Effects of Path-Finding Algorithms on the Labeling of the Centerlines of Circle of Willis Arteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Vessel Segmentation and Skeletonization
2.3. Annotation of Two Endpoints
2.4. Path-Finding Algorithms
2.5. Evaluation
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ritz, K.; Denswil, N.P.; Stam, O.C.; van Lieshout, J.J.; Daemen, M.J. Cause and mechanisms of intracranial atherosclerosis. Circulation 2014, 130, 1407–1414. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; De Silva, T.M.; Chen, J.; Faraci, F.M. Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke. Circ. Res. 2017, 120, 449–471. [Google Scholar] [CrossRef] [PubMed]
- Krzyzewski, R.M.; Klis, K.M.; Kwinta, B.M.; Gackowska, M.; Gasowski, J. Increased tortuosity of ACA might be associated with increased risk of ACoA aneurysm development and less aneurysm dome size: A computer-aided analysis. Eur. Radiol. 2019, 29, 6309–6318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, W.; Rhee, K. Hemodynamics of cerebral aneurysms: Computational analyses of aneurysm progress and treatment. Comput. Math. Methods Med. 2012, 2012, 782801. [Google Scholar] [CrossRef] [Green Version]
- Magid-Bernstein, J.; Girard, R.; Polster, S.; Srinath, A.; Romanos, S.; Awad, I.A.; Sansing, L.H. Cerebral Hemorrhage: Pathophysiology, Treatment, and Future Directions. Circ. Res. 2022, 130, 1204–1229. [Google Scholar] [CrossRef]
- Cirillo, M.; Scomazzoni, F.; Cirillo, L.; Cadioli, M.; Simionato, F.; Iadanza, A.; Kirchin, M.; Righi, C.; Anzalone, N. Comparison of 3D TOF-MRA and 3D CE-MRA at 3T for imaging of intracranial aneurysms. Eur. J. Radiol. 2013, 82, e853–e859. [Google Scholar] [CrossRef] [PubMed]
- Lell, M.M.; Anders, K.; Uder, M.; Klotz, E.; Ditt, H.; Vega-Higuera, F.; Boskamp, T.; Bautz, W.A.; Tomandl, B.F. New techniques in CT angiography. Radiographics 2006, 26 (Suppl. 1), S45–S62. [Google Scholar] [CrossRef]
- Han, H.C. Twisted blood vessels: Symptoms, etiology and biomechanical mechanisms. J. Vasc. Res. 2012, 49, 185–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandil, H.; Soliman, A.; Ghazal, M.; Mahmoud, A.; Shalaby, A.; Keynton, R.; Elmaghraby, A.; Giridharan, G.; El-Baz, A. A Novel Framework for Early Detection of Hypertension using Magnetic Resonance Angiography. Sci. Rep. 2019, 9, 11105. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Song, H.N.; Lee, J.E.; Kim, Y.C.; Baek, I.Y.; Kim, Y.S.; Chung, J.W.; Jee, T.K.; Yeon, J.Y.; Bang, O.Y.; et al. How Cerebral Vessel Tortuosity Affects Development and Recurrence of Aneurysm: Outer Curvature versus Bifurcation Type. J. Stroke 2021, 23, 213–222. [Google Scholar] [CrossRef]
- Klis, K.M.; Krzyzewski, R.M.; Kwinta, B.M.; Lasocha, B.; Brzegowy, P.; Stachura, K.; Popiela, T.J.; Borek, R.; Gasowski, J. Increased tortuosity of basilar artery might be associated with higher risk of aneurysm development. Eur. Radiol. 2020, 30, 5625–5632. [Google Scholar] [CrossRef] [PubMed]
- Sodi, A.; Guarducci, M.; Vauthier, L.; Ioannidis, A.S.; Pitz, S.; Abbruzzese, G.; Sofi, F.; Mecocci, A.; Miele, A.; Menchini, U. Computer assisted evaluation of retinal vessels tortuosity in Fabry disease. Acta Ophthalmol. 2013, 91, e113–e119. [Google Scholar] [CrossRef] [PubMed]
- Klis, K.M.; Krzyzewski, R.M.; Kwinta, B.M.; Stachura, K.; Gasowski, J. Tortuosity of the Internal Carotid Artery and Its Clinical Significance in the Development of Aneurysms. J. Clin. Med. 2019, 8, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogunovic, H.; Pozo, J.M.; Cardenes, R.; San Roman, L.; Frangi, A.F. Anatomical labeling of the Circle of Willis using maximum a posteriori probability estimation. IEEE Trans. Med. Imaging 2013, 32, 1587–1599. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Mossa-Basha, M.; Balu, N.; Canton, G.; Sun, J.; Pimentel, K.; Hatsukami, T.S.; Hwang, J.N.; Yuan, C. Development of a quantitative intracranial vascular features extraction tool on 3D MRA using semiautomated open-curve active contour vessel tracing. Magn. Reson. Med. 2018, 79, 3229–3238. [Google Scholar] [CrossRef]
