AI-CAD-Guided Mammographic Assessment of Tumor Size and T Stage: Concordance with MRI for Clinical Staging in Breast Cancer Patients Considered for NAC
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Clinical Data Collection
2.2. Pathologic and Biomarker Assessment
2.3. MRI Acquisition and Interpretation
2.4. AI-Based Mammographic Analysis
2.5. Statistical Analysis
3. Results
3.1. Baseline Clinicopathologic and MRI Characteristics
3.2. AI-CAD-Guided Mammographic Tumor Assessment
3.3. Agreement Between MRI and AI-CAD-Guided Mammographic Tumor Size Measurements
3.4. Concordance Between MRI and AI-CAD-Guided Mammographic T Staging
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NAC | Neoadjuvant chemotherapy |
MRI | Magnetic resonance imaging |
AI-CAD | Artificial intelligence-based computer-aided detection |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- World Health Organization. Breast Cancer: Fact Sheet; World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/news-room/fact-sheets/detail/breast-cancer (accessed on 18 May 2025).
- Morrow, M.; Strom, E.A.; Bassett, L.W.; Dershaw, D.D.; Fowble, B.; Giuliano, A.; Harris, J.R.; O’Malley, F.; Schnitt, S.J.; Singletary, S.E.; et al. Standard for Breast Conservation Therapy in the Management of Invasive Breast Carcinoma. CA Cancer J. Clin. 2002, 52, 277–300. [Google Scholar] [CrossRef]
- Veronesi, U.; Galimberti, V.; Zurrida, S.; Pigatto, F.; Veronesi, P.; Robertson, C.; Paganelli, G.; Sciascia, V.; Viale, G. Sentinel lymph node biopsy as an indicator for axillary dissection in early breast cancer. Eur. J. Cancer 2001, 37, 454–458. [Google Scholar] [CrossRef]
- Gradishar, W.J.; Moran, M.S.; Abraham, J.; Abramson, V.; Aft, R.; Agnese, D.; Allison, K.H.; Anderson, B.; Bailey, J.; Burstein, H.J.; et al. Breast Cancer, Version 3.2024, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2024, 22, 331–357. [Google Scholar] [CrossRef] [PubMed]
- Korde, L.A.; Somerfield, M.R.; Carey, L.A.; Crews, J.R.; Denduluri, N.; Hwang, E.S.; Khan, S.A.; Loibl, S.; Morris, E.A.; Perez, A.; et al. Neoadjuvant Chemotherapy, Endocrine Therapy, and Targeted Therapy for Breast Cancer: ASCO Guideline. J. Clin. Oncol. 2021, 39, 1485–1505. [Google Scholar] [CrossRef] [PubMed]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef]
- Spring, L.M.; Fell, G.; Arfe, A.; Sharma, C.; Greenup, R.; Reynolds, K.L.; Smith, B.L.; Alexander, B.; Moy, B.; Isakoff, S.J.; et al. Pathologic Complete Response after Neoadjuvant Chemotherapy and Impact on Breast Cancer Recurrence and Survival: A Comprehensive Meta-analysis. Clin. Cancer Res. 2020, 26, 2838–2848. [Google Scholar] [CrossRef]
- Panico, C.; Ferrara, F.; Woitek, R.; D’Angelo, A.; Di Paola, V.; Bufi, E.; Conti, M.; Palma, S.; Cicero, S.L.; Cimino, G.; et al. Staging Breast Cancer with MRI, the T. A Key Role in the Neoadjuvant Setting. Cancers 2022, 14, 5786. [Google Scholar] [CrossRef]
- Marinovich, M.L.; Houssami, N.; Macaskill, P.; Sardanelli, F.; Irwig, L.; Mamounas, E.P.; von Minckwitz, G.; Brennan, M.E.; Ciatto, S. Meta-analysis of magnetic resonance imaging in detecting residual breast cancer after neoadjuvant therapy. J. Natl. Cancer Inst. 2013, 105, 321–333. [Google Scholar] [CrossRef]
- Lobbes, M.B.; Prevos, R.; Smidt, M.; Tjan-Heijnen, V.C.; van Goethem, M.; Schipper, R.; Beets-Tan, R.G.; Wildberger, J.E. The role of magnetic resonance imaging in assessing residual disease and pathologic complete response in breast cancer patients receiving neoadjuvant chemotherapy: A systematic review. Insights Imaging 2013, 4, 163–175. [Google Scholar] [CrossRef]
- Tabár, L.; Vitak, B.; Chen, T.H.; Yen, A.M.; Cohen, A.; Tot, T.; Chiu, S.Y.; Chen, S.L.; Fann, J.C.; Rosell, J.; et al. Swedish two-county trial: Impact of mammographic screening on breast cancer mortality during 3 decades. Radiology 2011, 260, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.Y.; Oberije, C.J.G.; Ambrózay, É.; Szabó, E.; Serfőző, O.; Karpati, E.; Fox, G.; Glocker, B.; Morris, E.A.; Forrai, G.; et al. Prospective implementation of AI-assisted screen reading to improve early detection of breast cancer. Nat. Med. 2023, 29, 3044–3049. [Google Scholar] [CrossRef]
- Yoon, J.H.; Strand, F.; Baltzer, P.A.T.; Conant, E.F.; Gilbert, F.J.; Lehman, C.D.; Morris, E.A.; Mullen, L.A.; Nishikawa, R.M.; Sharma, N.; et al. Standalone AI for Breast Cancer Detection at Screening Digital Mammography and Digital Breast Tomosynthesis: A Systematic Review and Meta-Analysis. Radiology 2023, 307, e222639. [Google Scholar] [CrossRef]
- Elhakim, M.T.; Stougaard, S.W.; Graumann, O.; Nielsen, M.; Lång, K.; Gerke, O.; Larsen, L.B.; Rasmussen, B.S.B. Breast cancer detection accuracy of AI in an entire screening population: A retrospective, multicentre study. Cancer Imaging 2023, 23, 127. [Google Scholar] [CrossRef]
- Lamb, L.R.; Lehman, C.D.; Gastounioti, A.; Conant, E.F.; Bahl, M. Artificial Intelligence (AI) for Screening Mammography, From the AJR Special Series on AI Applications. Am. J. Roentgenol. 2022, 219, 369–380. [Google Scholar] [CrossRef]
- Harvey, J.M.; Clark, G.M.; Osborne, C.K.; Allred, D.C. Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J. Clin. Oncol. 1999, 17, 1474–1481. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.C.; Hammond, M.E.H.; Allison, K.H.; Harvey, B.E.; Mangu, P.B.; Bartlett, J.M.S.; Bilous, M.; Ellis, I.O.; Fitzgibbons, P.; Hanna, W.; et al. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J. Clin. Oncol. 2018, 36, 2105–2122. [Google Scholar] [CrossRef]
- Goldhirsch, A.; Winer, E.P.; Coates, A.S.; Gelber, R.D.; Piccart-Gebhart, M.; Thürlimann, B.; Senn, H.-J. Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol. 2013, 24, 2206–2223. [Google Scholar] [CrossRef]
- Choi, W.J.; Cha, J.H.; Kim, H.H.; Shin, H.J.; Chae, E.Y. The Accuracy of Breast MR Imaging for Measuring the Size of a Breast Cancer: Analysis of the Histopathologic Factors. Clin. Breast Cancer 2016, 16, e145–e152. [Google Scholar] [CrossRef]
- Lee, S.E.; Hong, H.; Kim, E.-K. Positive Predictive Values of Abnormality Scores From a Commercial Artificial Intelligence-Based Computer-Aided Diagnosis for Mammography. Korean J. Radiol. 2024, 25, 343–350. [Google Scholar] [CrossRef]
- Choi, W.J.; An, J.K.; Woo, J.J.; Kwak, H.Y. Comparison of Diagnostic Performance in Mammography Assessment: Radiologist with Reference to Clinical Information Versus Standalone Artificial Intelligence Detection. Diagnostics 2022, 13, 117. [Google Scholar] [CrossRef]
- Kim, H.-E.; Kim, H.H.; Han, B.-K.; Kim, K.H.; Han, K.; Nam, H.; Lee, E.H.; Kim, E.-K. Changes in cancer detection and false-positive recall in mammography using artificial intelligence: A retrospective, multireader study. Lancet Digit. Health 2020, 2, e138–e148. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.-K.; Kim, H.-E.; Han, K.; Kang, B.J.; Sohn, Y.-M.; Woo, O.H.; Lee, C.W. Applying Data-driven Imaging Biomarker in Mammography for Breast Cancer Screening: Preliminary Study. Sci. Rep. 2018, 8, 2762. [Google Scholar] [CrossRef]
- Salim, M.; Wåhlin, E.; Dembrower, K.; Azavedo, E.; Foukakis, T.; Liu, Y.; Smith, K.; Eklund, M.; Strand, F. External Evaluation of 3 Commercial Artificial Intelligence Algorithms for Independent Assessment of Screening Mammograms. JAMA Oncol. 2020, 6, 1581–1588. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 770–778. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y. Evaluation of Breast Cancer Size Measurement by Computer-Aided Diagnosis (CAD) and a Radiologist on Breast MRI. J. Clin. Med. 2022, 11, 1172. [Google Scholar] [CrossRef]
- Yeo, B.; Shin, K.M.; Park, B.; Kim, H.J.; Kim, W.H. Clinical Feasibility of Dual-Layer CT With Virtual Monochromatic Image for Preoperative Staging in Patients With Breast Cancer: A Comparison With Breast MRI. Korean J. Radiol. 2024, 25, 798–806. [Google Scholar] [CrossRef]
- Azcona Sáenz, J.; Molero Calafell, J.; Román Expósito, M.; Vall Foraster, E.; Comerma Blesa, L.; Alcántara Souza, R.; Vernet Tomás, M.D.M. Preoperative estimation of the pathological breast tumor size in architectural distortions: A comparison of DM, DBT, US, CEM, and MRI. Eur. Radiol. 2025. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Nelson, H.D.; Fu, R.; Cantor, A.; Pappas, M.; Daeges, M.; Humphrey, L. Effectiveness of Breast Cancer Screening: Systematic Review and Meta-analysis to Update the 2009 U.S. Preventive Services Task Force Recommendation. Ann. Intern. Med. 2016, 164, 244–255. [Google Scholar] [CrossRef]
- Sprague, B.L.; Arao, R.F.; Miglioretti, D.L.; Henderson, L.M.; Buist, D.S.; Onega, T.; Rauscher, G.H.; Lee, J.M.; Tosteson, A.N.A.; Kerlikowske, K.; et al. National Performance Benchmarks for Modern Diagnostic Digital Mammography: Update from the Breast Cancer Surveillance Consortium. Radiology 2017, 283, 59–69. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, E.H.; Jun, J.K.; Kim, Y.M.; Chang, Y.W.; Lee, J.H.; Kim, H.W.; Choi, E.J.; the Alliance for Breast Cancer Screening in Korea (ABCS-K). Interpretive Performance and Inter-Observer Agreement on Digital Mammography Test Sets. Korean J. Radiol. 2019, 20, 218–224. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Premarket Approval (PMA). Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P970058 (accessed on 19 May 2025).
- Brem, R.F.; Baum, J.; Lechner, M.; Kaplan, S.; Souders, S.; Naul, L.G.; Hoffmeister, J. Improvement in sensitivity of screening mammography with computer-aided detection: A multiinstitutional Trial. Am. J. Roentgenol. 2003, 181, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.-P.; Samala, R.K.; Hadjiiski, L.M. CAD and AI for breast cancer—Recent development and challenges. Br. J. Radiol. 2020, 93, 20190580. [Google Scholar] [CrossRef]
- Mayo, R.C.; Kent, D.; Sen, L.C.; Kapoor, M.; Leung, J.W.T.; Watanabe, A.T. Reduction of False-Positive Markings on Mammograms: A Retrospective Comparison Study Using an Artificial Intelligence-Based CAD. J. Digit. Imaging 2019, 32, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Lehman, C.D.; Wellman, R.D.; Buist, D.S.M.; Kerlikowske, K.; Tosteson, A.N.A.; Miglioretti, D.L.; Breast Cancer Surveillance Consortium. Diagnostic Accuracy of Digital Screening Mammography With and Without Computer-Aided Detection. JAMA Intern. Med. 2015, 175, 1828–1837. [Google Scholar] [CrossRef] [PubMed]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef]
- Yoon, J.H.; Kim, E.-K. Deep Learning-Based Artificial Intelligence for Mammography. Korean J. Radiol. 2021, 22, 1225–1239. [Google Scholar] [CrossRef]
- Yoon, J.H.; Han, K.; Suh, H.J.; Youk, J.H.; Lee, S.E.; Kim, E.-K. Artificial intelligence-based computer-assisted detection/diagnosis (AI-CAD) for screening mammography: Outcomes of AI-CAD in the mammographic interpretation workflow. Eur. J. Radiol. Open 2023, 11, 100509. [Google Scholar] [CrossRef]
- Park, S.H.; Hwang, E.J. Caveats in Using Abnormality/Probability Scores from Artificial Intelligence Algorithms: Neither True Probability nor Level of Trustworthiness. Korean J. Radiol. 2024, 25, 328–330. [Google Scholar] [CrossRef]
- Yue, W.; Zhang, H.; Zhou, J.; Li, G.; Tang, Z.; Sun, Z.; Cai, J.; Tian, N.; Gao, S.; Dong, J.; et al. Deep learning-based automatic segmentation for size and volumetric measurement of breast cancer on magnetic resonance imaging. Front. Oncol. 2022, 12, 984626. [Google Scholar] [CrossRef] [PubMed]
- Schopp, J.G.; Polat, D.S.; Arjmandi, F.; Hayes, J.C.; Ahn, R.W.; Sullivan, K.; Sahoo, S.; Porembka, J.H. Imaging Challenges in Diagnosing Triple-Negative Breast Cancer. Radiographics 2023, 43, e230027. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zhao, S.; Guo, W.; Shao, G. Dynamic contrast-enhanced magnetic resonance imaging features and apparent diffusion coefficient value of HER2-positive/HR-negative breast carcinoma. Quant. Imaging Med. Surg. 2023, 13, 4816–4825. [Google Scholar] [CrossRef] [PubMed]
- Mota, B.S.; Reis, Y.N.; de Barros, N.; Cardoso, N.P.; Mota, R.M.S.; Shimizu, C.; Tucunduva, T.C.d.M.; Ferreira, V.C.C.d.S.; Goncalves, R.; Doria, M.T.; et al. Effects of preoperative magnetic resonance image on survival rates and surgical planning in breast cancer conservative surgery: Randomized controlled trial (BREAST-MRI trial). Breast Cancer Res. Treat. 2023, 198, 447–461. [Google Scholar] [CrossRef]
