Distinguishing Low Expression Levels of Human Epidermal Growth Factor Receptor 2 in Breast Cancer: Insights from Qualitative and Quantitative Magnetic Resonance Imaging Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Histopathological Analysis
2.3. Imaging Acquisition
2.4. Imaging Analysis
2.4.1. Qualitative MRI Analysis
2.4.2. Quantitative MRI Analysis
2.5. Statistical Analysis
3. Results
3.1. Clinicopathologic Characteristics
3.2. Qualitative MRI Features According to HER2 Expression Levels
3.3. Quantitative Diffusion Features by HER2 Expression Levels
3.4. Reliability of Qualitative and Quantitative Features Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Wulfkuhle, J.D.; Berg, D.; Wolff, C.; Langer, R.; Tran, K.; Illi, J.; Espina, V.; Pierobon, M.; Deng, J.; DeMichele, A.; et al. Molecular Analysis of Her2 Signaling in Human Breast Cancer by Functional Protein Pathway Activation Mapping. Clin. Cancer Res. 2012, 18, 6426–6435. [Google Scholar] [CrossRef] [PubMed]
- Marchio, C.; Annaratone, L.; Marques, A.; Casorzo, L.; Berrino, E.; Sapino, A. Evolving Concepts in Her2 Evaluation in Breast Cancer: Heterogeneity, Her2-Low Carcinomas and Beyond. Semin. Cancer Biol. 2021, 72, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, E.; Shastry, M.; Shiller, S.M.; Ren, R. Targeting HER2 Heterogeneity in Breast Cancer. Cancer Treat. Rev. 2021, 100, 102286. [Google Scholar] [CrossRef]
- Dieci, M.V.; Miglietta, F. Her2: A Never Ending Story. Lancet Oncol. 2021, 22, 1051–1052. [Google Scholar] [CrossRef]
- Zhu, S.; Lu, Y.; Fei, X.; Shen, K.; Chen, X. Pathological Complete Response, Category Change, and Prognostic Significance of HER2-Low Breast Cancer Receiving Neoadjuvant Treatment: A Multicenter Analysis of 2489 Cases. Br. J. Cancer 2023, 129, 1274–1283. [Google Scholar] [CrossRef]
- Zhang, G.; Ren, C.; Li, C.; Wang, Y.; Chen, B.; Wen, L.; Jia, M.; Li, K.; Mok, H.; Cao, L.; et al. Distinct Clinical and Somatic Mutational Features of Breast Tumors with High-, Low-, or Non-Expressing Human Epidermal Growth Factor Receptor 2 Status. BMC Med. 2022, 20, 142. [Google Scholar] [CrossRef]
- Dai, L.-J.; Ma, D.; Xu, Y.-Z.; Li, M.; Li, Y.-W.; Xiao, Y.; Jin, X.; Wu, S.-Y.; Zhao, Y.-X.; Wang, H.; et al. Molecular Features and Clinical Implications of the Heterogeneity in Chinese Patients with HER2-Low Breast Cancer. Nat. Commun. 2023, 14, 5112. [Google Scholar] [CrossRef]
- Mann, R.M.; Kuhl, C.K.; Kinkel, K.; Boetes, C. Breast MRI: Guidelines from the European Society of Breast Imaging. Eur. Radiol. 2008, 18, 1307–1318. [Google Scholar] [CrossRef]
- Malhaire, C.; Selhane, F.; Saint-Martin, M.-J.; Cockenpot, V.; Akl, P.; Laas, E.; Bellesoeur, A.; Eddine, C.A.; Bereby-Kahane, M.; Manceau, J.; et al. Exploring the Added Value of Pretherapeutic MR Descriptors in Predicting Breast Cancer Pathologic Complete Response to Neoadjuvant Chemotherapy. Eur. Radiol. 2023, 33, 8142–8154. [Google Scholar] [CrossRef]
- Mann, R.M.; Cho, N.; Moy, L. Breast MRI: State of the Art. Radiology 2019, 292, 520–536. [Google Scholar] [CrossRef]
