Practical Application of DaTQUANT with Optimal Threshold for Diagnostic Accuracy of Dopamine Transporter SPECT
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Quantification Software
2.3. Statistics
3. Results
3.1. Demographics
3.2. Single Variate Models
3.3. Multi-Variate Models
3.4. Cross Group Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perju-Dumbrava, L.D.; Kovacs, G.G.; Pirker, S.; Jellinger, K.; Hoffmann, M.; Asenbaum, S.; Pirker, W. Dopamine transporter imaging in autopsy-confirmed Parkinson’s disease and multiple system atrophy. Mov. Disord. 2011, 27, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Colloby, S.J.; McParland, S.; O’Brien, J.; Attems, J. Neuropathological correlates of dopaminergic imaging in Alzheimer’s disease and Lewy body dementias. Brain 2012, 135, 2798–2808. [Google Scholar] [CrossRef]
- Tatsch, K. Imaging of the dopaminergic system in differential diagnosis of dementia. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Seibyl, J.; Russell, D.; Jennings, D.; Marek, K. The molecular basis of dopaminergic brain imaging in Parkinson’s disease. Q. J. Nucl. Med. Mol. Imaging 2012, 56, 4–16. [Google Scholar]
- Chouker, M.; Tatsch, K.; Linke, R.; Pogarell, O.; Hahn, K.; Schwarz, J. Striatal dopamine transporter binding in early to moderately advanced Parkinson’s disease: Monitoring of disease progression over 2 years. Nucl. Med. Commun. 2001, 22, 721–725. [Google Scholar] [CrossRef] [PubMed]
- Bega, D.; Kuo, P.H.; Chalkidou, A.; Grzeda, M.T.; Macmillan, T.; Brand, C.; Sheikh, Z.H.; Antonini, A. Clinical utility of DaTscan in patients with suspected Parkinsonian syndrome: A systematic review and meta-analysis. Npj Park. Dis. 2021, 7, 43. [Google Scholar] [CrossRef]
- Stokkel, M.P.M.; Dibbets-Schneider, P.; Koestering, E.; Dragoiescu, C.; Blokland, K.A.K. Reproducibility of a standardized quantita-tive analysis using fixed regions of interest to differentiate movement disorders on 123I-FP-CIT SPECT. J. Nucl. Med. Technol. 2007, 35, 21–26. [Google Scholar] [PubMed]
- Zubal, I.G.; Early, M.; Yuan, O.; Jennings, D.; Marek, K.; Seibyl, J.P. Optimized, Automated Striatal Uptake Analysis Applied to SPECT Brain Scans of Parkinson’s Disease Patients. J. Nucl. Med. 2007, 48, 857–864. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ottaviani, S.; Tinazzi, M.; Pasquin, I.; Nothdurfter, W.; Tomelleri, G.; Fincati, E.; Nordera, G.; Moretto, G.; Fiaschi, A.; Smania, N.; et al. Comparative analysis of visual and semi-quantitative assessment of striatal [123I]FP-CIT-SPET binding in Parkinson’s disease. Neurol. Sci. 2006, 27, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Werner, R.A.; Marcus, C.; Sheikhbahaei, S.; Solnes, L.B.; Leal, J.P.; Du, Y.; Rowe, S.P.; Higuchi, T.; Buck, A.K.; Lapa, C.; et al. Visual and Semiquantitative Accuracy in Clinical Baseline 123I-Ioflupane SPECT/CT Imaging. Clin. Nucl. Med. 2019, 44, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Booij, J.; Dubroff, J.; Pryma, D.; Yu, J.Q.; Agarwal, R.; Lakhani, P.; Kuo, P.H. Diagnostic performance of the visual reading of (123)I-ioflupane SPECT images when assessed with or without quantification in patients with movement disorders or dementia. J. Nucl. Med. 2017, 58, 1821–1826. [Google Scholar] [CrossRef]