- Damiani, C.; Kalliatakis, G.; Sreenivas, M.; Al-Attar, M.; Rose, J.; Pudney, C.; Lane, E.F.; Cuzick, J.; Montana, G.; Brentnall, A.R. Evaluation of an AI Model to Assess Future Breast Cancer Risk. Radiology 2023, 307, e222679. [Google Scholar] [CrossRef]
Category | Variable | Value | n (%) |
---|---|---|---|
Demographics | Age (years) | Mean ± SD | 51.7 ± 10.8 |
<40 years | 20 (13.9%) | ||
≥40 years | 124 (86.1%) | ||
Menopausal state | Premenopause | 76 (52.8%) | |
Postmenopause | 68 (47.2%) | ||
Family history of cancer | None | 80 (55.6%) | |
Breast cancer | 20 (13.9%) | ||
Other cancer | 44 (30.6%) | ||
BRCA1/2 mutation status | No | 44 (30.6%) | |
Yes | 6 (4.2%) | ||
Unknown | 94 (65.3%) | ||
Pathology | Histologic type | Invasive ductal | 134 (93.1%) |
Invasive lobular | 5 (3.5%) | ||
Others | 5 (3.5%) | ||
Histologic grade | I–II | 80 (55.6%) | |
III | 63 (43.8%) | ||
Unknown | 1 (0.7%) | ||
Estrogen receptor | No | 63 (43.8%) | |
Yes | 81 (56.2%) | ||
Progesterone receptor | No | 87 (60.4%) | |
Yes | 57 (39.6%) | ||
HER2 receptor | No | 79 (54.9%) | |
Yes | 65 (45.1%) | ||
Molecular subtype | HR+/HER2– | 35 (24.3%) | |
HR+/HER2+ | 22 (15.3%) | ||
HR–/HER2+ | 43 (29.9%) | ||
HR–/HER2– (TNBC) | 44 (30.6%) | ||
Ki-67 expression | <20% | 23 (16.0%) | |
≥20% | 121 (84.0%) | ||
MRI Characteristics | MRI BPE | Minimal | 58 (40.3%) |
Mild | 51 (35.4%) | ||
Moderate | 19 (13.2%) | ||
Marked | 16 (11.1%) | ||
MRI lesion type | Mass only | 86 (59.7%) | |
NME only | 14 (9.7%) | ||
Mass with NME | 44 (30.6%) | ||
MRI tumor size (cm) | Mean ± SD (range) | 4.0 ± 1.9 (1.7–10.8) | |
MRI-based T stage | T1 | 9 (6.2%) | |
T2 | 100 (69.4%) | ||
T3 | 35 (24.3%) |
Category | Variable | Value | n (%) |
---|---|---|---|
Breast Density | Breast composition | Fatty | 1 (0.7%) |
Scattered | 26 (18.1%) | ||
Heterogeneously dense | 95 (66.0%) | ||
Extremely dense | 22 (15.3%) | ||
Breast density score (0–10) | Mean ± SD (range) | 6.9 ± 1.6 (3–10) | |
AI Abnormality Detection | Abnormality score (0–100) | Mean ± SD (range) | 86.3 ± 22.2 (10–99) |
Abnormality type | Mass | 58 (40.3%) | |
Calcification | 23 (16.0%) | ||
Mass with calcification | 63 (43.8%) | ||
Detection view | CC | 58 (40.3%) | |
MLO | 86 (59.7%) | ||
Number of abnormality contours | 1 | 15 (10.4%) | |
2 | 31 (21.5%) | ||
3 | 98 (68.1%) | ||
Contour-based Tumor Size (cm) | Inner size | Mean ± SD (range) | 3.0 ± 1.2 (1.2–7.9) |
Middle size | Mean ± SD (range) | 3.8 ± 1.5 (1.2–9.2) | |
Outer size | Mean ± SD (range) | 4.8 ± 2.2 (1.2–13.5) | |
AI-CAD-guided T stage | Inner T stage | T1 | 34 (23.6%) |
T2 | 100 (69.4%) | ||
T3 | 10 (6.9%) | ||
Middle T stage | T1 | 5 (3.5%) | |
T2 | 115 (79.9%) | ||
T3 | 24 (16.7%) | ||
Outer T stage | T1 | 2 (1.4%) | |
T2 | 95 (66.0%) | ||
T3 | 47 (32.6%) |
MRI Lesion Type | AI-CAD-Guided | ICC (95% CI) | Mean Diff. (AI–MRI) (cm) | SD of Diff. (cm) | Lower LoA (cm) | Upper LoA (cm) | Within ± 0.5 cm, n (%) |