- Elias, S.G.; Adams, A.; Wisner, D.J.; Esserman, L.J.; Veer, L.J.V.; Mali, W.P.; Gilhuijs, K.G.; Hylton, N.M. Imaging Features of Her2 Overexpression in Breast Cancer: A Systematic Review and Meta-Analysis. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1464–1483. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Song, L.; Yin, J. Intratumoral and Peritumoral Radiomics Based on Functional Parametric Maps from Breast DCE-MRI for Prediction of HER-2 and Ki-67 Status. J. Magn. Reson. Imaging 2021, 54, 703–714. [Google Scholar] [CrossRef]
- Bian, X.; Du, S.; Yue, Z.; Gao, S.; Zhao, R.; Huang, G.; Guo, L.; Peng, C.; Zhang, L. Potential Antihuman Epidermal Growth Factor Receptor 2 Target Therapy Beneficiaries: The Role of MRI-Based Radiomics in Distinguishing Human Epidermal Growth Factor Receptor 2-Low Status of Breast Cancer. J. Magn. Reson. Imaging 2023, 58, 1603–1614. [Google Scholar] [CrossRef]
- Guo, Y.; Xie, X.; Tang, W.; Chen, S.; Wang, M.; Fan, Y.; Lin, C.; Hu, W.; Yang, J.; Xiang, J.; et al. Noninvasive identification of HER2-low-positive status by MRI-based deep learning radiomics predicts the disease-free survival of patients with breast cancer. Eur. Radiol. 2023, 34, 899–913. [Google Scholar] [CrossRef] [PubMed]
- Ramtohul, T.; Djerroudi, L.; Lissavalid, E.; Nhy, C.; Redon, L.; Ikni, L.; Djelouah, M.; Journo, G.; Menet, E.; Cabel, L.; et al. Multiparametric Mri and Radiomics for the Prediction of Her2-Zero, -Low, and -Positive Breast Cancers. Radiology 2023, 308, e222646. [Google Scholar] [CrossRef] [PubMed]
- Goto, M.; Le Bihan, D.; Sakai, K.; Yamada, K. The Diffusion MRI Signature Index is Highly Correlated with Immunohistochemical Status and Molecular Subtype of Invasive Breast Carcinoma. Eur. Radiol. 2022, 32, 4879–4888. [Google Scholar] [CrossRef]
- Çelebi, F.; Agacayak, F.; Ozturk, A.; Ilgun, S.; Ucuncu, M.; Iyigun, Z.E.; Ordu, Ç.; Pilanci, K.N.; Alco, G.; Gultekin, S.; et al. Usefulness of Imaging Findings in Predicting Tumor-Infiltrating Lymphocytes in Patients with Breast Cancer. Eur. Radiol. 2019, 30, 2049–2057. [Google Scholar] [CrossRef]
- Chen, P.; Zhao, S.; Guo, W.; Shao, G. Dynamic Contrast-Enhanced Magnetic Resonance Imaging Features and Apparent Diffusion Coefficient Value of HER2-Positive/HR-Negative Breast Carcinoma. Quant. Imaging Med. Surg. 2023, 13, 4816–4825. [Google Scholar] [CrossRef]
- You, C.; Zhang, Y.; Chen, Y.; Hu, X.; Hu, D.; Wu, J.; Gu, Y.; Peng, W. Evaluation of Background Parenchymal Enhancement and Histogram-Based Diffusion-Weighted Image in Determining the Molecular Subtype of Breast Cancer. J. Comput. Assist. Tomogr. 2021, 45, 711–716. [Google Scholar] [CrossRef]
- You, C.; Li, J.; Zhi, W.; Chen, Y.; Yang, W.; Gu, Y.; Peng, W. The Volumetric-Tumour Histogram-Based Analysis of Intravoxel Incoherent Motion and Non-Gaussian Diffusion MRI: Association with Prognostic Factors in HER2-Positive Breast Cancer. J. Transl. Med. 2019, 17, 182. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.C.; Hammond, M.E.H.; Allison, K.H.; Harvey, B.E.; Mangu, P.B.; Bartlett, J.M.S.; Bilous, M.; Ellis, I.O.; Fitzgibbons, P.; Hanna, W.; et al. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J. Clin. Oncol. 2018, 36, 2105–2122. [Google Scholar] [CrossRef]
- Morris, E.A.; Comstock, C.E.; Lee, C.H.; Lehman, C.D.; Ikeda, D.M.; Newstead, G.M. Acr Bi-Rads® Magnetic Resonance Imaging. ACR BI-RADS® Atlas, Breast Imaging Reporting Data System 5. 2013. Available online: https://www.acr.org/Clinical-Resources/Clinical-Tools-and-Reference/Reporting-and-Data-Systems/BI-RADS (accessed on 1 March 2025).
- Dietzel, M.; Baltzer, P.A.; Vag, T.; Herzog, A.; Gajda, M.; Camara, O.; Kaiser, W.A. The Necrosis Sign in Magnetic Resonance-Mammography: Diagnostic Accuracy in 1,084 Histologically Verified Breast Lesions. Breast J. 2010, 16, 603–608. [Google Scholar] [CrossRef]
- Koh, J.; Park, A.Y.; Ko, K.H.; Jung, H.K. Can Enhancement Types on Preoperative Mri Reflect Prognostic Factors and Surgical Outcomes in Invasive Breast Cancer? Eur. Radiol. 2019, 29, 7000–7008. [Google Scholar] [CrossRef]
- Seyfettin, A.; Dede, I.; Hakverdi, S.; Asig, B.D.U.Z.E.L.; Temiz, M.; Karazincir, S. MR Imaging Properties of Breast Cancer Molecular Subtypes. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 3840–3848. [Google Scholar] [CrossRef]
- Szep, M.; Pintican, R.; Boca, B.; Perja, A.; Duma, M.; Feier, D.; Fetica, B.; Eniu, D.; Dudea, S.M.; Chiorean, A. Multiparametric MRI Features of Breast Cancer Molecular Subtypes. Medicina 2022, 58, 1716. [Google Scholar] [CrossRef]
- Suo, S.; Zhang, D.; Cheng, F.; Cao, M.; Hua, J.; Lu, J.; Xu, J. Added Value of Mean and Entropy of Apparent Diffusion Coefficient Values for Evaluating Histologic Phenotypes of Invasive Ductal Breast Cancer with MR Imaging. Eur. Radiol. 2019, 29, 1425–1434. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Cheng, J.; Wang, Y.; Wu, G. Renal Cell Carcinoma: Preoperative Evaluate the Grade of Histological Malignancy Using Volumetric Histogram Analysis Derived from Magnetic Resonance Diffusion Kurtosis Imaging. Quant. Imaging Med. Surg. 2019, 9, 671–680. [Google Scholar] [CrossRef] [PubMed]
Clinicopathological Characteristics | Total (n = 232); n (%) | HER2 Status Subgroup; n (%) | p-Value | p1-Value | p2-Value | ||
---|---|---|---|---|---|---|---|
HER2-Zero (n = 60) | HER2-Low (n = 91) | HER2-Over (n = 81) | (Low vs. Zero) | (Low vs. Over) | |||
Age (mean ± SD, years) | 49.00 ±10.59 | 47.87 ± 10.40 | 48.41 ± 11.48 | 49.32 ± 9.74 | 0.709 | NA | NA |
Menopausal status | 0.521 | NA | NA | ||||
Pre-menopause | 94 (40.5%) | 23 (38.3%) | 41 (45.1%) | 30 (37.0%) | |||
Post-menopause | 138 (59.5%) | 37 (61.7%) | 50 (54.9%) | 51 (63.0%) | |||
ER status | <0.001 | <0.001 | <0.001 | ||||
Positive | 134 (57.8%) | 30 (50.0%) | 74 (81.3%) | 30 (37.0%) | |||
Negative | 98 (42.2%) | 30 (50.0%) | 17 (18.7%) | 51 (63.0%) | |||
PR status | <0.001 | <0.001 | <0.001 | ||||
Positive | 104 (44.8%) | 23 (38.3%) | 63 (69.2%) | 18 (22.2%) | |||
Negative | 128 (55.2%) | 37 (61.7%) | 28 (30.8%) | 63 (77.8%) | |||
HR status | <0.001 | <0.001 | <0.001 | ||||
Positive | 134 (57.8%) | 30 (50.0%) | 74 (81.3%) | 30 (37.0%) | |||
