A Novel Approach to Combinatorial Problems: Binary Growth Optimizer Algorithm
Abstract
:1. Introduction
- Implement a binary version for Growth Optimizer.
- Solve the set-covering problem with our proposal.
- Carry out a deep analysis of the behavior of our proposal. We will analyze the convergence, execution times, best results obtained, distribution of fitness in the independent runs executed, and balance of exploration and exploitation.
2. Combinatorial Optimization Problems
2.1. Continuous Optimization Problems
2.2. Discrete Optimization Problems
3. Metaheuristics
4. The Set-Covering Problem (SCP)
4.1. Applications
4.1.1. Organization of the Serbian Postal Network
4.1.2. Sibling Relationship Reconstruction
4.1.3. Periodic Vehicle Routing Problem
4.2. Solving Set-Covering Problem Review
5. The Growth Optimizer Algorithm
5.1. Inspiration
5.2. Mathematical Modeling
Algorithm 1 The pseudocode of the GO algorithm. |
|
5.2.1. Learning Phase
5.2.2. Reflection Phase
6. A New Binary Growth Optimizer
Algorithm 2 The pseudocode of the BGO algorithm. |
|
6.1. Two-Step Binarization
6.1.1. Transfer Function
6.1.2. Binarization Rules
7. Results and Discussion
7.1. Experimental Setup
- Solution initialization: As a solution initialization strategy, we used the generation of random solutions. Since we were solving a binary problem, each decision variable was randomly assigned a value of 1 or 0.
- Termination conditions: In the literature, we found different term criteria, such as calls to the objective function [59] or the total number of iterations [60,61,62] that the metaheuristic will perform. We considered the total number of iterations as the completion criterion in our work. After previous experiments, it was determined to use 30 as the total number of iterations.
- Population size: As we worked with population metaheuristics, defining the number of individuals to use in the experimentation was key. After previous experiments, it was determined that 40 individuals would be used as the population size.
7.2. Experimental Results
7.3. Convergence vs. Iterations
- Binary Growth Optimizer: In all cases, the Binary Growth Optimizer exhibited faster convergence in fewer iterations. This suggests that this metaheuristic can find high-quality solutions in fewer iterations, which could be beneficial in practical applications where efficiency is crucial.
- Grey wolf optimizer: While the grey wolf optimizer did not reach the convergence speed of the Growth Optimizer, it still stood out as the second-best option in terms of convergence speed. This indicates its ability to find reasonable solutions within a reasonable time frame.
- Sine–cosine algorithm: This algorithm showed a moderate convergence speed compared to the two aforementioned metaheuristics. Although it may not be the fastest choice, it remains an effective metaheuristic for addressing SCP instances.
- Pendulum Search Algorithm: In the graphs, the PSA exhibited slower convergence compared to the other three metaheuristics. This suggests that it may require more iterations to reach comparable solutions.
7.4. Fitness Distribution
- The SCA exhibits a complete range of maximum and minimum fitness values, suggesting a broad exploration of solutions.
- The PSA stands out for having higher maximum values than the other metaheuristics, although it also presents exceptionally low whiskers. This indicates its ability to reach high-quality solutions but also a tendency towards less optimal solutions.
- The GWO closely follows the SCA, covering a similar fitness range but with more lower solutions, indicating effective exploration of the search space.
- The BGO has values slightly lower than the average and shows whiskers at the upper end, suggesting a tendency to converge towards better optimal fitness solutions in this specific instance.
7.5. Exploration vs. Exploitation
7.6. Time vs. Iterations
7.7. Statistical Tests
- Rapid Convergence of the Binary Growth Optimizer (BGO): The BGO demonstrated swift convergence towards solutions with low fitness compared to the other metaheuristics. This suggests that the BGO can find high-quality solutions in fewer iterations.
- High Competitiveness of BGO: Comparing the results obtained from Table 5, there is statistical evidence of the BGO’s performance compared to well-recognized metaheuristics, achieving very good and often superior results.
- Behaviors across Different Instances: As expected, similar to its competitors, the BGO showcases varying behaviors across different studied instances, sometimes displaying highly precise fitness and sometimes not. It is crucial to consider this factor when implementing the BGO for problem-solving in real-world scenarios beyond controlled laboratory settings.
- Success of Implementing Growth Optimizer with Binary Growth Optimizer: A Growth Optimizer is a high-performing metaheuristic in continuous optimization spaces, where various parameter configurations were tested to find the best-performing one. In this work, a Binary Growth Optimizer was employed using recommended parameters. However, altering these parameters might produce different, potentially superior outcomes.
- Binarization Strategies: The use of binarization strategies is crucial for solving SCPs; utilizing the V-type transfer function yielded excellent results. Other transfer function types remain to be explored to observe the BGO’s behavior comprehensively.
7.8. