Gastric Cancer: Actualities and Perspectives of Early Diagnosis and Targeted Therapy
Abstract
:Introduction
Discussions
Epidemiology
Diagnosis
Endoscopic diagnosis
Surgical approach to gastric cancer
Laparoscopic treatment
Conclusions
Compliance with ethical standards
Conflict of interest disclosure
References
- Gao, J.P.; Xu, W.; Liu, W.T.; Yan, M.; Zhu, Z.G. Tumor heterogeneity of gastric cancer: From the perspective of tumor-initiating cell. World J Gastroenterol. 2018, 24, 2567–2581. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, T.; Hashimoto, I.; Maezawa, Y.; et al. The Clinical Impact of Change in the Neutrophil to Lymphocyte Ratio During the Perioperative Period in Gastric Cancer Patients Who Receive Curative Gastrectomy. J Gastrointest Cancer. 2023, 10.1007/s12029-023-00976-7. [Google Scholar] [CrossRef] [PubMed]
- Kunisaki, C.; Akiyama, H.; Nomura, M.; et al. Clinicopathological features of gastric carcinoma in younger and middle-aged patients: a comparative study. J Gastrointest Surg. 2006, 10, 1023–1032. [Google Scholar] [CrossRef] [PubMed]
- Machlowska, J.; Baj, J.; Sitarz, M.; Maciejewski, R.; Sitarz, R. Gastric Cancer: Epidemiology, Risk Factors, Classification, Genomic Characteristics and Treatment Strategies. Int J Mol Sci. 2020, 21, 4012, Published 2020 Jun 4. [Google Scholar] [CrossRef]
- Lauren, P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. an attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965, 64, 31–49. [Google Scholar] [CrossRef]
- Rebegea, L.F.; Pătraşcu, A.; Miron, D.; Dumitru, M.E.; Firescu, D. Metachronous gastrointestinal stromal tumor associated with other neoplasia - case presentation. Rom J Morphol Embryol. 2016, 57, 1429–1435. [Google Scholar]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Désilets, A.; Elkhoury, R.; Gebai, A.; Tehfe, M. Current and Emerging Role of Monoclonal Antibody-Based First-Line Treatment in Advanced Gastro-Esophageal and Gastric Cancer. Curr Oncol. 2023, 30, 9304–9316. [Google Scholar] [CrossRef]
- Luo, G.; Zhang, Y.; Guo, P.; Wang, L.; Huang, Y.; Li, K. Global patterns and trends in stomach cancer incidence: Age, period and birth cohort analysis. Int J Cancer. 2017, 141, 1333–1344. [Google Scholar] [CrossRef]
- Arnold, M.; Karim-Kos, H.E.; Coebergh, J.W.; et al. Recent trends in incidence of five common cancers in 26 European countries since 1988: Analysis of the European Cancer Observatory. Eur J Cancer. 2015, 51, 1164–1187. [Google Scholar] [CrossRef]
- Lee, Y.C.; Chiang, T.H.; Chou, C.K.; et al. Association Between Helicobacter pylori Eradication and Gastric Cancer Incidence: A Systematic Review and Meta-analysis. Gastroenterology. 2016, 150, 1113–1124.e5. [Google Scholar] [CrossRef] [PubMed]
- Fidler, M.M.; Soerjomataram, I.; Bray, F. A global view on cancer incidence and national levels of the human development index. Int J Cancer. 2016, 139, 2436–2446. [Google Scholar] [CrossRef] [PubMed]
- Hallowell, B.D.; Endeshaw, M.; Senkomago, V.; Razzaghi, H.; McKenna, M.T.; Saraiya, M. Gastric cancer mortality rates among US and foreign-born persons: United States 2005-2014. Gastric Cancer. 2019, 22, 1081–1085. [Google Scholar] [CrossRef]
- Thrift, A.P.; Nguyen, T.H. Gastric Cancer Epidemiology. Gastrointest Endosc Clin N Am. 2021, 31, 425–439. [Google Scholar] [CrossRef]
- Plummer, M.; Franceschi, S.; Vignat, J.; Forman, D.; de Martel, C. Global burden of gastric cancer attributable to Helicobacter pylori. Int J Cancer. 2015, 136, 487–490. [Google Scholar] [CrossRef]
- Peleteiro, B.; Bastos, A.; Ferro, A.; Lunet, N. Prevalence of Helicobacter pylori infection worldwide: a systematic review of studies with national coverage. Dig Dis Sci. 2014, 59, 1698–1709. [Google Scholar] [CrossRef]
