Do We Need Another CT Scanner?—The Pilot Study of the Adoption of an Evolutionary Algorithm to Investment Decision Making in Healthcare
Abstract
:1. Introduction
2. Data Sources
3. Methods
3.1. Epidemiological CT Need Predictors
3.2. Clinical CT Need Predictors
- Green—where CT use is ‘usually appropriate’;
- Yellow—where CT use ‘may be appropriate’;
- Red—where CT use is ‘usually not appropriate’.
- The generation of 100 chromosomes was calculated. Each chromosome represented a different scenario for the distribution of CT scanners across the country and consisted of 130 genes representing the number of CT scanners per county.
- The fitness function for each generation of chromosomes was calculated. The proposed custom fitness gave a score for each chromosome by assessing its probability of meeting the defined need using the set of epidemiological and clinical indicators. A lower score was assigned if a given chromosome met each need indicator to the lowest extent possible. The function was constructed based on the principle of a weighted sum of mean squared error (MSE) values between a normalised (from 0 to 1) series of particular data corresponding to the proposed distribution of CT scanners. The formula for the fitness function is given as
- The chromosomes included in the subsequent generation were selected based on ‘roulette wheel selection’, which took the fitness score into account. This method assumed that the likelihood of being selected was proportional to the ratio of the fitness function score of a given chromosome to the sum of the scores of the entire generation. The lower the score, the greater the likelihood of being selected for the next generation. Because the purpose of optimisation is to lower the fitness function, inverses of the fitness function values were used.
- After choosing chromosomes for a new generation, crossover between randomly chosen chromosomes occurred. This mechanism allowed for the exchange of information between chromosomes within the previous generation. Chromosomes were chosen for crossover with a probability of 30% (as suggested in [34]). Specific genes were exchanged between two random chromosomes with a probability of 10% per gene. This number was assumed to achieve approximately 10% of the entire chromosome informational content exchanged.
- Mutation was used as the subsequent mechanism, with a probability of 0.5% [34] per gene. A random number from the range −5–10 was added to the number of CT scanner mutations in each gene. This range was adopted after the initial analysis of the number of scanners across the population of the counties. The higher limit (10) was set to a value higher than the lower limit (−5) to make it possible for some counties to increase their numbers faster. In cases where the added number of CT scanners would result in a negative number, a zero value was entered. This completed the set of tasks conducted for each generation.
- The procedures outlined in steps 1–5 were repeated until satisfactory results were obtained, that is, when the fitness function could not be decreased further. Previous tests showed that for particular settings, the number of generations was set to 1000.
- The groups of counties were ranked in ascending order from the shortest to the longest waiting times for a CT scan (waiting time = the number of waiting days).
- Waiting times were divided into three groups:
- Q1—waiting time ranging from 0 to 25% of the longest waiting time across included counties;
- Q2—waiting time ranging from 25% to 75% of the longest waiting time across included counties;
- Q3—waiting time ranging from 75% to 100% of the longest waiting time.
- The counties were grouped into one of the following categories based on the difference between the historical number of CT scanners in a given county and the result from the EA model and additionally compared with the average waiting times to obtain CT scans for each county.
- EA predicted a greater number of CT scans compared with historical data, and the average waiting time was in Q3—underinvestment of CT.
- EA predicted a greater number of CT scans compared with historical data and the average waiting time was in Q2—potential for further development of equipment infrastructure.
- EA predicted a lower number of CT scans compared with historical data, and the average waiting time was in Q3—potential for efficiency gains.
- EA predicted a lower number of CT scans compared with historical data, and the average waiting time was in Q2—overuse of CT.
- EA predicted a greater number of CT scans compared with historical data, but waiting times were at the average level in Q2—underuse of CT scanners.
- EA predicted a lower number of CT scans compared with historical data, but waiting times were at the average level in Q2—overuse of CT scanners.
- EA predicted a similar number of CT scans as that currently available in a given county.
4. Results
5. Sensitivity Analysis
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holland, J.H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Available online: https://basiw.mz.gov.pl/ (accessed on 10 May 2020).
- Fuchs, S.; Grössmann, N.; Ferch, M.; Busse, R.; Wild, C. Evidence-based indications for the planning of PET or PET/CT capacities are needed. Clin. Transl. Imaging 2019, 7, 65–81. [Google Scholar] [CrossRef] [Green Version]
- Kung, P.T.; Tsai, W.C.; Yaung, C.L.; Liao, K.P. Determinants of computed tomography and magnetic resonance imaging utilization in Taiwan. Int. J. Technol. Assess. Health Care 2015, 21, 81–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://bdl.stat.gov.pl/BDL/start (accessed on 14 August 2020).
- Polish Society of Oncology. 2019 Clinical Guidelines in Malignant Tumours. Available online: http://onkologia.zalecenia.med.pl/ (accessed on 25 May 2020).
- Krzakowski, M.; Jassem, J.; Antczak, A.; Chorostowska-Wynimko, J.; Dziadziuszko, R.; Głogowski, M.; Grodzki, T.; Kowalski, D.; Olszewski, W.; Orłowski, T.; et al. Cancer of the lung, pleura and mediastinum. Oncol. Clin. Pract. 2019, 15, 20–50. [Google Scholar] [CrossRef]
- Zyskowski, L.; Surowski, P.; Rutkowski, A.; Wieszczy, P.; Milewska, J.; Olesiński, T. Diagnostics and treatment of small intestine tumors in our own experience. Nowotw. J. Oncol. 2018, 68, 167–172. [Google Scholar]
- Wardas, P.; Markowski, J.; Piotrowska-Seweryn, A. Przegląd aktualnych wytycznych w zakresie diagnostyki i leczenia zapaleń zatok przynosowych z praktycznym komentarzem. Forum Med. Rodz. 2014, 8, 159–168. [Google Scholar]
- Dąbrowski, A. Choroby trzustki—Postępy 2017/2018. Med. Prakt. 2018, 7–8, 82–86. [Google Scholar]
- Wiszniewska, M.; Kobayashi, A.; Członkowska, A. Postępowanie w udarze mózgu Skrót Wytycznych Grupy Ekspertów Sekcji Chorób Naczyniowych Polskiego Towarzystwa Neurologicznego z 2012 roku. Pol. Przegląd Neurol. 2012, 8, 161–175. [Google Scholar]
- Brongel, L.; Hładki, W.; Karski, J.; Lasek, J.; Nogalski, A.; Słowiński, K. Postępowanie w przypadku urazów, Zalecenia Sekcji Urazów Towarzystwa Chirurgów Polskich. Med. Prakt. Chir. 2010, 5, 9–25. [Google Scholar]
- Skotnicka-Klonowicz, G.; Godziński, J.; Hermanowicz, A.; Wendland, J.; Strzesak, E.; Strzyżewski, K.; Czauderna, P. Postępowanie w lekkich i średniociężkich urazach głowy u dzieci–wytyczne Polskiego Towarzystwa Chirurgów Dziecięcych. Stand. Med./Probl. Chir. Dziecięcej 2014, 1, 42–50. [Google Scholar]
- Global Strategy for Asthma Management and Prevention. 2020. Available online: https://ginasthma.org/ (accessed on 25 May 2020).
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef] [Green Version]
- Türk, C.K.; Knoll, T.; Petrik, A.; European Association of Urology. Guidelines on Urolithiasis . 2015. Available online: http://uroweb.org/wp-content/uploads/22-Urolithiasis_LR_full.pdf (accessed on 10 May 2020).
- Casali, P.G.; Bielack, S.; Abecassis, N.; Aro, H.T.; Bauer, S.; Biagini, R.; Bonvalot, S.; Boukovinas, I.; Bovee, J.V.M.G.; Brennan, B.; et al. Bone sarcomas: ESMO-PaedCan-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29 (Suppl. 4), iv79–iv95. [Google Scholar] [CrossRef]
- Casali, P.G.; Abecassis, N.; Bauer, S.; Biagini, R.; Bielack, S.; Bonvalot, S.; Boukovinas, I.; Bovee, J.V.M.G.; Brodowicz, T.; Broto, J.M.; et al. Soft tissue and visceral sarcomas: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29 (Suppl. 4), iv51–iv67. [Google Scholar] [CrossRef]
- Cardoso, F.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rubio, I.T.; Zackrisson, S.; Senkus, E. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019, 30, 1194–1220. [Google Scholar] [CrossRef] [Green Version]
- Van Cutsem, E.; Cervantes, A.; Nordlinger, B.; Arnold, D. Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2014, 25, iii1–iii9. [Google Scholar] [CrossRef]
- Glynne-Jones, R.; Wyrwicz, L.; Tiret, E.; Brown, G.; Rödel, C.D.; Cervantes, A.; Arnold, D. Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017, 28, iv22–iv40. [Google Scholar] [CrossRef]
- Smyth, E.C.; Verheij, M.; Allum, W.; Cunningham, D.; Cervantes, A.; Arnold, D. Gastric cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2016, 27, v38–v49. [Google Scholar] [CrossRef]
- Ducreux, M.; Cuhna, A.S.; Caramella, C.; Hollebecque, A.; Burtin, P.; Goéré, D.; Seufferlein, T.; Haustermans, K.; Van Laethem, J.L.; Conroy, T.; et al. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26, v56–v68. [Google Scholar] [CrossRef]
- Gupta, M.; McCauley, J.; Farkas, A.; Gudeloglu, A.; Neuberger, M.M.; Ho, Y.Y.; Yeung, L.; Vieweg, J.; Dahm, P. Clinical practice guidelines on prostate cancer: A critical appraisal. J. Urol. 2015, 193, 1153–1158. [Google Scholar] [CrossRef]
- Colombo, N.; Peiretti, M.; Garbi, A.; Carinelli, S.; Marini, C.; Sessa, C.; ESMO Guidelines Working Group. Non-epithelial ovarian cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2012, 23, vii20–vii26. [Google Scholar] [CrossRef]
- Mandl, P.; Navarro-Compán, V.; Terslev, L.; Aegerter, P.; Van Der Heijde, D.; D’Agostino, M.A.; Baraliakos, X.; Pedersen, S.J.; Jurik, A.G.; Naredo, E.; et al. EULAR recommendations for the use of imaging in the diagnosis and management of spondyloarthritis in clinical practice. Ann. Rheum. Dis. 2015, 74, 1327–1339. [Google Scholar] [CrossRef]
- Vos, P.E.; Battistin, L.; Birbamer, G.; Gerstenbrand, F.; Potapov, A.; Prevec, T.; Stepan, C.A.; Traubner, P.; Twijnstra, A.; Vecsei, L.; et al. EFNS guideline on mild traumatic brain injury: Report of an EFNS task force. Eur. J. Neurol. 2002, 9, 207–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filippi, M.; Agosta, F.; Barkhof, F.; Dubois, B.; Fox, N.C.; Frisoni, G.B.; Jack, C.R.; Johannsen, P.; Miller, B.L.; Nestor, P.J.; et al. EFNS task force: The use of neuroimaging in the diagnosis of dementia. Eur. J. Neurol. 2012, 19, 1487–1501. [Google Scholar] [CrossRef] [PubMed]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.J.; Harjola, V.P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; et al. 2019 ESC Guidelines for the dignosis and management of acute pulmonary embolism development Toed in colaboration with the European Respiratory Society (ERS). Eur. Heart J. 2020, 41, 543–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgartner, H.; Falk, V.; Bax, J.J.; De Bonis, M.; Hamm, C.; Holm, P.; Iung, B.; Lancellotti, P.; Lansac, E.; Rodriguez Muñoz, D.; et al. 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur. Heart J. 2017, 38, 2739–2791. [Google Scholar] [CrossRef] [PubMed]
- Adler, Y.; Charron, P.; Imazio, M.; Badano, L.; Barón-Esquivias, G.; Bogaert, J.; Brucato, A.; Gueret, P.; Klingel, K.; Lionis, C.; et al. 2015 ESC Guidelines for the diagnosis and management of pericardial diseases: The Task Force for the Diagnosis and Management of Pericardial Diseases of the European Society of Cardiology (ESC) Endorsed by: The European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2015, 36, 2921–2964. [Google Scholar]
- American College of Radiology Appropriateness Criteria—American College of Radiology. ACR Appropriateness Criteria®. Available online: https://acsearch.acr.org/list (accessed on 25 May 2020).
