Breath-Hold Diving-Related Decompression Sickness with Brain Involvement: From Neuroimaging to Pathophysiology
Abstract
1. Introduction
2. Case Report
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schipke, J.D.; Gams, E.; Kallweit, O. Decompression sickness following breath-hold diving. Res. Sports Med. 2006, 14, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Lemaitre, F.; Fahlman, A.; Gardette, B.; Kohshi, K. Decompression sickness in breath-hold divers: A review. J. Sports Sci. 2009, 27, 1519–1534. [Google Scholar] [CrossRef] [PubMed]
- Vann, R.D.; Butler, F.K.; Mitchell, S.J.; Moon, R.E. Decompression illness. Lancet 2011, 377, 153–164. [Google Scholar] [CrossRef]
- Matsuo, R.; Kamouchi, M.; Arakawa, S.; Furuta, Y.; Kanazawa, Y.; Kitazono, T. Magnetic Resonance Imaging in Breath-Hold Divers with Cerebral Decompression Sickness. Case Rep. Neurol. 2014, 6, 23–27. [Google Scholar] [CrossRef]
- Kamtchum Tatuene, J.; Pignel, R.; Pollak, P.; Lovblad, K.O.; Kleinschmidt, A.; Vargas, M.I. Neuroimaging of diving-related decompression illness: Current knowledge and perspectives. AJNR Am. J. Neuroradiol. 2014, 35, 2039–2044. [Google Scholar] [CrossRef]
- Kohshi, K.; Denoble, P.J.; Tamaki, H.; Morimatsu, Y.; Ishitake, T.; Lemaître, F. Decompression Illness in Repetitive Breath-Hold Diving: Why Ischemic Lesions Involve the Brain? Front. Physiol. 2021, 12, 711850. [Google Scholar] [CrossRef] [PubMed]
- Hadanny, A.; Harofeh, A.; Efrati, S. Delayed blood-brain barrier disruption after shallow-water diving demonstrated by magnetic resonance imaging. Diving Hyperb. Med. 2015, 45, 116–120. [Google Scholar]
- Desola, J. Enfermedad por descompresión. Medicina subacuática (I). JANO 2008, 1706, 43–51. [Google Scholar]
- Saadi, A.; Ferenczi, E.A.; Reda, H. Spinal Decompression Sickness in an Experienced Scuba Diver: A Case Report and Review of Literature. Neurohospitalist 2019, 9, 235–238. [Google Scholar] [CrossRef]
- Germonpré, P.; Lafère, P.; Portier, W.; Germonpré, F.L.; Marroni, A.; Balestra, C. Increased Risk of Decompression Sickness When Diving With a Right-to-Left Shunt: Results of a Prospective Single-Blinded Observational Study (The “Carotid Doppler” Study). Front. Physiol. 2021, 12, 763408. [Google Scholar] [CrossRef]
- Liou, K.; Wolfers, D.; Turner, R.; Bennett, M.; Allan, R.; Jepson, N.; Cranney, G. Patent foramen ovale influences the presentation of decompression illness in SCUBA divers. Heart. Lung Circ. 2015, 24, 26–31. [Google Scholar] [CrossRef]
- Honěk, J.; Šrámek, M.; Šefc, L.; Januška, J.; Fiedler, J.; Horváth, M.; Tomek, A.; Novotný, Š.; Honěk, T.; Veselka, J. High-grade patent foramen ovale is a risk factor of unprovoked decompression sickness in recreational divers. J. Cardiol. 2019, 74, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Billinger, M.; Zbinden, R.; Mordasini, R.; Windecker, S.; Schwerzmann, M.; Meier, B.; Seiler, C. Patent foramen ovale closure in recreational divers: Effect on decompression illness and ischaemic brain lesions during long-term follow-up. Heart 2011, 97, 1932–1937. [Google Scholar] [CrossRef]
- Gempp, E.; Blatteau, J.-E. Neurological disorders after repetitive breath-hold diving. Aviat. Space Environ. Med. 2006, 77, 971–973. [Google Scholar]
- Vollmann, R.; Lamperti, M.; Magyar, M.; Simbrunner, J. Magnetic resonance imaging of the spine in a patient with decompression sickness. Clin. Neuroradiol. 2011, 21, 231–233. [Google Scholar] [CrossRef] [PubMed]
- Kohshi, K.; Katoh, T.; Abe, H.; Okudera, T. Neurological accidents caused by repetitive breath-hold dives: Two case reports. J. Neurol. Sci. 2000, 178, 66–69. [Google Scholar] [CrossRef]