- Robben, D.; Turetken, E.; Sunaert, S.; Thijs, V.; Wilms, G.; Fua, P.; Maes, F.; Suetens, P. Simultaneous segmentation and anatomical labeling of the cerebral vasculature. Med. Image Anal. 2016, 32, 201–215. [Google Scholar] [CrossRef] [Green Version]
- Dumais, F.; Caceres, M.P.; Janelle, F.; Seifeldine, K.; Ares-Bruneau, N.; Gutierrez, J.; Bocti, C.; Whittingstall, K. eICAB: A novel deep learning pipeline for Circle of Willis multiclass segmentation and analysis. Neuroimage 2022, 260, 119425. [Google Scholar] [CrossRef]
- Nazir, A.; Cheema, M.N.; Sheng, B.; Li, H.T.; Li, P.; Yang, P.; Jung, Y.Y.; Qin, J.; Kim, J.M.; Feng, D.D. OFF-eNET: An Optimally Fused Fully End-to-End Network for Automatic Dense Volumetric 3D Intracranial Blood Vessels Segmentation. IEEE Trans. Image Process. 2020, 29, 7192–7202. [Google Scholar] [CrossRef]
- Suran, S.; Pattanaik, V.; Malathi, D. Discovering shortest path between points in cerebrovascular system. In Proceedings of the 6th IBM Collaborative Academia Research Exchange Conference (I-CARE) on I-CARE 2014, Bangalore, India, 9–11 October 2014; pp. 1–3. [Google Scholar]
- Shen, M.; Wei, J.; Fan, J.; Tan, J.; Wang, Z.; Yang, Z.; Qiao, P.; Liao, F. Automatic cerebral artery system labeling using registration and key points tracking. In Proceedings of the Knowledge Science, Engineering and Management: 13th International Conference, KSEM 2020, Hangzhou, China, 28–30 August 2020; pp. 355–367. [Google Scholar]
- Thamm, F.; Jurgens, M.; Taubmann, O.; Thamm, A.; Rist, L.; Ditt, H.; Maier, A. An algorithm for the labeling and interactive visualization of the cerebrovascular system of ischemic strokes. Biomed. Phys. Eng. Express 2022, 8, 065016. [Google Scholar] [CrossRef]
- Kroon, D.-J. Region Growing, MATLAB Central File Exchange; The MathWorks, Inc.: Natick, MA, USA, 2021. [Google Scholar]
- Van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T. Scikit-Image: Image processing in Python. PeerJ 2014, 2, e453. [Google Scholar] [CrossRef]
- Kim, Y.C.; Kim, K.R.; Lee, H.; Choe, Y.H. Fast calculation software for modified Look-Locker inversion recovery (MOLLI) T1 mapping. BMC Med. Imaging 2021, 21, 26. [Google Scholar] [CrossRef] [PubMed]
- Nunez-Iglesias, J.; Blanch, A.J.; Looker, O.; Dixon, M.W.; Tilley, L. A new Python library to analyse skeleton images confirms malaria parasite remodelling of the red blood cell membrane skeleton. PeerJ 2018, 6, e4312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.D.; Lee, K.D.; Steve Hubbard, S.H. Data Structures and Algorithms with Python; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Schrijver, A. Combinatorial Optimization: Polyhedra and Efficiency; Springer: Berlin/Heidelberg, Germany, 2003; Volume 24. [Google Scholar]
- Russell, S.J. Artificial Intelligence a Modern Approach; Pearson Education, Inc.: London, UK, 2010. [Google Scholar]
- Chen, Y.; Jin, D.; Guo, B.; Bai, X. Attention-Assisted Adversarial Model for Cerebrovascular Segmentation in 3D TOF-MRA Volumes. IEEE Trans. Med. Imaging 2022, 41, 3520–3532. [Google Scholar] [CrossRef]
- Livne, M.; Rieger, J.; Aydin, O.U.; Taha, A.A.; Akay, E.M.; Kossen, T.; Sobesky, J.; Kelleher, J.D.; Hildebrand, K.; Frey, D.; et al. A U-Net Deep Learning Framework for High Performance Vessel Segmentation in Patients With Cerebrovascular Disease. Front. Neurosci. 2019, 13, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wozniak, T.; Strzelecki, M.; Majos, A.; Stefanczyk, L. 3D vascular tree segmentation using a multiscale vesselness function and a level set approach. Biocybern. Biomed. Eng. 2017, 37, 66–77. [Google Scholar] [CrossRef]
