macular degeneration. Cell Rep. 2015, 10, 1173–1186. [Google Scholar] [CrossRef]
- Little K, Llorián-Salvador M, Tang M, et al. Macrophage to myofibroblast transition contributes to subretinal fibrosis secondary to neovascular age-related macular degeneration. J Neuroinflammation. 2020, 17, 355. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
Share and Cite
Tricorache, D.F.; Dascalu, A.M.; Serboiu, C.; Bobirca, A.; Cretoiu, D.; Bratu, D.; Tudor, C.; Tribus, L.C. The Role of Inflammation in Age-Related Macular Degeneration. J. Mind Med. Sci. 2023, 10, 254-259. https://doi.org/10.22543/2392-7674.1421
Tricorache DF, Dascalu AM, Serboiu C, Bobirca A, Cretoiu D, Bratu D, Tudor C, Tribus LC. The Role of Inflammation in Age-Related Macular Degeneration. Journal of Mind and Medical Sciences. 2023; 10(2):254-259. https://doi.org/10.22543/2392-7674.1421
Chicago/Turabian StyleTricorache, Diana Florina, Ana Maria Dascalu, Crenguta Serboiu, Anca Bobirca, Dragos Cretoiu, Dan Bratu, Corneliu Tudor, and Laura Carina Tribus. 2023. "The Role of Inflammation in Age-Related Macular Degeneration" Journal of Mind and Medical Sciences 10, no. 2: 254-259. https://doi.org/10.22543/2392-7674.1421
APA StyleTricorache, D. F., Dascalu, A. M., Serboiu, C., Bobirca, A., Cretoiu, D., Bratu, D., Tudor, C., & Tribus, L. C. (2023). The Role of Inflammation in Age-Related Macular Degeneration. Journal of Mind and Medical Sciences, 10(2), 254-259. https://doi.org/10.22543/2392-7674.1421