- Akopyants, N.S.; Clifton, S.W.; Kersulyte, D.; et al. Analyses of the cag pathogenicity island of Helicobacter pylori. Mol Microbiol. 1998, 28, 37–53. [Google Scholar] [CrossRef]
- Higashi, H.; Tsutsumi, R.; Fujita, A.; et al. Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc Natl Acad Sci U S A. 2002, 99, 14428–14433. [Google Scholar] [CrossRef]
- Hayashi, T.; Senda, M.; Suzuki, N.; et al. Differential Mechanisms for SHP2 Binding and Activation Are Exploited by Geographically Distinct Helicobacter pylori CagA Oncoproteins. Cell Rep. 2017, 20, 2876–2890. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Tobacco smoke and involuntary smoking. IARC Monogr Eval Carcinog Risks Hum. 2004, 83, 1–1438. [Google Scholar]
- Ladeiras-Lopes, R.; Pereira, A.K.; Nogueira, A.; et al. Smoking and gastric cancer: systematic review and meta-analysis of cohort studies. Cancer Causes Control. 2008, 19, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Praud, D.; Rota, M.; Pelucchi, C.; et al. Cigarette smoking and gastric cancer in the Stomach Cancer Pooling (StoP) Project. Eur J Cancer Prev. 2018, 27, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Spratt, C.J.; MacKenzie Myles, L.A.; Merlo, E.M. Eating Disorders in Men: A Comprehensive Summary. J Mind Med Sci. 2022, 9, 249–254. [Google Scholar] [CrossRef]
- Lin, X.J.; Wang, C.P.; Liu, X.D.; et al. Body mass index and risk of gastric cancer: a meta-analysis. Jpn J Clin Oncol. 2014, 44, 783–791. [Google Scholar] [CrossRef]
- Bae, J.M. Body Mass Index and Risk of Gastric Cancer in Asian Adults: A Meta-Epidemiological Meta-Analysis of Population-Based Cohort Studies. Cancer Res Treat. 2020, 52, 369–373. [Google Scholar] [CrossRef]
- Song, P.; Wu, L.; Guan, W. Dietary Nitrates, Nitrites, and Nitrosamines Intake and the Risk of Gastric Cancer: A Meta-Analysis. Nutrients. 2015, 7, 9872–9895, Published 2015 Dec 1. [Google Scholar] [CrossRef]
- Serban, D.; Badiu, D.C.; Davitoiu, D.; et al. Systematic review of the role of indocyanine green near-infrared fluorescence in safe laparoscopic cholecystectomy (Review). Exp Ther Med. 2022, 23, 187. [Google Scholar] [CrossRef]
- Furihata, C.; Ohta, H.; Katsuyama, T. Cause and effect between concentration-dependent tissue damage and temporary cell proliferation in rat stomach mucosa by NaCl, a stomach tumor promoter. Carcinogenesis. 1996, 17, 401–406. [Google Scholar] [CrossRef]
- D'Elia, L.; Rossi, G.; Ippolito, R.; Cappuccio, F.P.; Strazzullo, P. Habitual salt intake and risk of gastric cancer: a meta-analysis of prospective studies. Clin Nutr. 2012, 31, 489–498. [Google Scholar] [CrossRef]
- Peleteiro, B.; Lopes, C.; Figueiredo, C.; Lunet, N. Salt intake and gastric cancer risk according to Helicobacter pylori infection, smoking, tumour site and histological type. Br J Cancer. 2011, 104, 198–207. [Google Scholar] [CrossRef]
- Duca, I.; Mihaileanu, F.; Chira, A.; Chira, R.; Surdea-Blaga, T.; Popovici, D.; Albu, A.; Dumitrascu, D.L. Giant gastric polyp mimicking a duodenal tumor. J Mind Med Sci. 2022, 9, 324–329. [Google Scholar] [CrossRef]
- Jelski, W.; Chrostek, L.; Zalewski, B.; Szmitkowski, M. Alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) activity in the sera of patients with gastric cancer. Dig Dis Sci. 2008, 53, 2101–2105. [Google Scholar] [CrossRef] [PubMed]
- Velikova, M.; Galunska, B.; Dimitrova, R.; Stoyanov, Z. Alcohol consumption and cognitive aging: can it be beneficial? J Mind Med Sci. 2021, 8, 5–16. [Google Scholar] [CrossRef]
- Han, X.; Xiao, L.; Yu, Y.; Chen, Y.; Shu, H.H. Alcohol consumption and gastric cancer risk: a meta-analysis of prospective cohort studies. Oncotarget. 2017, 8, 83237–83245. [Google Scholar] [CrossRef]
- Wang, P.L.; Xiao, F.T.; Gong, B.C.; Liu, F.N. Alcohol drinking and gastric cancer risk: a meta-analysis of observational studies. Oncotarget. 2017, 8, 99013–99023. [Google Scholar] [CrossRef]
- Lim, H.Y.; Joo, H.J.; Choi, J.H.; et al. Increased expression of cyclooxygenase-2 protein in human gastric carcinoma. Clin Cancer Res. 2000, 6, 519–525. [Google Scholar]
- Stanescu, A.D.; Balalau, D.O.; Ples, L.; Paunica, S.; Balalau, C. Postpartum depression: Prevention and multimodal therapy. J Mind Med Sci. 2018, 5, 163–168. [Google Scholar] [CrossRef]
- Follet, J.; Corcos, L.; Baffet, G.; et al. The association of statins and taxanes: an efficient combination trigger of cancer cell apoptosis. Br J Cancer. 2012, 106, 685–692. [Google Scholar] [CrossRef]
- Capelle, L.G.; Van Grieken, N.C.; Lingsma, H.F.; et al. Risk and epidemiological time trends of gastric cancer in Lynch syndrome carriers in the Netherlands. Gastroenterology. 2010, 138, 487–492. [Google Scholar] [CrossRef]
- Motofei, I.G. Biology of cancer; from cellular and molecular mechanisms to developmental processes and adaptation. Semin Cancer Biol. 2022, 86, 600–615. [Google Scholar] [CrossRef]
- Luo, M.; Li, L. Clinical utility of miniprobe endoscopic ultrasonography for prediction of invasion depth of early gastric cancer: A meta-analysis of diagnostic test from PRISMA guideline. Medicine (Baltimore). 2019, 98, e14430. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.M.; Wang, C.S.; Tsai, C.Y.; et al. Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer. Int J Mol Sci. 2016, 17, 945. [Google Scholar] [CrossRef] [PubMed]
- Tong, W.; Ye, F.; He, L.; et al. Serum biomarker panels for diagnosis of gastric cancer. Onco Targets Ther. 2016, 9, 2455–2463. [Google Scholar] [CrossRef]
- Georgescu, S.R.; Tampa, M.; Paunica, S.; Balalau, C.; Constantin, V.; Paunica, G.; Motofei, I. Distribution of post-finasteride syndrome in men with androgenic alopecia. J Invest Dermatol 2015, 135(S40-S40), Meeting Abstract 228, Meeting45th Annual Meeting of the European-Society-for-Dermatological-Research, Location Rotterdam, Netherlands, Date SEP 09-12, 2015. [Google Scholar]
- Dolscheid-Pommerich, R.C.; Manekeller, S.; Walgenbach-Brünagel, G.; et al. Clinical Performance of CEA, CA19-9, CA15-3, CA125 and AFP in Gastrointestinal Cancer Using LOCI™-based Assays. Anticancer Res. 2017, 37, 353–359. [Google Scholar] [CrossRef]
- Ning, S.; Wei, W.; Li, J.; et al. Clinical significance and diagnostic capacity of serum TK1, CEA, CA 19-9 and CA 72-4 levels in gastric and colorectal cancer patients. J Cancer. 2018, 9, 494–501, Published 2018 Jan 1. [Google Scholar] [CrossRef]
- Necula, L.; Matei, L.; Dragu, D.; et al. Recent advances in gastric cancer early diagnosis. World J Gastroenterol. 2019, 25, 2029–2044. [Google Scholar] [CrossRef]
- Tu, H.; Sun, L.; Dong, X.; et al. A Serological Biopsy Using Five Stomach-Specific Circulating Biomarkers for Gastric Cancer Risk Assessment: A Multi-Phase Study. Am J Gastroenterol. 2017, 112, 704–715. [Google Scholar] [CrossRef]
- Qin, R.; Zhao, J.; Qin, W.; et al. Discovery of Non-invasive Glycan Biomarkers for Detection and Surveillance of Gastric Cancer. J Cancer. 2017, 8, 1908–1916. [Google Scholar] [CrossRef]
- Motofei, I.G. Malignant Melanoma: Autoimmunity and Supracellular Messaging as New Therapeutic Approaches. Curr Treat Options Oncol. 2019, 20, 45. [Google Scholar] [CrossRef]
- Deng, N.; Liu, J.W.; Sun, L.P.; et al. Expression of XPG protein in the development, progression and prognosis of gastric cancer. PLoS One. 2014, 9, e108704. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Du, W.; Xiong, H.; et al. TMEFF2 deregulation contributes to gastric carcinogenesis and indicates poor survival outcome. Clin Cancer Res. 2014, 20, 4689–4704. [Google Scholar] [CrossRef]