- Lell, M.M.; Ruehm, S.G.; Kramer, M.; Panknin, C.; Habibi, R.; Klotz, E.; Villablanca, P. Cranial computed tomography angiography with automated bone subtraction: A feasibility study. Investig. Radiol. 2009, 44, 38–43. [Google Scholar] [CrossRef]
- van Straten, M.; Venema, H.W.; Streekstra, G.J.; Majoie, C.B.; den Heeten, G.J.; Grimbergen, C.A. Removal of bone in CT angiography of the cervical arteries by piecewise matched mask bone elimination. Med. Phys. 2004, 31, 2924–2933. [Google Scholar] [CrossRef] [Green Version]
- Fu, F.; Wei, J.; Zhang, M.; Yu, F.; Xiao, Y.; Rong, D.; Shan, Y.; Li, Y.; Zhao, C.; Liao, F.; et al. Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network. Nat. Commun. 2020, 11, 4829. [Google Scholar] [CrossRef]
- Payer, C.; Stern, D.; Bischof, H.; Urschler, M. Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Med. Image Anal. 2019, 54, 207–219. [Google Scholar] [CrossRef]
- Alansary, A.; Oktay, O.; Li, Y.; Folgoc, L.L.; Hou, B.; Vaillant, G.; Kamnitsas, K.; Vlontzos, A.; Glocker, B.; Kainz, B.; et al. Evaluating reinforcement learning agents for anatomical landmark detection. Med. Image Anal. 2019, 53, 156–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, H.; Artico, J.; Fontana, M.; Moon, J.C.; Davies, R.H.; Kellman, P. Landmark Detection in Cardiac MRI by Using a Convolutional Neural Network. Radiol. Artif. Intell. 2021, 3, e200197. [Google Scholar] [CrossRef] [PubMed]
Method 1 (DFS Algorithm) | Method 2 (Dijkstra Algorithm) | Method 3 (A* Algorithm) | p-Value * | p-Value † | p-Value ‡ | No. of Undetected Paths | Total | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No. of Correct Paths | No. of Incorrect Paths | No. of Correct Paths | No. of Incorrect Paths | No. of Correct Paths | No. of Incorrect Paths | |||||||
AComm | 19 | 25 | 44 | 0 | 36 | 8 | <0.001 | <0.001 | 0.006 | 16 | 60 | |
ACA A1 | R | 51 | 9 | 60 | 0 | 60 | 0 | 0.003 | 0.003 | 1 | 0 | 60 |
L | 49 | 10 | 59 | 0 | 59 | 0 | 0.001 | 0.001 | 1 | 1 | 60 | |
MCA M1 | R | 55 | 5 | 60 | 0 | 60 | 0 | 0.057 | 0.057 | 1 | 0 | 60 |
L | 58 | 2 | 60 | 0 | 59 | 1 | 0.496 | 1 | 1 | 0 | 60 | |
PComm | R | 8 | 6 | 14 | 0 | 14 | 0 | 0.016 | 0.016 | 1 | 46 | 60 |
L | 10 | 8 | 18 | 0 | 18 | 0 | 0.003 | 0.003 | 1 | 42 | 60 | |
PCA P1 | R | 52 | 8 | 57 | 3 | 58 | 2 | 0.204 | 0.095 | 1 | 0 | 60 |
L | 51 | 9 | 60 | 0 | 60 | 0 | 0.003 | 0.003 | 1 | 0 | 60 | |
PCA P2 | R | 55 | 5 | 60 | 0 | 60 | 0 | 0.057 | 0.057 | 1 | 0 | 60 |
L | 51 | 9 | 60 | 0 | 60 | 0 | 0.003 | 0.003 | 1 | 0 | 60 | |
BA | 53 | 7 | 60 | 0 | 60 | 0 | 0.013 | 0.013 | 1 | 0 | 60 | |
ICA | R | 51 | 9 | 50 | 10 | 50 | 10 | 1 | 1 | 1 | 0 | 60 |
L | 51 | 9 | 52 | 8 | 52 | 8 | 1 | 1 | 1 | 0 | 60 | |
Total | 614 | 121 | 714 | 21 | 706 | 29 | 105 | 840 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-O.; Kim, Y.-C. Effects of Path-Finding Algorithms on the Labeling of the Centerlines of Circle of Willis Arteries. Tomography 2023, 9, 1423-1433. https://doi.org/10.3390/tomography9040113
Kim S-O, Kim Y-C. Effects of Path-Finding Algorithms on the Labeling of the Centerlines of Circle of Willis Arteries. Tomography. 2023; 9(4):1423-1433. https://doi.org/10.3390/tomography9040113
Chicago/Turabian StyleKim, Se-On, and Yoon-Chul Kim. 2023. "Effects of Path-Finding Algorithms on the Labeling of the Centerlines of Circle of Willis Arteries" Tomography 9, no. 4: 1423-1433. https://doi.org/10.3390/tomography9040113
APA StyleKim, S. -O., & Kim, Y. -C. (2023). Effects of Path-Finding Algorithms on the Labeling of the Centerlines of Circle of Willis Arteries. Tomography, 9(4), 1423-1433. https://doi.org/10.3390/tomography9040113