- Simmons, B.B.; Cirignano, B.; Gadegbeku, A.B. Transient ischemic attack: Part I. Diagnosis and evaluation. Am. Fam. Physician 2012, 86, 521–526. [Google Scholar]
- Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Gao, C.; Smith, S.; Lones, M.; Jamieson, S.; Alty, J.; Cosgrove, J.; Zhang, P.; Liu, J.; Chen, Y.; Du, J.; et al. Objective assessment of bradykinesia in Parkinson’s disease using evolutionary algorithms: Clinical validation. Transl. Neurodegener. 2018, 16, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Haddadene, S.R.A.; Labadie, N.; Prodhon, C. Bicriteria Vehicle Routing Problem with Preferences and Timing Constraints in Home Health Care Services. Algorithms 2019, 12, 152. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, T.J. Data-driven oriented optimization of resource allocation in the forging process using Bi-objective Evolutionary Algorithm. Eng. Appl. Artif. Intell. 2020, 89, 103469. [Google Scholar] [CrossRef]
- Xie, N.; Tian, J. Mixed Optimal Algorithm of Resource Allocation in Energy Industry. Energy Procedia 2011, 5, 322–331. [Google Scholar]
- Hosios, A.J.; Laszlo, C.A.; Levine, M.D. A Model to Support Radiographic Equipment Allocation Decisions. J. Oper. Res. Soc. 1978, 29, 205–214. [Google Scholar] [CrossRef]
- Santibanez, P.; Gauded, M.; French, J.; Liu, E.; Tyldesely, S. Optimal location of radiation therapy centers with respect to geographic access. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 745–755. [Google Scholar] [CrossRef] [Green Version]
- Czerwiński, A.M.; Więckowska, B. Location-allocation model for external beam radiotherapy as an example of an evidence-based management tool implemented in healthcare sector in Poland. Radiother. Oncol. 2018, 127, 154–160. [Google Scholar] [CrossRef]
- Tal, O.; Sheffer, N.; Vaknin, S. Parameters for allocation of expensive medical devices (EMD) as a national regulatory mechanism. Harefuah 2008, 147, 359–362. [Google Scholar]
- Miao, C.X.; Zhuo, L.; Gu, Y.M.; Qin, Z.H. Study of large medical equipment allocation in Xuzhou. J. Zhejiang Univ. Sci. B 2007, 8, 881–884. [Google Scholar] [CrossRef] [Green Version]
- Vallejo-Torres, L.; Morris, S.; Carr-Hill, R.; Dixon, P.; Law, M.; Rice, N.; Sutton, M. Can regional resource shares be based only on prevalence data? An empirical investigation of the proportionality assumption. Soc. Sci. Med. 2009, 69, 1634–1642. [Google Scholar] [CrossRef]
- Asthana, S.; Gibson, A.; Moon, G.; Dicker, J.; Brigham, P. The pursuit of equity in NHS resource allocation: Should morbidity replace utilisation as the basis for setting health care capitations? Soc. Sci. Med. 2004, 58, 539–551. [Google Scholar] [CrossRef]
Waiting Time (Quartile, Range) | Number of Counties (N) | Sum | Mean (SD) | Min | Max | |
---|---|---|---|---|---|---|
Short (<Q1, 1–33) | 33 | Population of studied counties | 3,613,753 | 109,507.7 (54,156) | 35,193 | 297,554 |