---|---|---|---|---|---|---|---|
Total | Inner | 0.602 (0.153, 0.794) | −1.01 | 1.18 | −3.34 | 1.31 | 58 (40.3%) |
(n = 144) | Middle | 0.866 (0.815, 0.902) | −0.19 | 0.85 | −1.87 | 1.49 | 88 (61.1%) |
Outer | 0.847 (0.446, 0.936) | 0.79 | 0.88 | −0.95 | 2.52 | 46 (31.9%) | |
Mass only | Inner | 0.714 (0.246, 0.870) | −0.54 | 0.62 | −1.77 | 0.68 | 47 (54.7%) |
(n = 86) | Middle | 0.883 (0.827, 0.922) | 0.07 | 0.50 | −0.91 | 1.06 | 61 (70.9%) |
Outer | 0.775 (0.133, 0.916) | 0.60 | 0.54 | −0.45 | 1.65 | 35 (40.7%) | |
NME-involved * | Inner | 0.443 (0.000, 0.729) | −1.71 | 1.45 | −4.56 | 1.14 | 11 (19.0%) |
(n = 58) | Middle | 0.780 (0.580, 0.880) | −0.57 | 1.10 | −2.73 | 1.58 | 27 (46.6%) |
Outer | 0.783 (0.301, 0.911) | 1.07 | 1.18 | −1.25 | 3.38 | 11 (19.0%) |
AI-Based T Stage (Middle Contour) | ||||||||
---|---|---|---|---|---|---|---|---|
MRI T stage | T1 | T2 | T3 | Total | Metrics | Total (n = 144) | Mass only (n = 86) | NME-involved * (n = 58) |
T1 | 5 | 4 | 0 | 9 | Quadratic weighted κ (95% CI) | 0.743 (0.634, 0.852) | 0.725 (0.579, 0.871) | 0.624 (0.423, 0.825) |
T2 | 0 | 99 | 1 | 100 | Agreement rate (n, %) | 127 (88.2%) | 80 (93.0%) | 47 (81.0%) |
T3 | 0 | 12 | 23 | 35 | Understaging rate (n, %) | 12 (8.3%) | 2 (2.3%) | 10 (17.2%) |
Total | 5 | 115 | 24 | 144 | Overstaging rate (n, %) | 5 (3.5%) | 4 (4.7%) | 1 (1.7%) |
Molecular Subtype | n | Quadratic Weighted κ (95% CI) | Agreement (n, %) | Understaging (n, %) | Overstaging (n, %) |
---|---|---|---|---|---|
HR+/HER2– | 35 | 0.629 (0.316, 0.854) | 29 (82.9%) | 5 (14.3%) | 1 (2.8%) |
HR+/HER2+ | 22 | 0.660 (0.282, 0.942) | 19 (86.4%) | 2 (9.1%) | 1 (4.5%) |
HR–/HER2+ | 43 | 0.704 (0.448, 0.892) | 37 (86.0%) | 4 (9.3%) | 2 (4.7%) |
HR–/HER2– (TNBC) | 44 | 0.902 (0.749, 1.000) | 42 (95.4%) | 1 (2.3%) | 1 (2.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, G.E.; Shin, K.; Mun, H.S.; Kang, B.J. AI-CAD-Guided Mammographic Assessment of Tumor Size and T Stage: Concordance with MRI for Clinical Staging in Breast Cancer Patients Considered for NAC. Tomography 2025, 11, 72. https://doi.org/10.3390/tomography11070072
Park GE, Shin K, Mun HS, Kang BJ. AI-CAD-Guided Mammographic Assessment of Tumor Size and T Stage: Concordance with MRI for Clinical Staging in Breast Cancer Patients Considered for NAC. Tomography. 2025; 11(7):72. https://doi.org/10.3390/tomography11070072
Chicago/Turabian StylePark, Ga Eun, Kabsoo Shin, Han Song Mun, and Bong Joo Kang. 2025. "AI-CAD-Guided Mammographic Assessment of Tumor Size and T Stage: Concordance with MRI for Clinical Staging in Breast Cancer Patients Considered for NAC" Tomography 11, no. 7: 72. https://doi.org/10.3390/tomography11070072
APA StylePark, G. E., Shin, K., Mun, H. S., & Kang, B. J. (2025). AI-CAD-Guided Mammographic Assessment of Tumor Size and T Stage: Concordance with MRI for Clinical Staging in Breast Cancer Patients Considered for NAC. Tomography, 11(7), 72. https://doi.org/10.3390/tomography11070072