You are currently viewing a new version of our website. To view the old version click .
Tomography
  • Tomography is published by MDPI from Volume 7 Issue 1 (2021). Previous articles were published by another publisher in Open Access under a CC-BY (or CC-BY-NC-ND) licence, and they are hosted by MDPI on mdpi.com as a courtesy and upon agreement with Grapho, LLC.
  • Article
  • Open Access

1 December 2016

A Rapid Segmentation-Insensitive “Digital Biopsy” Method for Radiomic Feature Extraction: Method and Pilot Study Using CT Images of Non–Small Cell Lung Cancer

,
,
,
,
,
and
1
Department of Electrical Engineering, Stanford University, Stanford, CA, USA
2
Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
3
Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
4
Canary Center for Cancer Early Detection, Stanford University, Stanford, CA, USA

Abstract

Quantitative imaging approaches compute features within images' regions of interest. Segmentation is rarely completely automatic, requiring time-consuming editing by experts. We propose a new paradigm, called “digital biopsy,” that allows for the collection of intensity- and texture-based features from these regions at least 1 order of magnitude faster than the current manual or semiautomated methods. A radiologist reviewed automated segmentations of lung nodules from 100 preoperative volume computed tomography scans of patients with non–small cell lung cancer, and manually adjusted the nodule boundaries in each section, to be used as a reference standard, requiring up to 45 minutes per nodule. We also asked a different expert to generate a digital biopsy for each patient using a paintbrush tool to paint a contiguous region of each tumor over multiple cross-sections, a procedure that required an average of 0.7; comparing erosions and dilations, using a sphere of 1.5-mm radius, of our digital biopsies to the reference standard segmentations resulted in 41/94 and 53/94 features, respectively, with ICCs >0.7. We conclude that many intensity- and texture-based features remain consistent between the reference standard and our method while substantially reducing the amount of operator time required.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.