% of female | 52.0 (1.1) | 50.0 | 54.746 | |||
% of male | 48.0 (1.1.) | 45.3 | 50.0 | |||
Above 65 years old | 691,161 | 20,944.3 (10,463.4) | 5655 | 52,967 | ||
Below 14 years old | 526,187 | 15,945.1 (8638.8) | 4648 | 45,189 | ||
Diagnosed with CT | 177,941 | 5392.2 (5474.1) | 1252 | 25,340 | ||
Medium (Q1–Q2, 34–98) | 65 | Population of studied counties | 8,060,044 | 124,000.7 | 24,513 | 348,190 |
% of female | 52.7 (1.2) | 49.9 | 55.0 | |||
% of male | 47.3 (1.2) | 45.0 | 50.1 | |||
Above 65 years old | 1,630,879 | 25,090.4 (15,423.1) | 3992 | 75,715 | ||
Below 14 years old | 1,223,938 | 18,829.8 (9952.3) | 4011 | 50,032 | ||
Diagnosed with CT | 552,536 | 8500.6 (9276.6) | 171 | 43,420 | ||
Long (Q2–Q3, 99–130) | 32 | Population of studied counties | 5,068,719 | 158,397.5 | 46,291 | 470,907 |
% of female | 52.4 (1.0) | 50.4 | 55.0 | |||
% of male | 47.6 (1.0) | 46.2 | 49.6 | |||
Above 65 years old | 1,010,497 | 31,578.0 (19,499.2) | 9676 | 96,394 | ||
Below 14 years old | 743,630 | 23,238.4 (13,175.7) | 6285 | 72,801 | ||
Diagnosed with CT | 389,340 | 12,166.9 (9214.3) | 2022 | 37,407 | ||
Short (<Q1, 1–33) | 33 | |||||
Number of CTs | 101 | 3.1 (2.0) | 2 | 13 | ||
Number of CT procedures | 501,332 | 15,191.9 (21,253.3) | 2011 | 97,837 | ||
Number of CT procedures per patient | 80.2 | 2.4 (0.7) | 1.5 | 4.11 | ||
Number of patients waiting (urgent + stable cases) | 11,293 | 342.2 | 32 | 1169 | ||
Medium (Q1–Q2, 34–98) | 65 | |||||
Number of CTs | 306 | 4.7 (3.9) | 2 | 23 | ||
Number of CT procedures | 1,754,639 | 26,994.4 (37,161.9) | 269 | 208,486 | ||
Number of CT procedures per patient | 176.4 | 2.7 (0.7) | 1.5 | 4.8 | ||
Number of patients waiting (urgent + stable cases) | 102,686 | 1579.8 (1411.6) | 100.0 | 4269 | ||
Long (Q2–Q3, 99–130) | 32 | |||||
Number of CTs | 277 | 8.7 (9.1) | 2 | 28 | ||
Number of CT procedures | 1,184,735 | 37,023.0 (32,218.1) | 4049 | 129.82 | ||
Number of CT procedures per patient | 88.9 | 2.8 (0.6) | 1.7 | 3.9 | ||
Number of patients waiting (urgent + stable cases) | 39,955 | 1248.6 (1036.9) | 41 | 4914 |
County’s Code | County’s Name | Number of CT Scanners Obtained from Algorithm | Current Number of CT Scanners |
---|---|---|---|
0202 | dzierzoniowski | 3 | 3 |
0206 | jeleniogórski | 1 | 2 |
0208 | kłodzki | 1 | 2 |
0211 | lubiński | 3 | 3 |
0219 | świdnicki | 2 | 2 |
0225 | zgorzelecki | 3 | 2 |
0261 | City-Jelenia Góra | 2 | 3 |
0262 | City-Legnica | 4 | 2 |
0264049 | City-Wroclaw-Psie Pole District | 4 | ND |
0264069 | City-Wroclaw-Srodmiescie District | 1 | ND |
0264059 | City-Wroclaw-Old Town District | 6 | ND |
0264039 | City-Wroclaw-Krzyki District | 4 | ND |
0264029 | City-Wroclaw-Fabryczna District | 4 | ND |
0264 | City-Wroclaw | 19 | 18 |
0461 | City-Bydgoszcz | 6 | 18 |
0462 | City-Grudziądz | 1 | 3 |
0463 | City-Toruń | 4 | 6 |