- Sun, T.T.; Tang, J.Y.; Du, W.; et al. Bidirectional regulation between TMEFF2 and STAT3 may contribute to Helicobacter pylori-associated gastric carcinogenesis. Int J Cancer. 2015, 136, 1053–1064. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Cheng, C.; Ma, J.; Liew, C.C.; Geng, X. Gene expression signature for detection of gastric cancer in peripheral blood. Oncol Lett. 2018, 15, 9802–9810. [Google Scholar] [CrossRef]
- da Silva Oliveira, K.C.; Thomaz Araújo, T.M.; Albuquerque, C.I.; et al. Role of miRNAs and their potential to be useful as diagnostic and prognostic biomarkers in gastric cancer. World J Gastroenterol. 2016, 22, 7951–7962. [Google Scholar] [CrossRef]
- Wu, J.; Li, G.; Wang, Z.; et al. Circulating MicroRNA-21 Is a Potential Diagnostic Biomarker in Gastric Cancer. Dis Markers. 2015, 2015, 435656. [Google Scholar] [CrossRef]
- Tsai, M.M.; Wang, C.S.; Tsai, C.Y.; et al. Circulating microRNA-196a/b are novel biomarkers associated with metastatic gastric cancer. Eur J Cancer. 2016, 64, 137–148. [Google Scholar] [CrossRef]
- Zhu, C.; Ren, C.; Han, J.; et al. A five-microRNA panel in plasma was identified as potential biomarker for early detection of gastric cancer. Br J Cancer. 2014, 110, 2291–2299. [Google Scholar] [CrossRef]
- Wang, J.; Song, Y.X.; Wang, Z.N. Non-coding RNAs in gastric cancer. Gene. 2015, 560, 1–8. [Google Scholar] [CrossRef]
- Shi, T.; Gao, G.; Cao, Y. Long Noncoding RNAs as Novel Biomarkers Have a Promising Future in Cancer Diagnostics. Dis Markers. 2016, 2016, 9085195. [Google Scholar] [CrossRef]
- Zhou, X.; Yin, C.; Dang, Y.; Ye, F.; Zhang, G. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci Rep. 2015, 5, 11516. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, J.; Wang, J.; et al. Long noncoding RNAs in gastric cancer: functions and clinical applications. Onco Targets Ther. 2016, 9, 681–697, Published 2016 Feb 10. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Shao, Y.; Zhang, X.; et al. Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumour Biol. 2015, 36, 2007–2012. [Google Scholar] [CrossRef]
- Shao, Y.; Ye, M.; Jiang, X.; et al. Gastric juice long noncoding RNA used as a tumor marker for screening gastric cancer. Cancer. 2014, 120, 3320–3328. [Google Scholar] [CrossRef]
- Motofei, I.G. Biology of cancer: Understanding the supracellular control of mitosis in physiological processes and malignancy. Semin Cancer Biol. 2023, 92, 42–44. [Google Scholar] [CrossRef]
- Chen, L.L. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 2016, 17, 205–211. [Google Scholar] [CrossRef]
- Balgkouranidou, I.; Matthaios, D.; Karayiannakis, A.; et al. Prognostic role of APC and RASSF1A promoter methylation status in cell free circulating DNA of operable gastric cancer patients. Mutat Res. 2015, 778, 46–51. [Google Scholar] [CrossRef]
- Young, E.; Philpott, H.; Singh, R. Endoscopic diagnosis and treatment of gastric dysplasia and early cancer: Current evidence and what the future may hold. World J Gastroenterol. 2021, 27, 5126–5151. [Google Scholar] [CrossRef]
- Lei, R.; Yang, H. Clinicopathological characteristics of well-differentiated gastric cancer missed by endoscopy. Rev Esp Enferm Dig 2023, 10.17235/reed.2023.9980/2023. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, Y.J.; An, J.; et al. Endoscopic features suggesting gastric cancer in biopsy-proven gastric adenoma with high-grade neoplasia. World J Gastroenterol. 2014, 20, 12233–12240. [Google Scholar] [CrossRef]
- Dohi, O.; Yagi, N.; Naito, Y.; et al. Blue laser imaging-bright improves the real-time detection rate of early gastric cancer: a randomized controlled study. Gastrointest Endosc. 2019, 89, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Dohi, O.; Yagi, N.; Majima, A.; et al. Diagnostic ability of magnifying endoscopy with blue laser imaging for early gastric cancer: a prospective study. Gastric Cancer. 2017, 20, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Uedo, N.; Ishihara, R.; Iishi, H.; et al. A new method of diagnosing gastric intestinal metaplasia: narrow-band imaging with magnifying endoscopy. Endoscopy. 2006, 38, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Savarino, E.; Corbo, M.; Dulbecco, P.; et al. Narrow-band imaging with magnifying endoscopy is accurate for detecting gastric intestinal metaplasia. World J Gastroenterol. 2013, 19, 2668–2675. [Google Scholar] [CrossRef]
