The Relationship between Bodyweight, Maximum and Relative Strength, and Power Variables during Flywheel Inertial Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Methods and Materials
2.2.1. Power Measurements
2.2.2. Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Practical Applications
- Both CON and ECC power variables are reliable and stable across inertial loads and can be used during flywheel training, but due to inconsistency over inertial loads, ECC overload should be used cautiously.
- This study demonstrates the reliability of a protocol for determining which inertial load generated the highest power output. However, prior experience with flywheel training is advised.
- Maximum and relative strength may be more associated with CON and ECC peak power than bodyweight, but neither show strong relationships, suggesting that flywheel training requires an individualized approach.
- One constraint that may alter the training stimulus is technique; if athletes do not adopt an optimal technique, this may alter the training stimulus and negate the effect of maximal and relative strength.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berg, H.E.; Tesch, P.A.; Allen, W.J.C.; Allen, W.J.C.; De Keijzer, K.L.; Raya-gonzález, J.; Castillo, D.; Coratella, G.; Beato, M.; Allen, W.J.C.; et al. A Gravity-Independent Ergometer to Be Used for Resistance Training in Space. Aviat. Space Environ. Med. 1994, 21, 1031–1041. [Google Scholar] [CrossRef]
- Tesch, P.A.; Fernandez-Gonzalo, R.; Lundberg, T.R. Clinical Applications of Iso-Inertial, Eccentric-Overload (YoYoTM) Resistance Exercise. Front. Physiol. 2017, 8, 768–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maroto-Izquierdo, S.; García-López, D.; Fernandez-Gonzalo, R.; Moreira, O.C.; González-Gallego, J.; de Paz, J.A. Skeletal Muscle Functional and Structural Adaptations after Eccentric Overload Flywheel Resistance Training: A Systematic Review and Meta-Analysis. J. Sci. Med. Sport 2017, 20, 943–951. [Google Scholar] [CrossRef]
- Maroto-Izquierdo, S.; García-López, D.; de Paz, J.A. Functional and Muscle-Size Effects of Flywheel Resistance Training with Eccentric-Overload in Professional Handball Players. J. Hum. Kinet. 2017, 60, 133–143. [Google Scholar] [CrossRef] [Green Version]
- De Hoyo, M.; Pozzo, M.; Sañudo, B.; Carrasco, L.; Gonzalo-Skok, O.; Domínguez-Cobo, S.; Morán-Camacho, E. Effects of a 10-Week in-Season Eccentric-Overload Training Program on Muscle-Injury Prevention and Performance in Junior Elite Soccer Players. Int. J. Sports Physiol. Perform. 2015, 10, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Raya-González, J.; Castillo, D.; de Keijzer, K.L.; Beato, M.; Davó, J.L.H.; Monteagudo, P.; Sabido, R.; Tøien, T.; Haglo, H.P.; Unhjem, R.; et al. Differential Effects of Low vs. High Inertial Loads during an Eccentric-Overload Training Intervention in Rugby Union Players: A Preliminary Study. J. Sports Med. Phys. Fit. 2021, 17, 3671. [Google Scholar] [CrossRef]
- Tous-fajardo, J.; Maldonado, R.A.; Quintana, J.M.; Fernandez-Gonzalo, R.; Lundberg, T.R.; Alvarez-Alvarez, L.; De Paz, J.A.; Byrne, D.J.; Browne, D.T.; Byrne, P.J.; et al. Flywheel Resistance Training Calls for Greater Eccentric Muscle Activation than Weight Training. Eur. J. Appl. Physiol. 2017, 4, 1075–1084. [Google Scholar] [CrossRef]