0464 | City-Włocławek | 3 | 3 |
0614 | puławski | 3 | 3 |
0661 | City-Biała Podlaska | 3 | 2 |
0662 | City-Chełm | 2 | 2 |
0663 | City-Lublin | 6 | 21 |
0664 | City-Zamość | 2 | 4 |
0804 | nowosolski | 2 | 2 |
0807 | sulęciński | 3 | 2 |
0808 | świebodziński | 2 | 3 |
0811 | żarski | 2 | 2 |
0861 | City-Gorzów Wielkopolski | 4 | 3 |
0862 | City-Zielona Góra | 4 | 3 |
1003 | laski | 3 | 2 |
1008 | pabianicki | 5 | 2 |
1016 | tomaszowski | 3 | 3 |
1017 | wieluński | 1 | 2 |
1019 | zduńskowolski | 2 | 2 |
1020 | zgierski | 3 | 5 |
1021 | brzeziński | 1 | 1 |
1061059 | City-Lodz-Śródmieście District | 2 | 8 |
1061069 | City-Lodz-Widzew District | 4 | 15 |
1061029 | City-Lodz-Baluty District | 6 | 10 |
1061039 | City-Lodz-Gorna District | 6 | 11 |
1061049 | City-Lodz-Polesie District | 5 | 9 |
1205 | gorlicki | 1 | 2 |
1207 | limanowski | 2 | 2 |
1211 | nowotarski | 2 | 4 |
1217 | tatrzański | 4 | 2 |
1261029 | City-Krakow-Krowodrza District | 6 | 8 |
1261039 | City-Krakow-Nowa Huta District | 6 | 6 |
1261049 | City-Krakow-Podgorze District | 7 | 4 |
1261059 | City-Krakow-Srodmiescie District | 4 | 14 |
1262 | City-Nowy Sącz | 2 | 2 |
1263 | City-Tarnów | 2 | 4 |
1405 | grodziski | 4 | 2 |
1407 | kozienicki | 0 | 2 |
1417 | otwocki | 2 | 5 |
1418 | piaseczyński | 5 | 4 |
1428 | sochaczewski | 3 | 2 |
1433 | węgrowski | 3 | 2 |
1462 | City-Płock | 1 | 3 |
1463 | City-Radom | 3 | 8 |
1464 | City-Siedlce | 1 | 3 |
1465078 | City-Warsaw-Praga Południe District | 3 | 11 |
1465168 | City-Warsaw-Wilanów District | 4 | 2 |
1465058 | City-Warsaw-Mokotow District | 5 | 15 |
1465158 | City-Warsaw-Wesoła District | 2 | 0 |
1465028 | City-Warsaw-Bemowo District | 4 | 0 |
1465198 | City-Warsaw-Żoliborz District | 3 | 5 |
1465098 | City-Warsaw-Rembertów District | 2 | 0 |
1465068 | City-Warsaw-Ochota District | 4 | 13 |
1465048 | City-Warsaw-Bielany District | 4 | 5 |
1465038 | City-Warsaw-Białołeka District | 2 | 0 |
1465128 | City-Warsaw-Ursus District | 2 | 1 |
1465088 | City-Warsaw-Praga Północ District | 2 | 5 |
1465138 | City-Warsaw-Ursynów District | 4 | 11 |
1465148 | City-Warsaw-Wawer District | 5 | 4 |
1465108 | City-Warsaw-Śródmieście District | 6 | 11 |
1465188 | City-Warsaw-Wola District | 3 | 4 |
1465178 | City-Warsaw-Włochy District | 3 | 1 |
1465118 | City-Warsaw-Targówek District | 5 | 2 |
1604 | kluczborski | 0 | 2 |
1802 | brzozowski | 2 | 4 |
1811 | mielecki | 3 | 2 |
1816 | rzeszowski | 2 | 2 |
1818 | stalowowolski | 2 | 2 |
1861 | City-Krosno | 2 | 2 |
1862 | City-Przemyśl | 3 | 2 |
1863 | City-Rzeszów | 3 | 12 |
2061 | City-Białystok | 7 | 11 |
2063 | City-Suwałki | 0 | 2 |
2202 | chojnicki | 1 | 2 |
2206 | kościerski | 2 | 2 |
2207 | kwidzyński | 2 | 2 |
2215 | wejherowski | 2 | 5 |
2261 | City-Gdańsk | 8 | 11 |
2262 | City-Gdynia | 6 | 3 |
2263 | City-Słupsk | 2 | 3 |
2401 | będziński | 4 | 2 |
2403 | cieszyński | 2 | 6 |
