Magnetic Resonance Elastography of Invasive Breast Cancer: Evaluating Prognostic Factors and Treatment Response
Abstract
:1. Introduction
- (1)
- to determine whether the elasticity values of invasive breast cancer were correlated with prognostic factors;
- (2)
- to evaluate whether elasticity values can predict the response to NST in patients with invasive breast cancer.
2. Materials and Methods
2.1. Patients
2.2. MRI Acquisition
2.3. Image Analyses
2.4. Clinico-Histopathological Analysis
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Elasticity Values of Breast Tissue
3.3. Mean Elasticity Values of Invasive Breast Cancers According to Clinico-Histopathological Features
3.4. Clinico-Histopathological Characteristics and Elasticity Values According to Response to Neoadjuvant Systemic Therapy
3.5. ROC Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pickup, M.W.; Mouw, J.K.; Weaver, V.M. The extracellular matrix modulates the hallmarks of cancer. EMBO. Rep. 2014, 15, 1243–1253. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Lv, X.; Li, P.; Yang, R.; Xia, Q.; Chen, Y.; Peng, Y.; Li, L.; Li, S.; Li, T.; et al. Matrix stiffness modulates ILK-mediated YAP activation to control the drug resistance of breast cancer cells. Biochim. Biophys. Acta Mol. Basis. Dis. 2020, 1866, 165625. [Google Scholar] [CrossRef]
- Athanasiou, A.; Tardivon, A.; Tanter, M.; Sigal-Zafrani, B.; Bercoff, J.; Deffieux, T.; Gennisson, J.-L.; Fink, M.; Neuenschwander, S. Breast lesions: Quantitative elastography with supersonic shear imaging—Preliminary results. Radiology 2010, 256, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Faruk, T.; Islam, M.K.; Arefin, S.; Haq, M.Z. The journey of elastography: Background, current status, and future possibilities in breast cancer diagnosis. Clin. Breast Cancer 2015, 15, 313–324. [Google Scholar] [CrossRef]
- Patel, B.K.; Samreen, N.; Zhou, Y.; Chen, J.; Brandt, K.; Ehman, R.; Pepin, K. MR elastography of the breast: Evolution of technique, case examples, and future directions. Clin. Breast Cancer 2021, 21, e102–e111. [Google Scholar] [CrossRef] [PubMed]
- Plewes, D.B.; Bishop, J.; Samani, A.; Sciarretta, J. Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography. Phys. Med. Biol. 2000, 45, 1591. [Google Scholar] [CrossRef] [PubMed]
- Guglielmo, F.F.; Venkatesh, S.K.; Mitchell, D.G. Liver MR elastography technique and image interpretation: Pearls and pitfalls. Radiographics 2019, 39, 1983–2002. [Google Scholar] [CrossRef]
- McKnight, A.L.; Kugel, J.L.; Rossman, P.J.; Manduca, A.; Hartmann, L.C.; Ehman, R.L. MR elastography of breast cancer: Preliminary results. Am. J. Roentgenol. 2002, 178, 1411–1417. [Google Scholar] [CrossRef]
- Siegmann, K.C.; Xydeas, T.; Sinkus, R.; Kraemer, B.; Vogel, U.; Claussen, C.D. Diagnostic value of MR elastography in addition to contrast-enhanced MR imaging of the breast—Initial clinical results. Eur. Radiol. 2010, 20, 318–325. [Google Scholar] [PubMed]
- Hawley, J.R.; Kalra, P.; Mo, X.; Raterman, B.; Yee, L.D.; Kolipaka, A. Quantification of breast stiffness using MR elastography at 3 Tesla with a soft sternal driver: A reproducibility study. J. Magn. Reson. Imaging 2017, 45, 1379–1384. [Google Scholar] [CrossRef] [PubMed]