- Omori, T.; Kamiya, Y.; Tahara, T.; et al. Correlation between magnifying narrow band imaging and histopathology in gastric protruding/or polypoid lesions: a pilot feasibility trial. BMC Gastroenterol. 2012, 12, 17. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Lian, Q.W.; Lin, Z.H.; Zhong, J.; Xue, M.; Wang, L.J. Diagnostic performance of magnifying narrow-band imaging for early gastric cancer: A meta-analysis. World J Gastroenterol. 2015, 21, 7884–7894. [Google Scholar] [CrossRef]
- Horii, Y.; Dohi, O.; Naito, Y.; et al. Efficacy of Magnifying Narrow Band Imaging for Delineating Horizontal Margins of Early Gastric Cancer. Digestion. 2019, 100, 93–99. [Google Scholar] [CrossRef]
- Nagahama, T.; Yao, K.; Maki, S.; et al. Usefulness of magnifying endoscopy with narrow-band imaging for determining the horizontal extent of early gastric cancer when there is an unclear margin by chromoendoscopy (with video). Gastrointest Endosc. 2011, 74, 1259–1267. [Google Scholar] [CrossRef]
- ASGE Technology Committee. Confocal laser endomicroscopy. Gastrointest Endosc. 2014, 80, 928–938. [Google Scholar] [CrossRef]
- Guo, Y.T.; Li, Y.Q.; Yu, T.; et al. Diagnosis of gastric intestinal metaplasia with confocal laser endomicroscopy in vivo: a prospective study. Endoscopy. 2008, 40, 547–553. [Google Scholar] [CrossRef]
- Horiuchi, Y.; Aoyama, K.; Tokai, Y.; et al. Convolutional Neural Network for Differentiating Gastric Cancer from Gastritis Using Magnified Endoscopy with Narrow Band Imaging. Dig Dis Sci. 2020, 65, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Wakahara, T.; Ueno, N.; Maeda, T.; et al. Impact of Gastric Cancer Surgery in Elderly Patients. Oncology. 2018, 94, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Dumitriu, B.; Valcea, S.; Andrei, G.; Beuran, M. The impact of patient-dependent risk factors on morbidity and mortality following gastric surgery for malignancies. J Mind Med Sci. 2021, 8, 267–272. [Google Scholar] [CrossRef]
- Sasako, M.; Sakuramoto, S.; Katai, H.; et al. Five-year outcomes of a randomized phase III trial comparing adjuvant chemotherapy with S-1 versus surgery alone in stage II or III gastric cancer. J Clin Oncol. 2011, 29, 4387–4393. [Google Scholar] [CrossRef]
- Sexton, R.E.; Al Hallak, M.N.; Diab, M.; Azmi, A.S. Gastric cancer: a comprehensive review of current and future treatment strategies. Cancer Metastasis Rev. 2020, 39, 1179–1203. [Google Scholar] [CrossRef]
- Hansson, L.E.; Sparén, P.; Nyrén, O. Survival in stomach cancer is improving: results of a nationwide population-based Swedish study. Ann Surg. 1999, 230, 162–169. [Google Scholar] [CrossRef]
- Peng, K.; Zhang, F.; Wang, Y.; et al. Development of Combination Strategies for Focal Adhesion Kinase Inhibition in Diffuse Gastric Cancer. Clin Cancer Res. 2023, 29, 197–208. [Google Scholar] [CrossRef]
- Bang, Y.J.; Kang, Y.K.; Kang, W.K.; et al. Phase II study of sunitinib as second-line treatment for advanced gastric cancer. Invest New Drugs. 2011, 29, 1449–1458. [Google Scholar] [CrossRef]
- Gotink, K.J.; Broxterman, H.J.; Labots, M.; et al. Lysosomal sequestration of sunitinib: a novel mechanism of drug resistance. Clin Cancer Res. 2011, 17, 7337–7346. [Google Scholar] [CrossRef]