2405 | gliwicki | 2 | 3 |
2411 | raciborski | 4 | 2 |
2413 | tarnogórski | 5 | 2 |
2416 | zawierciański | 4 | 2 |
2461 | City-Bielsko-Biała | 3 | 6 |
2462 | City-Bytom | 5 | 6 |
2463 | City-Chorzów | 3 | 2 |
2464 | City-Częstochowa | 4 | 6 |
2465 | City-Dąbrowa Górnicza | 4 | 3 |
2466 | City-Gliwice | 4 | 5 |
2469 | City-Katowice | 6 | 18 |
2471 | City-Piekary Śląskie | 1 | 2 |
2473 | City-Rybnik | 2 | 2 |
2475 | City-Sosnowiec | 5 | 5 |
2477 | City-Tychy | 2 | 2 |
2478 | City-Zabrze | 5 | 4 |
2607 | ostrowiecki | 2 | 2 |
2610 | skarżyski | 2 | 2 |
2661 | City-Kielce | 3 | 9 |
2861 | City-Elbląg | 3 | 3 |
2862 | City-Olsztyn | 6 | 10 |
3017 | ostrowski | 3 | 2 |
3019 | pilski | 2 | 3 |
3020 | pleszewski | 2 | 2 |
3061 | City-Kalisz | 3 | 2 |
3062 | City-Konin | 3 | 3 |
3063 | City-Leszno | 2 | 3 |
3064049 | City-Poznan-Nowe Miasto District | 2 | 9 |
3064059 | City-Poznan-Stare Miasto District | 3 | 11 |
3064039 | City-Poznan-Jezyce District | 3 | 11 |
3064029 | City-Poznan-Grunwald | 1 | 6 |
3064069 | City-Poznan-Wilda District | 2 | 2 |
3261 | City-Szczecin | 4 | 4 |
3262 | City-Świnoujście | 10 | 11 |
Female Ratio (%) | Under 14 Years Old (%) | Population over 65 (%) | County Population | CT Procedures | CT Scanners- EA Model | CT Scanners—Historical Data | Waiting Time | |
---|---|---|---|---|---|---|---|---|
Group A (underinvestment of CT) (n = 9 counties) | ||||||||
Mean | 0.53 | 0.15 | 0.21 | 145,609 | 7596 | 4.89 | 3.67 | 69 |
Median | 0.53 | 0.14 | 0.21 | 124,992 | 6513 | 5.00 | 3.00 | 64 |
Min. | 0.52 | 0.11 | 0.17 | 78,244 | 1505 | 4.00 | 2.00 | 48 |
Max. | 0.55 | 0.18 | 0.25 | 246,348 | 15,349 | 6.00 | 5.00 | 122 |
Group B (potential for further development of the equipment infrastructure) (n = 3 counties) | ||||||||
Mean | 0.51 | 0.15 | 0.19 | 91,641 | 3681 | 3.50 | 2.50 | 6.96 |
Median | 0.51 | 0.15 | 0.19 | 91,641 | 3681 | 3.50 | 2.50 | 6.96 |
Min. | 0.50 | 0.14 | 0.16 | 35,193 | 2237 | 3.00 | 2.00 | 5.00 |
Max. | 0.52 | 0.16 | 0.21 | 148,089 | 5124 | 4.00 | 3.00 | 8.92 |
Group C (potential for efficiency gains) (n = 35 counties) | ||||||||
Mean | 0.53 | 0.16 | 0.19 | 156,436 | 11,660 | 3.56 | 9.44 | 61.56 |
Median | 0.53 | 0.15 | 0.20 | 131,296 | 8541 | 3.00 | 5.00 | 53.45 |
Min. | 0.50 | 0.12 | 0.09 | 24,513 | 171 | 0.00 | 2.00 | 47.89 |
Max. | 0.55 | 0.26 | 0.24 | 483,789 | 38,896 | 10.00 | 28.00 | 129.12 |
Group D (overproduction of CT) (n = 5 counties) | ||||||||
Mean | 0.51 | 0.15 | 0.18 | 98,247 | 3083 | 1.40 | 2.80 | 6.24 |
Median | 0.51 | 0.15 | 0.18 | 76,256 | 2859 | 2.00 | 3.00 | 6.00 |
Min. | 0.51 | 0.13 | 0.17 | 55,790 | 1252 | 0.00 | 2.00 | 3.92 |
Max. | 0.52 | 0.16 | 0.18 | 178,191 | 6569 | 2.00 | 4.00 | 9.14 |
Group E (underconsumption of CT scans) (n = 10 counties) | ||||||||
Mean | 0.53 | 0.15 | 0.19 | 146,319 | 6954 | 4.50 | 3.00 | 18.38 |
Median | 0.52 | 0.15 | 0.19 | 129,905 | 4278 | 4.00 | 3.00 | 12.74 |