- Accurso, G.; Cortegiani, A.; Caruso, S.; Danile, O.; Garbo, D.; Iozzo, P.; Vitale, F.; Raineri, S.M.; Gregoretti, C.; Giarratano, A. Two episodes of Taravana syndrome in a breath-hold diver with hyperhomocysteinemia. Clin. Case Rep. 2018, 6, 817–820. [Google Scholar] [CrossRef]
- Kohshi, K.; Tamaki, H.; Lemaître, F.; Okudera, T.; Ishitake, T.; Denoble, P.J. Brain damage in commercial breath-hold divers. PLoS ONE 2014, 9, e105006. [Google Scholar] [CrossRef]
- Cortegiani, A.; Foresta, G.; Strano, G.; Strano, M.T.; Montalto, F.; Garbo, D.; Raineri, S.M. An atypical case of Taravana syndrome in a breath-hold underwater fishing champion: A case report. Case Rep. Med. 2013, 2013, 939704. [Google Scholar] [CrossRef] [PubMed]
- Undersea and Hyperbaric Medical Society (UHMS). UHMS Best Practice Guidelines—Prevention and Treatment of Decompression Sickness and Arterial Gas Embolism; Undersea and Hyperbaric Medical Society (UHMS): North Palm Beach, FL, USA, 2011. [Google Scholar]
- Naval Sea Systems Command. Treatment of Decompression Sickness. In US Navy Diving Manual; Revision 6; Naval Sea Systems Command: Washington, DC, USA, 2008. [Google Scholar]
- Mehrabian, H.; Detsky, J.; Soliman, H.; Sahgal, A.; Stanisz, G.J. Advanced Magnetic Resonance Imaging Techniques in Management of Brain Metastases. Front. Oncol. 2019, 9, 440. [Google Scholar] [CrossRef]
- Sánchez-Villalobos, J.M.; Serna-Berna, A.; Salinas-Ramos, J.; Escolar-Pérez, P.P.; Martínez-Alonso, E.; Achel, D.G.; Alcaraz, M. Volumetric modulated arc radiosurgery for brain metastases from breast cancer: A single-center study. Colomb. Med. 2021, 52, e2004567. [Google Scholar] [CrossRef] [PubMed]
- Doelken, M.; Lanz, S.; Rennert, J.; Alibek, S.; Richter, G.; Doerfler, A. Differentiation of cytotoxic and vasogenic edema in a patient with reversible posterior leukoencephalopathy syndrome using diffusion-weighted MRI. Diagn. Interv. Radiol. 2007, 13, 125–128. [Google Scholar] [PubMed]
- Sener, R.N. Diffusion MRI: Apparent diffusion coefficient (ADC) values in the normal brain and a classification of brain disorders based on ADC values. Comput. Med. Imaging Graph. 2001, 25, 299–326. [Google Scholar] [CrossRef]
- James, P.B. Hyperbaric oxygenation in fluid microembolism. Neurol. Res. 2007, 29, 156–161. [Google Scholar] [CrossRef]
- Chryssanthou, C.; Springer, M.; Lipschitz, S. Blood-brain and blood-lung barrier alteration by dysbaric exposure. Undersea Biomed. Res. 1977, 4, 117–129. [Google Scholar]
- Nohara, A.; Yusa, T. Reversibility in blood-brain barrier, microcirculation, and histology in rat brain after decompression. Undersea Hyperb. Med. 1997, 24, 15–21. [Google Scholar]
- Chryssanthou, C.; Palaia, T.; Goldstein, G.; Stenger, R. Increase in blood-brain barrier permeability by altitude decompression. Aviat. Space Environ. Med. 1987, 58, 1082–1086. [Google Scholar]
- Zhang, K.; Jiang, Z.; Ning, X.; Yu, X.; Xu, J.; Buzzacott, P.; Xu, W. Endothelia-Targeting Protection by Escin in Decompression Sickness Rats. Sci. Rep. 2017, 7, 41288. [Google Scholar] [CrossRef]
- Theunissen, S.; Guerrero, F.; Sponsiello, N.; Cialoni, D.; Pieri, M.; Germonpré, P.; Obeid, G.; Tillmans, F.; Papadopoulou, V.; Hemelryck, W.; et al. Nitric oxide-related endothelial changes in breath-hold and scuba divers. Undersea Hyperb. Med. 2013, 40, 135–144. [Google Scholar] [PubMed]
- Theunissen, S.; Schumacker, J.; Guerrero, F.; Tillmans, F.; Boutros, A.; Lambrechts, K.; Mazur, A.; Pieri, M.; Germonpré, P.; Balestra, C. Dark chocolate reduces endothelial dysfunction after successive breath-hold dives in cool water. Eur. J. Appl. Physiol. 2013, 113, 2967–2975. [Google Scholar] [CrossRef]