- Youk, J.H.; Gweon, H.M.; Son, E.J.; Kim, J.; Jeong, J. Shear-wave elastography of invasive breast cancer: Correlation between quantitative mean elasticity value and immunohistochemical profile. Breast Cancer Res. Treat. 2013, 138, 119–126. [Google Scholar] [CrossRef]
- Choi, W.J.; Kim, H.H.; Cha, J.H.; Shin, H.J.; Kim, H.; Chae, E.Y.; Hong, M.J. Predicting prognostic factors of breast cancer using shear wave elastography. Ultrasound. Med. Biol. 2014, 40, 269–274. [Google Scholar] [CrossRef]
- Kim, J.Y.; Shin, J.K.; Lee, S.H. The breast tumor strain ratio is a predictive parameter for axillary lymph node metastasis in patients with invasive breast cancer. Am. J. Roentgenol. 2015, 205, W630–W638. [Google Scholar] [CrossRef]
- Evans, A.; Whelehan, P.; Thomson, K.; McLean, D.; Brauer, K.; Purdie, C.; Baker, L.; Jordan, L.; Rauchhaus, P.; Thompson, A. Invasive breast cancer: Relationship between shear-wave elastographic findings and histologic prognostic factors. Radiology 2012, 263, 673–677. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.M.; Park, I.A.; Lee, S.H.; Kim, W.H.; Bae, M.S.; Koo, H.R.; Yi, A.; Kim, S.J.; Cho, N.; Moon, W.K. Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer. Eur. Radiol. 2013, 23, 2450–2458. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, H.H.; Choi, W.J.; Chae, E.Y.; Shin, H.J.; Cha, J.H. Correlation of shear-wave elastography parameters with the molecular subtype and axillary lymph node status in breast cancer. Clin. Imaging 2023, 101, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Jing, H.; Cheng, W.; Li, Z.-Y.; Ying, L.; Wang, Q.-C.; Wu, T.; Tian, J.-W. Early evaluation of relative changes in tumor stiffness by shear wave elastography predicts the response to neoadjuvant chemotherapy in patients with breast cancer. J. Ultrasound. Med. 2016, 35, 1619–1627. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; Yamamoto, Y.; Ibusuki, M.; Fujiwara, S.; Yamamoto, S.; Tomita, S.; Nakano, M.; Murakami, K.; Iyama, K.-I.; Iwase, H. Evaluation of tumor stiffness by elastography is predictive for pathologic complete response to neoadjuvant chemotherapy in patients with breast cancer. Ann. Surg. Oncol 2012, 19, 3042–3049. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, H.; Han, W.; Lee, S.H.; Chang, J.M.; Cho, N. Role of Doppler US and elastography prior to biopsy to identify candidates for avoidance of surgery following neoadjuvant chemotherapy for breast cancer. Ultrasonography 2023, 42, 323. [Google Scholar] [CrossRef]
- Evans, A.; Armstrong, S.; Whelehan, P.; Thomson, K.; Rauchhaus, P.; Purdie, C.; Jordan, L.; Jones, L.; Thompson, A.; Vinnicombe, S. Can shear-wave elastography predict response to neoadjuvant chemotherapy in women with invasive breast cancer? Br. J. Cancer 2013, 109, 2798–2802. [Google Scholar] [CrossRef]
- Allred, D.C.; Harvey, J.M.; Berardo, M.; Clark, G.M. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod. Pathol. 1998, 11, 155. [Google Scholar]