- Sabido, R.; Hernández-Davó, J.L.; Botella, J.; Navarro, A.; Tous-Fajardo, J. Effects of Adding a Weekly Eccentric-Overload Training Session on Strength and Athletic Performance in Team-Handball Players. Eur. J. Sport Sci. 2017, 17, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Raya-González, J.; Castillo, D.; Domínguez-Díez, M.; Hernández-Davó, J.L. Eccentric-Overload Production during the Flywheel Squat Exercise in Young Soccer Players: Implications for Injury Prevention. Int. J. Environ. Res. Public Health 2020, 17, 3671. [Google Scholar] [CrossRef]
- Sabido, R.; Hernández-Davó, J.L.; Pereyra-Gerber, G.T. Influence of Different Inertial Loads on Basic Training Variables during the Flywheel Squat Exercise. Int. J. Sports Physiol. Perform. 2018, 13, 482–489. [Google Scholar] [CrossRef]
- Piqueras-Sanchiz, F.; Sabido, R.; Raya-González, J.; Madruga-Parera, M.; Romero-Rodríguez, D.; Beato, M.; de Hoyo, M.; Nakamura, F.Y.; Hernández-Davó, J.L. Effects of Different Inertial Load Settings on Power Output Using a Flywheel Leg Curl Exercise and Its Inter-Session Reliability. J. Hum. Kinet. 2020, 74, 215–226. [Google Scholar] [CrossRef]
- Brien, J.; Browne, D.; Earls, D.; Lodge, C. The Effects of Varying Inertial Loadings on Power Variables in the Flywheel Romanian Deadlift Exercise. Biol. Sport 2022, 39, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Nuñez Sanchez, F.J.; Sáez de Villarreal, E.; de Villarreal, E.S. Does Flywheel Paradigm Training Improve Muscle Volume and Force? A Meta-Analysis. J. Strength Cond. Res. 2017, 31, 3177–3186. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Gonzalo, R.; Lundberg, T.R.; Alvarez-Alvarez, L.; De Paz, J.A. Muscle Damage Responses and Adaptations to Eccentric-Overload Resistance Exercise in Men and Women. Eur. J. Appl. Physiol. 2014, 114, 1075–1084. [Google Scholar] [CrossRef] [PubMed]
- Naczk, M.; Naczk, A.; Brzenczek-Owczarzak, W.; Arlet, J.; Adach, Z. Impact of Inertial Training on Strength and Power Performance in Young Active Men. J. Strength Cond. Res. 2016, 30, 2107–2113. [Google Scholar] [CrossRef]
- Tøien, T.; Haglo, H.P.; Unhjem, R.; Hoff, J.; Wang, E. Maximal Strength Training: The Impact of Eccentric Overload. J. Neurophysiol. 2018, 120, 2868–2876. [Google Scholar] [CrossRef] [Green Version]
- Suchomel, T.J.; Wagle, J.P.; Douglas, J.; Taber, C.B.; Harden, M.; Haff, G.G.; Stone, M.H. Implementing Eccentric Resistance Training—Part 1: A Brief Review of Existing Methods. J. Funct. Morphol. Kinesiol. 2019, 4, 38. [Google Scholar] [CrossRef] [Green Version]
- Beato, M.; Fleming, A.; Coates, A.; Dello Iacono, A. Validity and Reliability of a Flywheel Squat Test in Sport. J. Sports Sci. 2021, 39, 482–488. [Google Scholar] [CrossRef]