- Madden, L.A.; Laden, G. Gas bubbles may not be the underlying cause of decompression illness—The at-depth endothelial dysfunction hypothesis. Med. Hypotheses 2009, 72, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Madden, L.A.; Chrismas, B.C.; Mellor, D.; Vince, R.V.; Midgley, A.W.; McNaughton, L.R.; Atkin, S.L.; Laden, G. Endothelial function and stress response after simulated dives to 18 msw breathing air or oxygen. Aviat. Space Environ. Med. 2010, 81, 41–45. [Google Scholar] [CrossRef]
- Anderson, R.-C.; Patel, V.; Sheikh-Bahaei, N.; Liu, C.S.J.; Rajamohan, A.G.; Shiroishi, M.S.; Kim, P.E.; Go, J.L.; Lerner, A.; Acharya, J. Posterior Reversible Encephalopathy Syndrome (PRES): Pathophysiology and Neuro-Imaging. Front. Neurol. 2020, 11, 463. [Google Scholar] [CrossRef]
- Fischer, M.; Schmutzhard, E. Posterior reversible encephalopathy syndrome. J. Neurol. 2017, 264, 1608–1616. [Google Scholar] [CrossRef]
- Lamy, C.; Oppenheim, C.; Mas, J.L. Posterior reversible encephalopathy syndrome. Handb. Clin. Neurol. 2014, 121, 1687–1701. [Google Scholar] [CrossRef]
- Andreux, F.; Marro, B.; El Khoury, N.; Seilhean, D.; Alamowitch, S. Reversible encephalopathy associated with cholesterol embolism syndrome: Magnetic resonance imaging and pathological findings. J. Neurol. Neurosurg. Psychiatry 2007, 78, 180–182. [Google Scholar] [CrossRef]
- Fugate, J.E.; Claassen, D.O.; Cloft, H.J.; Kallmes, D.F.; Kozak, O.S.; Rabinstein, A.A. Posterior reversible encephalopathy syndrome: Associated clinical and radiologic findings. Mayo Clin. Proc. 2010, 85, 427–432. [Google Scholar] [CrossRef]
- Fitz-Clarke, J.R. Breath-Hold Diving. Compr. Physiol. 2018, 8, 585–630. [Google Scholar] [CrossRef]
- Kjeld, T.; Pott, F.C.; Secher, N.H. Facial immersion in cold water enhances cerebral blood velocity during breath-hold exercise in humans. J. Appl. Physiol. 2009, 106, 1243–1248. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ito, H.; Ibaraki, M.; Kanno, I.; Fukuda, H.; Miura, S. Changes in the arterial fraction of human cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography. J. Cereb. Blood Flow Metab. 2005, 25, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Przybyłowski, T.; Bangash, M.-F.; Reichmuth, K.; Morgan, B.J.; Skatrud, J.B.; Dempsey, J.A. Mechanisms of the cerebrovascular response to apnoea in humans. J. Physiol. 2003, 548, 323–332. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Villalobos, J.M.; Fortuna-Alcaraz, M.L.; Serrano-Velasco, L.; Pujante-Escudero, Á.; Garnés-Sánchez, C.M.; Pérez-Garcilazo, J.E.; Olea-González, A.; Pérez-Vicente, J.A. Breath-Hold Diving-Related Decompression Sickness with Brain Involvement: From Neuroimaging to Pathophysiology. Tomography 2022, 8, 1172-1183. https://doi.org/10.3390/tomography8030096
Sánchez-Villalobos JM, Fortuna-Alcaraz ML, Serrano-Velasco L, Pujante-Escudero Á, Garnés-Sánchez CM, Pérez-Garcilazo JE, Olea-González A, Pérez-Vicente JA. Breath-Hold Diving-Related Decompression Sickness with Brain Involvement: From Neuroimaging to Pathophysiology. Tomography. 2022; 8(3):1172-1183. https://doi.org/10.3390/tomography8030096
Chicago/Turabian StyleSánchez-Villalobos, José Manuel, María Lorenza Fortuna-Alcaraz, Laura Serrano-Velasco, Ángel Pujante-Escudero, Carmen María Garnés-Sánchez, Jorge Edverto Pérez-Garcilazo, Agustín Olea-González, and José Antonio Pérez-Vicente. 2022. "Breath-Hold Diving-Related Decompression Sickness with Brain Involvement: From Neuroimaging to Pathophysiology" Tomography 8, no. 3: 1172-1183. https://doi.org/10.3390/tomography8030096
APA StyleSánchez-Villalobos, J. M., Fortuna-Alcaraz, M. L., Serrano-Velasco, L., Pujante-Escudero, Á., Garnés-Sánchez, C. M., Pérez-Garcilazo, J. E., Olea-González, A., & Pérez-Vicente, J. A. (2022). Breath-Hold Diving-Related Decompression Sickness with Brain Involvement: From Neuroimaging to Pathophysiology. Tomography, 8(3), 1172-1183. https://doi.org/10.3390/tomography8030096