- Moeder, C.B.; Giltnane, J.M.; Harigopal, M.; Molinaro, A.; Robinson, A.; Gelmon, K.; Huntsman, D.; Camp, R.L.; Rimm, D.L. Quantitative Justification of the Change From 10% to 30% for Human Epidermal Growth Factor Receptor 2 Scoring in the American Society of Clinical Oncology/College of American Pathologists Guidelines: Tumor Heterogeneity in Breast Cancer and Its Implications for Tissue Microarray–Based Assessment of Outcome. J. Clin. Oncol. 2007, 25, 5418–5425. [Google Scholar] [PubMed]
- Bustreo, S.; Osella-Abate, S.; Cassoni, P.; Donadio, M.; Airoldi, M.; Pedani, F.; Papotti, M.; Sapino, A.; Castellano, I. Optimal Ki67 cut-off for luminal breast cancer prognostic evaluation: A large case series study with a long-term follow-up. Breast Cancer Res. Treat. 2016, 157, 363–371. [Google Scholar] [CrossRef]
- Patel, B.K.; Pepin, K.; Brandt, K.R.; Mazza, G.L.; Pockaj, B.A.; Chen, J.; Zhou, Y.; Northfelt, D.W.; Anderson, K.; Kling, J.M.; et al. Association of breast cancer risk, density, and stiffness: Global tissue stiffness on breast MR elastography (MRE). Breast Cancer Res. Treat. 2022, 194, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Sinkus, R.; Tanter, M.; Xydeas, T.; Catheline, S.; Bercoff, J.; Fink, M. Viscoelastic shear properties of in vivo breast lesions measured by MR elastography. Magn. Reson. Imaging 2005, 23, 159–165. [Google Scholar] [CrossRef]
- Sinkus, R.; Siegmann, K.; Xydeas, T.; Tanter, M.; Claussen, C.; Fink, M. MR elastography of breast lesions: Understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography. Magn. Reson. Med 2007, 58, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Balleyguier, C.; Lakhdar, A.B.; Dunant, A.; Mathieu, M.; Delaloge, S.; Sinkus, R. Value of whole breast magnetic resonance elastography added to MRI for lesion characterization. NMR Biomed. 2018, 31, e3795. [Google Scholar] [CrossRef]
- Lorenzen, J.; Sinkus, R.; Lorenzen, M.; Dargatz, M.; Leussler, C.; Röschmann, P.; Adam, G. MR elastography of the breast: Preliminary clinical results. Rofo 2002, 174, 830–834. [Google Scholar] [CrossRef] [PubMed]
- Xydeas, T.; Siegmann, K.; Sinkus, R.; Krainick-Strobel, U.; Miller, S.; Claussen, C.D. Magnetic resonance elastography of the breast: Correlation of signal intensity data with viscoelastic properties. Investig. Radiol. 2005, 40, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Chamming’s, F.; Latorre-Ossa, H.; Le Frère-Belda, M.A.; Fitoussi, V.; Quibel, T.; Assayag, F.; Marangoni, E.; Autret, G.; Balvay, D.; Pidial, L.; et al. Shear wave elastography of tumour growth in a human breast cancer model with pathological correlation. Eur. Radiol. 2013, 23, 2079–2086. [Google Scholar] [CrossRef] [PubMed]
- Song, E.J.; Sohn, Y.; Seo, M. Tumor stiffness measured by quantitative and qualitative shear wave elastography of breast cancer. Br. J. Radiol. 2018, 91, 20170830. [Google Scholar] [CrossRef]
- Insua-Rodríguez, J.; Oskarsson, T. The extracellular matrix in breast cancer. Adv. Drug Deliv. Rev. 2016, 97, 41–55. [Google Scholar] [CrossRef]
- Najafi, M.; Farhood, B.; Mortezaee, K. Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J. Cell Biochem. 2019, 120, 2782–2790. [Google Scholar] [CrossRef]