- Boland, P.M.; Meyer, J.E.; Berger, A.C.; et al. Induction Therapy for Locally Advanced, Resectable Esophagogastric Cancer: A Phase I Trial of Vandetanib (ZD6474), Paclitaxel, Carboplatin, 5-Fluorouracil, and Radiotherapy Followed by Resection. Am J Clin Oncol. 2017, 40, 393–398. [Google Scholar] [CrossRef]
- Bhat, K.M.; Setaluri, V. Microtubule-associated proteins as targets in cancer chemotherapy. Clin Cancer Res. 2007, 13, 2849–2854. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Ma, X.; Shi, H.; et al. FAM83D, a microtubule-associated protein, promotes tumor growth and progression of human gastric cancer. Oncotarget. 2017, 8, 74479–74493, Published 2017 Aug 10. [Google Scholar] [CrossRef] [PubMed]
- Motofei, I.G. Biology of Cancer; From Cellular Cancerogenesis to Supracellular Evolution of Malignant Phenotype. Cancer Invest. 2018, 36, 309–317. [Google Scholar] [CrossRef]
- Torgovnick, A.; Schumacher, B. DNA repair mechanisms in cancer development and therapy. Front Genet. 2015, 6, 157. [Google Scholar] [CrossRef]
- Meehan, R.S.; Chen, A.P. New treatment option for ovarian cancer: PARP inhibitors. Gynecol Oncol Res Pract. 2016, 3, 3. [Google Scholar] [CrossRef]
- Nijman, S.M. Synthetic lethality: general principles, utility and detection using genetic screens in human cells. FEBS Lett. 2011, 585, 1–6. [Google Scholar] [CrossRef]
- Bang, Y.J.; Xu, R.H.; Chin, K.; et al. Olaparib in combination with paclitaxel in patients with advanced gastric cancer who have progressed following first-line therapy (GOLD): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2017, 18, 1637–1651. [Google Scholar] [CrossRef]
- Buckley, K.H.; Niccum, B.A.; Maxwell, K.N.; Katona, B.W. Gastric Cancer Risk and Pathogenesis in BRCA1 and BRCA2 Carriers. Cancers (Basel). 2022, 14, 5953, Published 2022 Dec 1. [Google Scholar] [CrossRef]
- Kang, Y.K.; Boku, N.; Satoh, T.; et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017, 390, 2461–2471. [Google Scholar] [CrossRef]
- Amaravadi, R.; Kimmelman, A.C.; White, E. Recent insights into the function of autophagy in cancer. Genes Dev. 2016, 30, 1913–1930. [Google Scholar] [CrossRef]
- Chong, X.; Li, Y.; Lu, J.; Feng, X.; Li, Y.; Zhang, X. Tracking circulating PD-L1-positive cells to monitor the outcome of patients with gastric cancer receiving anti-HER2 plus anti-PD-1. Hum Cell 2023, 10.1007/s13577-023-00990-8. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, L.K.; Jones, N.L. Modulation of autophagy by Helicobacter pylori and its role in gastric carcinogenesis. Trends Microbiol. 2013, 21, 602–612. [Google Scholar] [CrossRef] [PubMed]
- Smyth, E.C.; Nilsson, M.; Grabsch, H.I.; van Grieken, N.C.; Lordick, F. Gastric cancer. Lancet. 2020, 396, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Kumazu, Y.; Hayashi, T.; Yoshikawa, T.; et al. Risk factors analysis and stratification for microscopically positive resection margin in gastric cancer patients. BMC Surg. 2020, 20, 95. [Google Scholar] [CrossRef]
- Qi, J.; Zhang, P.; Wang, Y.; Chen, H.; Li, Y. Does Total Gastrectomy Provide Better Outcomes than Distal Subtotal Gastrectomy for Distal Gastric Cancer? A Systematic Review and Meta-Analysis. PLoS One. 2016, 11, e0165179, Published 2016 Oct 26. [Google Scholar] [CrossRef]
- Silaghi, A.; Constantin, V.D.; Socea, B.; Banu, P.; Sandu, V.; Andronache, L.A.; Dumitriu, A.S.; Paunica, S. Inflammatory bowel disease: pathogenesis, diagnosis and current therapeutic approach. J Mind Med Sci. 2022, 9, 56–77. [Google Scholar] [CrossRef]
- Hsu, C.P.; Chen, C.Y.; Hsieh, Y.H.; Hsia, J.Y.; Shai, S.E.; Kao, C.H. Esophageal reflux after total or proximal gastrectomy in patients with adenocarcinoma of the gastric cardia. Am J Gastroenterol. 1997, 92, 1347–1350. [Google Scholar]
- Díaz De Liaño, A.; Oteiza Martínez, F.; Ciga, M.A.; Aizcorbe, M.; Cobo, F.; Trujillo, R. Impact of surgical procedure for gastric cancer on quality of life. Br J Surg. 2003, 90, 91–94. [Google Scholar] [CrossRef]