Negative | 98 (42.2%) | 30 (50.0%) | 17 (18.7%) | 51 (63.0%) | |||
Ki-67 expression status (median, IQR) | 40% (25%, 60%) | ||||||
Ki-67 expression status (cut-off 40%) | <0.001 | <0.001 | 0.025 | ||||
Low (<40%) | 108 (46.6%) | 16 (26.7%) | 56 (61.5%) | 36 (44.4%) | |||
High (≥40%) | 124 (53.4%) | 44 (73.3%) | 35 (38.5%) | 45 (55.6%) | |||
Size (median, IQR), mm) | 40.00 (31.00, 53.75) | 36.50 (26.25, 50.75) | 40.00 (31.00, 52.00) | 42.00 (31.00, 64.50) | 0.352 | NA | NA |
MRI Features | HER2 Status Subgroup; n (%) | p-Value | p1-Value | p2-Value | ||
---|---|---|---|---|---|---|
HER2-Zero | HER2-Low | HER2-Over | (Low vs. Zero) | (Low vs. Over) | ||
All lesions (n = 232) | ||||||
Fibroglandular tissue | 0.967 | NA | NA | |||
Almost entirely fat and scattered | 13/60 (21.7%) | 21/91 (23.1%) | 19/81 (23.5%) | |||
Heterogeneous and extreme | 47/60 (78.3%) | 50/91 (54.9%) | 62/81 (76.5%) | |||
Background parenchymal enhancement | 0.206 | NA | NA | |||
Minimal or mild | 47/60 (78.3%) | 71/91 (78.0%) | 71/81 (87.7%) | |||
Moderate or marked | 13/60 (21.7%) | 20/91 (22.0%) | 10/81 (12.3%) | |||
Multifocal or Multicentric | 0.550 | NA | NA | |||
Yes | 20/60 (33.3%) | 33/91 (36.3%) | 34/81 (42.0%) | |||
No | 40/60 (66.7%) | 58/91 (63.7%) | 47/81 (58.0%) | |||
Lesion type | 0.017 | 0.094 | 0.145 | |||
Mass | 46/60 (76.7%) | 55/91 (60.4%) | 40/81 (49.4%) | |||
NME | 7/60 (11.7%) | 14/91 (15.4%) | 13/81 (16.0%) | |||
Mass with NME | 7/60 (11.7%) | 22/91 (24.2%) | 28/81 (34.6%) | |||
Existence of NME | 0.005 | 0.038 | 0.279 | |||
Yes | 14/60 (23.3%) | 36/91 (39.6%) | 41/81 (50.6%) | |||
No | 46/60 (76.7%) | 55/91 (60.4%) | 40/81 (49.4%) | |||
Intratumoral T2 hyperintensity | 0.008 | 0.009 | 0.008 | |||
Present | 28/60 (46.7%) | 62/91 (68.1%) | 39/81 (48.1%) | |||
Absent | 32/60 (53.3%) | 29/91 (31.9%) | 42/81 (51.9%) | |||
Peritumoral edema | 0.257 | NA | NA | |||
Present | 35/60 (58.3%) | 59/91 (64.8%) | 58/81 (71.6%) | |||
Absent | 25/60 (41.7%) | 32/91 (35.2%) | 23/81 (28.4%) | |||
Mass (n = 141) | ||||||
Shape | <0.001 | <0.001 | 0.009 | |||
Oval or round | 29/46 (63.0%) | 11/55 (20.0%) | 18/40 (45.0%) | |||
Irregular | 17/46 (37.0%) | 44/55 (80.0%) | 22/40 (55.0%) | |||
Margin | <0.001 | <0.001 | 0.659 | |||
Circumscribed | 30/46 (65.2%) | 16/55 (29.1%) | 10/40 (25.0%) | |||
Not circumscribed | 16/46 (34.8%) | 39/55 (70.9%) | 30/40 (75.0%) | |||
Internal enhancement | 0.320 | NA | NA | |||
Homogeneous | 1/46 (2.2%) | 0/55 (0.0%) | 0/40 (0.0%) | |||
Heterogeneous | 30/46 (65.2%) | 43/55 (78.2%) | 30/40 (75.0%) | |||