- Kim, M.J.; Eun, N.L.; Ahn, S.G.; Kim, J.H.; Youk, J.H.; Son, E.J.; Jeong, J.; Cha, Y.J.; Bae, S.J. Elasticity Values as a Predictive Modality for Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancer 2024, 16, 377. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Chang, Y. Prediction of complete response after neoadjuvant chemotherapy for invasive breast cancers: The utility of shear wave elastography and superb microvascular imaging in pretreatment breast ultrasound. Eur. J. Radiol. 2024, 175, 111432. [Google Scholar] [CrossRef]
- Li, J.; Zormpas-Petridis, K.; Boult, J.K.; Reeves, E.L.; Heindl, A.; Vinci, M.; Lopes, F.; Cummings, C.; Springer, C.J.; Chesler, L.; et al. Investigating the contribution of collagen to the tumor biomechanical phenotype with noninvasive magnetic resonance elastography. Cancer Res. 2019, 79, 5874–5883. [Google Scholar] [CrossRef]
- Byrne, C.E.; Decombe, J.-B.; Bingham, G.C.; Remont, J.; Miller, L.G.; Khalif, L.; King, C.T.; Hamel, K.; Bunnell, B.A.; Burow, M.E.; et al. Evaluation of extracellular matrix composition to improve breast cancer modeling. Tissue Eng. Part A 2021, 27, 500–511. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, S.; Gao, S.; Ma, Y.; Tan, X.; Kang, Y.; Ren, W. HIF-1α, TWIST-1 and ITGB-1, associated with tumor stiffness, as novel predictive markers for the pathological response to neoadjuvant chemotherapy in breast cancer. Cancer Manag. Res. 2020, 12, 2209–2222. [Google Scholar] [CrossRef] [PubMed]
Variables | All (n = 57) |
---|---|
Mean age (years) a | 54.05 ± 11.91 |
Tumor size on pretreatment MRI (cm) a,b | 3.96 ± 2.34 |
Symptoms | |
Asymptomatic | 18 (32) |
Lump | 35 (61) |
Pain | 3 (5) |
Nipple retraction | 1 (2) |
Histological type | |
Ductal | 50 (88) |
Lobular | 3 (5) |
Mucinous | 3 (5) |
Metaplastic | 1 (2) |
Histological grade | |
2 | 41 (72) |
3 | 16 (28) |
Estrogen receptor status | |
Positive | 40 (70) |
Negative | 17 (30) |
Progesterone receptor status | |
Positive | 29 (51) |
Negative | 28 (49) |
HER2 status | |
Positive | 13 (23) |
Negative | 44 (77) |
Ki-67 status | |
High (>20%) | 44 (77) |
Low (≤20%) | 13 (23) |
Tumor subtypes | |
ER-positive | 34 (60) |
HER2-positive | 13 (23) |
Triple-negative | 10 (17) |
Normal Fat Tissue | Normal Fibroglandular Tissue | Cancer | p-Value a | p-Value b | |
---|---|---|---|---|---|
Mean elasticity value (kPa) | 1.32 ± 0.33 | 2.54 ± 0.80 | 7.90 ± 5.80 | <0.001 | <0.001 |
Maximum elasticity value (kPa) | 1.37 ± 0.34 | 2.70 ± 0.86 | 11.79 ± 11.52 | <0.001 | <0.001 |
Minimum elasticity value (kPa) | 1.26 ± 0.33 | 2.35 ± 0.73 | 5.28 ± 3.87 | <0.001 | <0.001 |
Variables | n | Mean Elasticity Value (kPa) a | p-Value |
---|---|---|---|
Age at diagnosis (years) | 0.213 | ||
≤50 | 20 (35) | 8.83 ± 5.65 | |
>50 | 37 (65) | 7.40 ± 5.89 | |
Menopausal status | 0.226 | ||
Premenopausal | 26 (46) | 9.34 ± 7.04 | |
Postmenopausal | 31 (54) | 6.69 ± 4.26 | |
Tumor size on pretreatment MRI (cm) b | 0.002 | ||
≤4 | 37 (65) | 5.87 ± 3.58 | |
>4 | 20 (35) | 11.65 ± 7.22 | |
Histological grade | 0.338 | ||