- Tinaz, S.; Chow, C.; Kuo, P.H.; Krupinski, E.A.; Blumenfeld, H.; Louis, E.D.; Zubal, G. Semiquantitative Analysis of Dopamine Transporter Scans in Patients with Parkinson Disease. Clin. Nucl. Med. 2018, 43, e1–e7. [Google Scholar] [CrossRef] [PubMed]
- Kuo, P.H.; Avery, R.; Krupinski, E.A.; Lei, H.; Bauer, A.; Sherman, S.; McMillan, N.; Seibyl, J.; Zubal, G. Receiver-Operator-Characteristic Analysis of an Automated Program for Analyzing Striatal Uptake of 123I-Ioflupane SPECT images: Calibration Using Visual Reads. J. Nucl. Med. Technol. 2013, 41, 26–31. [Google Scholar] [CrossRef]
- Subramaniam, R.M.; Frey, K.A.; Hunt, C.H.; Mercier, G.A.; Solnes, L.B.; Colletti, P.M.; Lu, Y.; Savir-Baruch, B.; Williams, H.T. ACR–ACNM Practice Parameter for the Performance of Dopamine Transporter (DaT) Single Photon Emission Computed Tomography (SPECT) Imaging for Movement Disorders. Clin. Nucl. Med. 2017, 42, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Kupsch, A.R.; Bajaj, N.; Weiland, F.; Tartaglione, A.; Klutmann, S.; Buitendyk, M.; Sherwin, P.; Tate, A.; Grachev, I.D. Impact of DaTSCAN SPECT imaging in clinical management, diagnosis, confidence of diagnosis, quality of life, health resource use and safety in patients with clinically uncertain parkinsonian syndromes: A prospective 1-year follow-up of an open-label controlled study. J. Neurol. Neurosurg. Psychiatry 2012, 83, 620–628. [Google Scholar] [PubMed]
- Marshall, V.L.; Reininger, C.B.; Marquardt, M.; Patterson, J.; Hadley, D.M.; Oertel, W.H.; Benamer, H.T.S.; Kemp, P.; Burn, D.; Tolosa, E.; et al. Parkinson’s disease is overdiagnosed clinically at baseline in diagnostically uncertain cases: A 3-year European multicenter study with repeat [123I]FP-CIT SPECT. Mov. Disord. 2009, 24, 500–508. [Google Scholar] [CrossRef]
- McKeith, I.; O’Brien, J.; Walker, Z.; Tatsch, K.; Booij, J.; Darcourt, J.; Padovani, A.; Giubbini, R.; Bonuccelli, U.; Volterrani, D.; et al. Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: A phase III, multicentre study. Lancet Neurol. 2007, 6, 305–313. [Google Scholar] [CrossRef]
- Jiang, W.; Varma, S.; Simon, R. Calculating Confidence Intervals for Prediction Error in Microarray Classification Using Resampling. Stat. Appl. Genet. Mol. Biol. 2008, 7. [Google Scholar] [CrossRef] [PubMed]
- Agresti, A.; Coull, B.A. Approximate is Better than “Exact” for Interval Estimation of Binomial Proportions. Am. Stat. 1998, 52, 119–126. [Google Scholar] [CrossRef]
- Pagano, G.; Niccolini, F.; Politis, M. Imaging in Parkinson’s disease. Clin. Med. 2016, 16, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Shigekiyo, T.; Arawaka, S. Laterality of specific binding ratios on DAT-SPECT for differential diagnosis of degenerative parkin-sonian syndromes. Sci. Rep. 2020, 10, 15761. [Google Scholar] [CrossRef] [PubMed]