Rim | 14/46 (30.4%) | 12/55 (21.8%) | 8/40 (20.0%) | |||
Dark internal septations | 1/46 (2.2%) | 0/55 (0.0%) | 2/40 (5.0%) | |||
NME (n = 91) | ||||||
Distribution | 0.597 | NA | NA | |||
Linear | 1/14 (7.1%) | 0/36 (0.0%) | 2/41 (4.9%) | |||
Segmental | 6/14 (42.9%) | 18/36 (50.0%) | 20/41 (48.8%) | |||
Regional | 4/14 (28.6%) | 15/36 (41.7%) | 14/41 (34.1%) | |||
Diffuse | 3/14 (21.4%) | 3/36 (8.3%) | 5/41 (12.2%) | |||
Internal enhancement | 0.733 | NA | NA | |||
Homogeneous | 0/14 (0.0%) | 0/36 (0.0%) | 0/41 (0.0%) | |||
Heterogeneous | 11/14 (78.6%) | 24/36 (66.7%) | 24/41 (58.5%) | |||
Clumped | 3/14 (21.4%) | 10/36 (27.8%) | 15/41 (36.6%) | |||
Clustered ring | 0/14 (0.0%) | 2/36 (5.6%) | 2/41 (4.9%) |
Quantitative MRI Parameters | HER2 Status Subgroup; n (%) | p-Value | p1-Value | p2-Value | ||
---|---|---|---|---|---|---|
HER2-Zero (n = 60) | HER2-Low (n = 91) | HER2-Over (n = 81) | (Low vs. Zero) | (Low vs. Over) | ||
ADC (10−3 mm2/s) | ||||||
ADCMean | 1.008 ± 0.181 | 1.062 ± 0.188 | 1.092 ± 0.181 | 0.001 | 1.000 | 0.005 |
ADCMedian | 0.987 ± 0.177 | 1.052 ± 0.192 | 1.077 ± 0.183 | 0.001 | 1.000 | 0.007 |
ADC5% | 0.681 ± 0.150 | 0.708 ± 0.194 | 0.722 ± 0.160 | <0.001 | 1.000 | 0.001 |
ADC95% | 1.403 ± 0.283 | 1.450 ± 0.248 | 1.457 ± 0.264 | 0.313 | NA | NA |
ADCSkewness | 0.536 ± 0.550 | 0.366 ± 0.506 | 0.386 ± 0.608 | 0.631 | NA | NA |
ADCKurtosis | 1.363 ± 1.771 | 1.393 ± 1.121 | 1.367 ± 1.599 | 0.249 | NA | NA |
ADCEntropy | 2.986 ± 0.230 | 3.088 ± 0.163 | 2.99 ± 0.200 | 0.553 | NA | NA |
DKI-Dapp (10−3 mm2/s) | ||||||
DMean | 1.204 ± 0.227 | 1.212 ± 0.199 | 1.305 ± 0.221 | 0.001 | 1.000 | 0.004 |
DMedian | 1.176 ± 0.225 | 1.191 ± 0.199 | 1.280 ± 0.225 | 0.002 | 1.000 | 0.007 |
D5% | 0.849 ± 0.171 | 0.850 ± 0.172 | 0.952 ± 0.177 | <0.001 | 1.000 | 0.012 |
D95% | 1.659 ± 0.337 | 1.651 ± 0.285 | 1.734 ± 0.298 | 0.044 | 1.000 | 0.063 |
Dskewness | 0.662 ± 0.483 | 0.535 ± 0.487 | 0.506 ± 0.562 | 0.133 | NA | NA |
DKurtosis | 1.024 ± 1.584 | 0.966 ± 1.357 | 0.953 ± 1.622 | 0.111 | NA | NA |
DEntropy | 2.669 ± 0.274 | 2.668 ± 0.242 | 2.678 ± 0.268 | 0.594 | NA | NA |
DKI-Kapp | ||||||
KMean | 0.978 ± 0.180 | 0.960 ± 0.168 | 0.897 ± 0.140 | <0.001 | 0.700 | 0.001 |
KMedian | 0.947 ± 0.153 | 0.919 ± 0.154 | 0.874 ± 0.131 | <0.001 | 0.696 | 0.002 |
K5% | 0.600 ± 0.174 | 0.580 ± 0.176 | 0.593 ± 0.129 | 0.396 | NA | NA |
K95% | 1.459 ± 0.453 | 1.458 ± 0.409 | 1.282 ± 0.328 | <0.001 | 0.714 | 0.001 |
Kskewness | 1.306 ± 1.135 | 1.935 ± 3.165 | 1.472 ± 2.151 | 0.420 | NA | NA |