1 | 0 (0) | ||
2 | 41 (72) | 7.70 ± 6.24 | |
3 | 16 (28) | 8.40 ± 4.65 | |
Histological type | 0.309 | ||
Ductal | 50 (88) | 7.98 ± 5.79 | |
Lobular | 3 (5) | 4.46 ± 2.82 | |
Mucinous | 3 (5) | 5.91 ± 3.79 | |
Metaplastic | 1 (2) | 20.06 | |
Tumor subtypes | 0.183 | ||
ER-positive | 34 (60) | 7.54 ± 5.42 | |
HER2-positive | 13 (23) | 7.06 ± 6.69 | |
Triple-negative | 10 (17) | 10.17 ± 5.87 |
Variables | Non-Pathological Complete Response (n = 18) | Pathological Complete Response (n = 6) | p-Value |
---|---|---|---|
Tumor size on pretreatment MRI (cm) a | 5.19 ± 2.70 | 2.52 ± 1.11 | 0.007 |
Age at diagnosis (years) | 0.446 | ||
≤50 | 6 (33) | 1 (17) | |
>50 | 12 (67) | 5 (83) | |
Menopausal status | 0.752 | ||
Premenopausal | 8 (44) | 2 (33) | |
Postmenopausal | 10 (56) | 4 (67) | |
Histological grade | 0.446 | ||
1 | 0 (0) | 0 (0) | |
2 | 12 (67) | 5 (83) | |
3 | 6 (33) | 1 (17) | |
Histological type | 0.564 | ||
Ductal | 17 (94) | 6 (100) | |
Metaplastic | 1 (6) | 0 (0) | |
Estrogen receptor status | 0.487 | ||
Positive | 9 (50) | 4 (67) | |
Negative | 9 (50) | 2 (33) | |
Progesterone receptor status | 0.216 | ||
Positive | 14 (78) | 6 (100) | |
Negative | 4 (22) | 0 (0) | |
HER2 status | <0.001 | ||
Positive | 3 (17) | 6 (100) | |
Negative | 15 (183) | 0 (0) | |
Ki-67 status | 0.233 | ||
>20% | 8 (44) | 1 (17) | |
≤20% | 10 (56) | 5 (83) | |
Tumor subtypes | 0.871 | ||
ER-positive | 7 (39) | 0 (0) | |
HER2-positive | 3 (17) | 6 (100) | |
Triple-negative | 8 (44) | 0 (0) |
Variables | All (n = 24) | Non-Pathological Complete Response (n = 18) | Pathological Complete Response (n = 6) | p-Value a |
---|---|---|---|---|
Mean elasticity value (kPa) | 10.26 ± 6.84 | 12.20 ± 6.71 | 4.45 ±2.81 | <0.001 |
Minimum elasticity value (kPa) | 7.01 ± 4.76 | 8.11 ± 4.86 | 3.72 ± 2.55 | 0.047 |
Maximum elasticity value (kPa) | 14.02 ± 10.75 | 16.97 ±10.79 | 5.19 ± 3.22 | 0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.J.; Kim, J.Y.; Jeong, Y.J.; Kim, S.; Lee, I.S.; Lee, N.K.; Kang, T.; Park, H.; Lee, S. Magnetic Resonance Elastography of Invasive Breast Cancer: Evaluating Prognostic Factors and Treatment Response. Tomography 2025, 11, 18. https://doi.org/10.3390/tomography11020018
Kim JJ, Kim JY, Jeong YJ, Kim S, Lee IS, Lee NK, Kang T, Park H, Lee S. Magnetic Resonance Elastography of Invasive Breast Cancer: Evaluating Prognostic Factors and Treatment Response. Tomography. 2025; 11(2):18. https://doi.org/10.3390/tomography11020018
Chicago/Turabian StyleKim, Jin Joo, Jin You Kim, Yeon Joo Jeong, Suk Kim, In Sook Lee, Nam Kyung Lee, Taewoo Kang, Heeseung Park, and Seokwon Lee. 2025. "Magnetic Resonance Elastography of Invasive Breast Cancer: Evaluating Prognostic Factors and Treatment Response" Tomography 11, no. 2: 18. https://doi.org/10.3390/tomography11020018
APA StyleKim, J. J., Kim, J. Y., Jeong, Y. J., Kim, S., Lee, I. S., Lee, N. K., Kang, T., Park, H., & Lee, S. (2025). Magnetic Resonance Elastography of Invasive Breast Cancer: Evaluating Prognostic Factors and Treatment Response. Tomography, 11(2), 18. https://doi.org/10.3390/tomography11020018