- Kuo, P.H.; Lei, H.H.; Avery, R.; Krupinski, E.A.; Bauer, A.; Sherman, S.; McMillan, N.; Seibyl, J.; Zubal, G.I. Evaluation of an Objective Striatal Analysis Program for Determining Laterality in Uptake of 123I-Ioflupane SPECT Images: Comparison to Clinical Symptoms and to Visual Reads. J. Nucl. Med. Technol. 2014, 42, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, T.; Dervenoulas, G.; Valkimadi, P.E.; Politis, M. Neuroimaging in Lewy body dementia. J. Neurol. 2018, 266, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Walker, Z.; Moreno, E.; Thomas, A.; Inglis, F.; Tabet, N.; Rainer, M.; Pizzolato, G.; Padovani, A. Clinical usefulness of dopamine transporter SPECT imaging with 123 I-FP-CIT in pa-tients with possible dementia with Lewy bodies: Randomised study. Br. J. Psychiatry 2015, 206, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Walker, Z.; Costa, D.C.; Walker, R.W.H.; Lee, L.; Livingston, G.; Jaros, E.; Perry, R.; McKeith, I.; Katona, C.L.E. Striatal dopamine transporter in dementia with Lewy bodies and Parkinson disease: A comparison. Neurology 2004, 62, 1568–1572. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, H.; Murata, M.; Mukai, Y.; Sako, K.; Ono, H.; Toyama, H.; Inui, Y.; Taki, Y.; Shimomura, H.; Nagayama, H.; et al. Japanese multicenter database of healthy controls for [123I]FP-CIT SPECT. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1405–1416. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, R.; Kay, M.D.; Steinmeyer, L.; Warhadpande, D.; Kuo, P.H. Pearls and pitfalls of quantitative software analysis of dopa-mine transporter SPECT. Clin. Nucl. Med. 2020, 45, e469–e476. [Google Scholar] [CrossRef]
Patient Characteristic | SC | MC | PPMI | Total |
---|---|---|---|---|
Mean Age (years) | 67 ± 11 | 71 ± 10 | 62 ± 10 | 66 ± 11 |
Gender | ||||
Male | 67 (52%) | 169 (56%) | 249 (67%) | 485 (60%) |
Female | 62 (48%) | 134 (44%) | 121 (33%) | 317 (40%) |
Study Group | Summary Measure | Variable; Threshold | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|---|
SC | SBR | Post. Putamen *; ≤0.94 † | 0.91 [0.85, 0.95] | 0.92 | 0.88 |
z-score | Post. Putamen; ≤−1.9 | 0.90 [0.83, 0.96] | 0.91 | 0.88 | |
Percent Deviation | Post. Putamen ‡; ≤−0.36 § | 0.90 [0.84, 0.95] | 0.91 | 0.88 | |
MC | SBR | Post. Putamen; ≤0.90 | 0.85 [0.80, 0.90] | 0.82 | 0.88 |
z-score | Post. Putamen; ≤−1.73 ‖ | 0.84 [0.80, 0.89] | 0.80 | 0.89 | |
Percent Deviation | Post. Putamen; ≤−0.39 | 0.85 [0.81, 0.89] | 0.82 | 0.89 | |
PPMI | SBR | Post. Putamen; ≤1.01 | 0.95 [0.92, 0.97] | 0.91 | 0.97 |
z-score | Post. Putamen; ≤−1.68 | 0.94 [0.91, 0.96] | 0.91 | 0.95 | |
Percent Deviation | Post. Putamen; ≤−0.32 | 0.94 [0.91, 0.97] | 0.92 | 0.95 |
Study Group | Summary Measure | Variables | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|---|
SC | SBR | Putamen, Post Putamen, Caudate Asymmetry | 0.92 [0.85, 0.98] | 0.92 | 0.92 |
z-score | Putamen, Post Putamen, Putamen Asymmetry | 0.91 [0.84, 0.96] | 0.92 | 0.88 | |
Percent Deviation | Striatum, Post Putamen, Striatum Asymmetry | 0.92 [0.86, 0.98] | 0.92 | 0.92 | |