KKurtosis | 7.498 ± 9.989 | 26.481 ± 93.512 | 15.162 ± 59.754 | 0.589 | NA | NA |
KEntropy | 1.143 ± 0.421 | 1.171 ± 0.383 | 0.920 ± 0.408 | <0.001 | 1.000 | <0.001 |
MRI Features | AUC | 95% CI | Sensitivity% | Specificity% | Cut-Off Value |
---|---|---|---|---|---|
ADCMean | 0.668 | 0.543–0.794 | 95.12 | 38.89 | 0.970 |
ADCMedian | 0.666 | 0.541–0.791 | 95.12 | 38.89 | 0.957 |
ADC5% | 0.693 | 0.571–0.815 | 90.24 | 55.56 | 0.702 |
CombinedADC | 0.694 | 0.573–0.815 | 50.00 | 90.24 | 0.454 |
DMean | 0.671 | 0.545–0.796 | 90.24 | 44.44 | 1.199 |
DMedian | 0.667 | 0.542–0.792 | 78.05 | 58.33 | 1.244 |
D5% | 0.683 | 0.558–0.808 | 92.68 | 50.00 | 0.839 |
CombinedD | 0.681 | 0.556–0.806 | 50.00 | 92.68 | 0.429 |
KMean | 0.680 | 0.555–0.804 | 78.05 | 58.33 | 0.925 |
KMedian | 0.667 | 0.541–0.792 | 75.61 | 61.11 | 0.883 |
K95% | 0.729 | 0.615–0.843 | 87.80 | 52.78 | 1.359 |
KEntropy | 0.776 | 0.666–0.887 | 65.85 | 91.67 | 0.725 |
CombinedK | 0.786 | 0.678–0.894 | 91.67 | 65.85 | 0.666 |
Combinedall | 0.802 | 0.701–0.903 | 86.11 | 70.73 | 0.621 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Zhang, X.; Zheng, J.; Wang, S.; Ding, J.; Sun, S.; Bai, Q.; Fu, C.; Wang, J.; Gong, J.; et al. Distinguishing Low Expression Levels of Human Epidermal Growth Factor Receptor 2 in Breast Cancer: Insights from Qualitative and Quantitative Magnetic Resonance Imaging Analysis. Tomography 2025, 11, 31. https://doi.org/10.3390/tomography11030031
Shen Y, Zhang X, Zheng J, Wang S, Ding J, Sun S, Bai Q, Fu C, Wang J, Gong J, et al. Distinguishing Low Expression Levels of Human Epidermal Growth Factor Receptor 2 in Breast Cancer: Insights from Qualitative and Quantitative Magnetic Resonance Imaging Analysis. Tomography. 2025; 11(3):31. https://doi.org/10.3390/tomography11030031
Chicago/Turabian StyleShen, Yiyuan, Xu Zhang, Jinlong Zheng, Simin Wang, Jie Ding, Shiyun Sun, Qianming Bai, Caixia Fu, Junlong Wang, Jing Gong, and et al. 2025. "Distinguishing Low Expression Levels of Human Epidermal Growth Factor Receptor 2 in Breast Cancer: Insights from Qualitative and Quantitative Magnetic Resonance Imaging Analysis" Tomography 11, no. 3: 31. https://doi.org/10.3390/tomography11030031
APA StyleShen, Y., Zhang, X., Zheng, J., Wang, S., Ding, J., Sun, S., Bai, Q., Fu, C., Wang, J., Gong, J., You, C., & Gu, Y. (2025). Distinguishing Low Expression Levels of Human Epidermal Growth Factor Receptor 2 in Breast Cancer: Insights from Qualitative and Quantitative Magnetic Resonance Imaging Analysis. Tomography, 11(3), 31. https://doi.org/10.3390/tomography11030031