Min. | 0.51 | 0.10 | 0.15 | 47,028 | 1380 | 4.00 | 2.00 | 11.93 |
Max. | 0.55 | 0.19 | 0.25 | 308,070 | 24,076 | 6.00 | 4.00 | 40.23 |
Group F (overconsumption of CT scans) (n = 18 counties) | ||||||||
Mean | 0.52 | 0.15 | 0.19 | 222,157 | 16,481 | 3.00 | 8.44 | 29.86 |
Median | 0.52 | 0.15 | 0.19 | 182,758 | 9106 | 2.50 | 6.00 | 28.84 |
Min. | 0.51 | 0.12 | 0.14 | 64,760 | 2661 | 0.00 | 2.00 | 12.74 |
Max. | 0.54 | 0.20 | 0.27 | 495,350 | 43,420 | 7.00 | 23.00 | 47.03 |
Group G (n = 39 counties) | ||||||||
Mean | 0.52 | 0.15 | 0.19 | 137,813 | 6190 | 2.79 | 2.77 | 25.64 |
Median | 0.52 | 0.15 | 0.19 | 136,112 | 4931 | 3.00 | 2.00 | 26.11 |
Min. | 0.50 | 0.12 | 0.13 | 30,833 | 1324 | 1.00 | 2.00 | 10.00 |
Max. | 0.55 | 0.19 | 0.29 | 300,590 | 27,348 | 6.00 | 6.00 | 46.95 |
Unclassified (n = 11 counties) | ||||||||
Mean | 0.51 | 0.15 | 0.18 | 136,670 | 4728 | 2.15 | 2.15 | 43.22 |
Median | 0.51 | 0.15 | 0.18 | 139,946 | 3790 | 2.00 | 2.00 | 48.42 |
Min. | 0.50 | 0.13 | 0.15 | 63,014 | 1483 | 2.00 | 2.00 | 4.94 |
Max. | 0.52 | 0.17 | 0.21 | 253,142 | 13,128 | 3.00 | 3.00 | 114.34 |
Need Predictor Weights | Number of Localities in Particular Groups | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Population size | Female ratio | Aged >64 | Aged <14 | CT patients | Group A | Group B | Group C | Group D | Group E | Group F | Group G |
0.5 | 0.1 | 0.1 | 0.1 | 0.1 | 9 | 4 | 36 | 4 | 11 | 16 | 40 |
1 | 0.1 | 0.1 | 0.1 | 0.1 | 15 | 3 | 31 | 4 | 10 | 18 | 39 |
0.1 | 0.5 | 0.5 | 0.5 | 0.1 | 14 | 6 | 30 | 3 | 9 | 19 | 39 |
0.1 | 1 | 1 | 1 | 0.1 | 15 | 5 | 30 | 6 | 11 | 13 | 43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolasa, K.; Kozinski, G.; Wisniewska, M.; Pohadajlo, A.; Nosowicz, A.; Kulas, P. Do We Need Another CT Scanner?—The Pilot Study of the Adoption of an Evolutionary Algorithm to Investment Decision Making in Healthcare. Tomography 2023, 9, 776-789. https://doi.org/10.3390/tomography9020063
Kolasa K, Kozinski G, Wisniewska M, Pohadajlo A, Nosowicz A, Kulas P. Do We Need Another CT Scanner?—The Pilot Study of the Adoption of an Evolutionary Algorithm to Investment Decision Making in Healthcare. Tomography. 2023; 9(2):776-789. https://doi.org/10.3390/tomography9020063
Chicago/Turabian StyleKolasa, Katarzyna, Grzegorz Kozinski, Maria Wisniewska, Aleksandra Pohadajlo, Agata Nosowicz, and Piotr Kulas. 2023. "Do We Need Another CT Scanner?—The Pilot Study of the Adoption of an Evolutionary Algorithm to Investment Decision Making in Healthcare" Tomography 9, no. 2: 776-789. https://doi.org/10.3390/tomography9020063
APA StyleKolasa, K., Kozinski, G., Wisniewska, M., Pohadajlo, A., Nosowicz, A., & Kulas, P. (2023). Do We Need Another CT Scanner?—The Pilot Study of the Adoption of an Evolutionary Algorithm to Investment Decision Making in Healthcare. Tomography, 9(2), 776-789. https://doi.org/10.3390/tomography9020063