- Silaghi, A.; Gaspar, B.S.; Epistatu, D.; et al. Upper gastrointestinal bleeding in the COVID-19 pandemic; particularities of diagnosis and therapy. J Mind Med Sci. 2022, 9, 276–284. [Google Scholar] [CrossRef]
- Brennan, M.F. Current status of surgery for gastric cancer: a review. Gastric Cancer. 2005, 8, 64–70. [Google Scholar] [CrossRef]
- Barbour, A.P.; Rizk, N.P.; Gonen, M.; et al. Adenocarcinoma of the gastroesophageal junction: influence of esophageal resection margin and operative approach on outcome. Ann Surg. 2007, 246, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zaydfudim, V.M. Quality of Life After Curative Resection for Gastric Cancer: Survey Metrics and Implications of Surgical Technique. J Surg Res. 2020, 251, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Hirao, M.; Takiguchi, S.; Imamura, H.; et al. Comparison of Billroth I and Roux-en-Y reconstruction after distal gastrectomy for gastric cancer: one-year postoperative effects assessed by a multi-institutional RCT. Ann Surg Oncol. 2013, 20, 1591–1597. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Mikami, J.; Yamasaki, M.; et al. Comparison of 5-year postoperative outcomes after Billroth I and Roux-en-Y reconstruction following distal gastrectomy for gastric cancer: Results from a multi-institutional randomized controlled trial. Ann Gastroenterol Surg. 2020, 5, 93–101. [Google Scholar] [CrossRef]
- Aversa, J.G.; Diggs, L.P.; Hagerty, B.L.; et al. Multivisceral Resection for Locally Advanced Gastric Cancer. J Gastrointest Surg. 2021, 25, 609–622. [Google Scholar] [CrossRef]
- Claassen, Y.H.M.; van Sandick, J.W.; Hartgrink, H.H.; et al. Association between hospital volume and quality of gastric cancer surgery in the CRITICS trial. Br J Surg. 2018, 105, 728–735. [Google Scholar] [CrossRef]
- Jain, A.J.; Badgwell, B.D. Current Evidence for the Use of HIPEC and Cytoreductive Surgery in Gastric Cancer Metastatic to the Peritoneum. J Clin Med. 2023, 12, 6527. [Google Scholar] [CrossRef]
- Deng, J.Y.; Liang, H. Clinical significance of lymph node metastasis in gastric cancer. World J Gastroenterol. 2014, 20, 3967–3975. [Google Scholar] [CrossRef]
- Biondi, A.; Persiani, R.; Cananzi, F.; et al. R0 resection in the treatment of gastric cancer: room for improvement. World J Gastroenterol. 2010, 16, 3358–3370. [Google Scholar] [CrossRef]
- Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2010 (ver. 3). Gastric Cancer. 2011, 14, 113–123. [Google Scholar] [CrossRef]
- Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2014 (ver. 4). Gastric Cancer. 2017, 20, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Marrelli, D.; De Franco, L.; Iudici, L.; Polom, K.; Roviello, F. Lymphadenectomy: state of the art. Transl Gastroenterol Hepatol. 2017, 2, 3, Published 2017 Jan 17. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.D.; Schwarz, R.R.; Schwarz, R.E. Impact of total lymph node count on staging and survival after gastrectomy for gastric cancer: data from a large US-population database. J Clin Oncol. 2005, 23, 7114–7124. [Google Scholar] [CrossRef] [PubMed]
- Mogal, H.; Fields, R.; Maithel, S.K.; Votanopoulos, K. In Patients with Localized and Resectable Gastric Cancer, What is the Optimal Extent of Lymph Node Dissection-D1 Versus D2 Versus D3? Ann Surg Oncol. 2019, 26, 2912–2932. [Google Scholar] [CrossRef]
- Wu, J.; Wang, H.; Yin, X.; Wang, X.; Wang, Y.; Lu, Z.; Zhang, J.; Zhang, Y.; Xue, Y. Efficacy of Lymph Node Location-Number Hybrid Staging System on the Prognosis of Gastric Cancer Patients. Cancers (Basel). 2023, 15, 2659. [Google Scholar] [CrossRef]
- Marrelli, D.; Pedrazzani, C.; Morgagni, P.; et al. Changing clinical and pathological features of gastric cancer over time. Br J Surg. 2011, 98, 1273–1283. [Google Scholar] [CrossRef]
- Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2018 (5th edition). Gastric Cancer. 2021, 24, 1–21. [Google Scholar] [CrossRef]
- Yu, P.; Du, Y.; Xu, Z.; Huang, L.; Cheng, X. Comparison of D2 and D2 plus radical surgery for advanced distal gastric cancer: a randomized controlled study. World J Surg Oncol. 2019, 17, 28, Published 2019 Feb 6. [Google Scholar] [CrossRef]
- Costantino, C.L.; Mullen, J.T. Minimally Invasive Gastric Cancer Surgery. Surg Oncol Clin N Am. 2019, 28, 201–213. [Google Scholar] [CrossRef]
- Kitano, S.; Iso, Y.; Moriyama, M.; Sugimachi, K. Laparoscopy-assisted Billroth I gastrectomy. Surg Laparosc Endosc. 1994, 4, 146–148. [Google Scholar]
- Etoh, T.; Ohyama, T.; Sakuramoto, S.; et al. Five-Year Survival Outcomes of Laparoscopy-Assisted vs Open Distal Gastrectomy for Advanced Gastric Cancer: The JLSSG0901 Randomized Clinical Trial. JAMA Surg. 2023, 158, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Bo, T.; Peiwu, Y.; Feng, Q.; et al. Laparoscopy-assisted vs. open total gastrectomy for advanced gastric cancer: long-term outcomes and technical aspects of a case-control study. J Gastrointest Surg. 2013, 17, 1202–1208. [Google Scholar] [CrossRef] [PubMed]
- Viñuela, E.F.; Gonen, M.; Brennan, M.F.; Coit, D.G.; Strong, V.E. Laparoscopic versus open distal gastrectomy for gastric cancer: a meta-analysis of randomized controlled trials and high-quality nonrandomized studies. Ann Surg. 2012, 255, 446–456. [Google Scholar] [CrossRef]
- Kinoshita, T.; Uyama, I.; Terashima, M.; et al. Long-term Outcomes of Laparoscopic Versus Open Surgery for Clinical Stage II/III Gastric Cancer: A Multicenter Cohort Study in Japan (LOC-A Study). Ann Surg. 2019, 269, 887–894. [Google Scholar] [CrossRef]
- Song, J.; Oh, S.J.; Kang, W.H.; et al. Robot-assisted gastrectomy with lymph node dissection for gastric cancer: lessons learned from an initial 100 consecutive procedures. Ann Surg. 2009, 249, 927–932. [Google Scholar] [CrossRef]
- Nakamura, K.; Shibasaki, S.; Suda, K. Robotic distal gastrectomy with left gastric artery preservation for early gastric cancer with prior splenectomy: A case report [published online ahead of print, 2023 Sep 11]. Asian J Endosc Surg 2023, 10.1111/ases.13244. [Google Scholar] [CrossRef]
© 2023 by the author. Adrian Silaghi, Laura Florentina Rebegea, Daniela Gabriela Balan, Anca Dumitriu, Stana Paunica, Cristian Balalau, Stefăniță Tenea Cojan, Dragos Epistatu, Vlad Denis Constantin
Share and Cite
Silaghi, A.; Rebegea, L.F.; Balan, D.G.; Dumitriu, A.; Paunica, S.; Balalau, C.; Cojan, S.T.; Epistatu, D.; Constantin, V.D. Gastric Cancer: Actualities and Perspectives of Early Diagnosis and Targeted Therapy. J. Mind Med. Sci. 2023, 10, 196-208. https://doi.org/10.22543/2392-7674.1444
Silaghi A, Rebegea LF, Balan DG, Dumitriu A, Paunica S, Balalau C, Cojan ST, Epistatu D, Constantin VD. Gastric Cancer: Actualities and Perspectives of Early Diagnosis and Targeted Therapy. Journal of Mind and Medical Sciences. 2023; 10(2):196-208. https://doi.org/10.22543/2392-7674.1444
Chicago/Turabian StyleSilaghi, Adrian, Laura Florentina Rebegea, Daniela Gabriela Balan, Anca Dumitriu, Stana Paunica, Cristian Balalau, Stefăniță Tenea Cojan, Dragos Epistatu, and Vlad Denis Constantin. 2023. "Gastric Cancer: Actualities and Perspectives of Early Diagnosis and Targeted Therapy" Journal of Mind and Medical Sciences 10, no. 2: 196-208. https://doi.org/10.22543/2392-7674.1444
APA StyleSilaghi, A., Rebegea, L. F., Balan, D. G., Dumitriu, A., Paunica, S., Balalau, C., Cojan, S. T., Epistatu, D., & Constantin, V. D. (2023). Gastric Cancer: Actualities and Perspectives of Early Diagnosis and Targeted Therapy. Journal of Mind and Medical Sciences, 10(2), 196-208. https://doi.org/10.22543/2392-7674.1444