MC | SBR | Striatum, Post Putamen | 0.85 [0.81, 0.90] | 0.79 | 0.91 |
z-score | Striatum, Caudate | 0.85 [0.81, 0.89] | 0.80 | 0.90 | |
Percent Deviation | Post Putamen, Putamen Asymmetry | 0.85 [0.81, 0.89] | 0.82 | 0.89 | |
PPMI | SBR | Striatum, Caudate, Putamen Asymmetry | 0.95 [0.93, 0.98] | 0.92 | 0.98 |
z-score | Striatum, Caudate, Striatum Asymmetry | 0.95 [0.92, 0.97] | 0.92 | 0.97 | |
Percent Deviation | Post Putamen, P:C | 0.95 [0.92, 0.97] | 0.91 | 0.98 |
Study Group | Variable; Summary Measure Threshold | SC Test | MC Test | PPMI Test | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Acc | Sens | Spec | Acc | Sens | Spec | Acc | Sens | Spec | ||
SC | Post. Putamen *; SBR ≤ 0.94 † | 0.91 [0.85, 0.95] | 0.92 | 0.88 | 0.83 [0.79, 0.87] | 0.83 | 0.84 | 0.94 [0.91, 0.96] | 0.89 | 0.97 |
Post. Putamen; z-score ≤ −1.9 | 0.90 [0.83, 0.96] | 0.91 | 0.88 | 0.85 [0.80, 0.88] | 0.78 | 0.91 | 0.92 [0.89, 0.95] | 0.89 | 0.95 | |
Post. Putamen ‡; % Deviation ≤ −0.36 § | 0.90 [0.84, 0.95] | 0.91 | 0.88 | 0.86 [0.82, 0.90] | 0.83 | 0.89 | 0.94 [0.91, 0.96] | 0.91 | 0.95 | |
MC | Post. Putamen; SBR ≤ 0.90 | 0.90 [0.84, 0.94] | 0.90 | 0.90 | 0.85 [0.80, 0.90] | 0.82 | 0.88 | 0.93 [0.90, 0.95] | 0.87 | 0.97 |
Post. Putamen; z-score ≤ −1.73 ‖ | 0.89 [0.83, 0.93] | 0.91 | 0.86 | 0.84 [0.80, 0.89] | 0.80 | 0.89 | 0.93 [0.90, 0.95] | 0.91 | 0.95 | |
Post. Putamen; % deviation ≤ −0.39 | 0.90 [0.84, 0.94] | 0.91 | 0.88 | 0.85 [0.81, 0.89] | 0.82 | 0.89 | 0.94 [0.91, 0.96] | 0.91 | 0.96 | |
PPMI | Post. Putamen; SBR ≤ 1.01 | 0.91 [0.85, 0.95] | 0.94 | 0.88 | 0.82 [0.77, 0.86] | 0.83 | 0.80 | 0.95 [0.92, 0.97] | 0.91 | 0.97 |
Post. Putamen; z-score ≤ −1.68 | 0.89 [0.83, 0.93] | 0.91 | 0.86 | 0.84 [0.80, 0.88] | 0.80 | 0.88 | 0.94 [0.91, 0.96] | 0.91 | 0.95 | |
Post. Putamen; % deviation ≤ −0.32 | 0.89 [0.83, 0.93] | 0.92 | 0.84 | 0.83 [0.79, 0.87] | 0.83 | 0.84 | 0.94 [0.91, 0.97] | 0.92 | 0.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neill, M.; Fisher, J.M.; Brand, C.; Lei, H.; Sherman, S.J.; Chou, Y.-H.; Kuo, P.H. Practical Application of DaTQUANT with Optimal Threshold for Diagnostic Accuracy of Dopamine Transporter SPECT. Tomography 2021, 7, 980-989. https://doi.org/10.3390/tomography7040081
Neill M, Fisher JM, Brand C, Lei H, Sherman SJ, Chou Y-H, Kuo PH. Practical Application of DaTQUANT with Optimal Threshold for Diagnostic Accuracy of Dopamine Transporter SPECT. Tomography. 2021; 7(4):980-989. https://doi.org/10.3390/tomography7040081
Chicago/Turabian StyleNeill, Matthew, Julia M. Fisher, Christine Brand, Hong Lei, Scott J. Sherman, Ying-Hui Chou, and Phillip H. Kuo. 2021. "Practical Application of DaTQUANT with Optimal Threshold for Diagnostic Accuracy of Dopamine Transporter SPECT" Tomography 7, no. 4: 980-989. https://doi.org/10.3390/tomography7040081
APA StyleNeill, M., Fisher, J. M., Brand, C., Lei, H., Sherman, S. J., Chou, Y.-H., & Kuo, P. H. (2021). Practical Application of DaTQUANT with Optimal Threshold for Diagnostic Accuracy of Dopamine Transporter SPECT. Tomography, 7(4), 980-989. https://doi.org/10.3390/tomography7040081