- Beato, M.; Dello Iacono, A. Implementing Flywheel (Isoinertial) Exercise in Strength Training: Current Evidence, Practical Recommendations, and Future Directions. Front. Physiol. 2020, 11, 569. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Turner, A.; Brazier, J.; Bishop, C.; Chavda, S.; Cree, J.; Read, P. Data Analysis for Strength and Conditioning Coaches: Using Excel to Analyze Reliability, Differences, and Relationships. Strength Cond. J. 2015, 37, 76–83. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tous-Fajardo, J.; Maldonado, R.A.; Quintana, J.M.; Pozzo, M.; Tesch, P.A. The Flywheel Leg-Curl Machine: Offering Eccentric Overload for Hamstring Development. Int. J. Sports Physiol. Perform. 2006, 1, 293–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, H.E.; Tesch, P.A. Force and Power Characteristics of a Resistive Exercise Device for Use in Space. Acta Astronaut. 1998, 42, 219–230. [Google Scholar] [CrossRef]
- Martinez-Aranda, L.M.; Fernandez-Gonzalo, R. Effects of Inertial Setting on Power, Force, Work, and Eccentric Overload during Flywheel Resistance Exercise in Women and Men. J. Strength Cond. Res. 2017, 31, 1123–1132. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Wagle, J.P.; Douglas, J.; Taber, C.B.; Harden, M.; Haff, G.G.; Stone, M.H. Implementing Eccentric Resistance Training—Part 2: Practical Recommendations. J. Funct. Morphol. Kinesiol. 2019, 4, 55. [Google Scholar] [CrossRef] [Green Version]
Age (Years) | Height (cm) | Mass (kg) | 1RM (kg) | Relative (kg/Mass) | |
---|---|---|---|---|---|
Participants | 24 ± 2.5 | 176.7 ± 7.7 | 82.2 ± 11.4 | 126.4 ± 23.9 | 1.53 ± 0.2 |
Variable | 1–2 ICC (95% CL) | ICC Interpretation | CV % |
---|---|---|---|
Pcon 0.05 kg·m2 | 0.99 (0.99–1.00) | Excellent | 0.06 |
Pecc 0.05 kg·m2 | 0.98 (0.92–1.00) | Excellent | 2.98 |
% OL | 0.52 (0.16–0.86) | Moderate | 45.79 |
Pcon 0.075 kg·m2 | 0.94 (0.77–0.99) | Excellent | 1.54 |
Pecc 0.075 kg·m2 | 0.93 (0.74–0.98) | Excellent | 4.11 |
% OL | 0.82 (0.40–0.95) | Good | 11.69 |
Pcon 1.00 kg·m2 | 0.94 (0.77–0.99) | Excellent | 0.72 |
Pecc 1.00 kg·m2 | 0.98 (0.92–1.00) | Excellent | 0.98 |
% OL | 0.92 (0.71–0.98) | Excellent | 13.23 |
Pcon (W) | Pecc (W) | %OL (W) | |
---|---|---|---|
Participants | 865.8 ± 328.8 | 931.6 ± 345.4 | 19.7 ± 18.1 |
Pcon | Pecc | %OL | |
---|---|---|---|
Bodyweight | 0.19 (0.82 to −0.69) | 0.28 (0.85 to −0.60) | −0.31 (0.86 to −0.57) |
1RM | 0.51 (0.91 to −0.38) | 0.48 (0.90 to −0.42) | −0.08 (0.71 to −0.78) |
Relative | 0.65 (0.94 to 0.20) | 0.50 (0.91 to −0.40) | −0.44 (0.46 to −0.90) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brien, J.O.; Browne, D.; Earls, D.; Lodge, C. The Relationship between Bodyweight, Maximum and Relative Strength, and Power Variables during Flywheel Inertial Training. Biomechanics 2023, 3, 291-298. https://doi.org/10.3390/biomechanics3030025
Brien JO, Browne D, Earls D, Lodge C. The Relationship between Bodyweight, Maximum and Relative Strength, and Power Variables during Flywheel Inertial Training. Biomechanics. 2023; 3(3):291-298. https://doi.org/10.3390/biomechanics3030025
Chicago/Turabian StyleBrien, Joey O., Declan Browne, Des Earls, and Clare Lodge. 2023. "The Relationship between Bodyweight, Maximum and Relative Strength, and Power Variables during Flywheel Inertial Training" Biomechanics 3, no. 3: 291-298. https://doi.org/10.3390/biomechanics3030025
APA StyleBrien, J. O., Browne, D., Earls, D., & Lodge, C. (2023). The Relationship between Bodyweight, Maximum and Relative Strength, and Power Variables during Flywheel Inertial Training. Biomechanics, 3(3), 291-298. https://doi.org/10.3390/biomechanics3030025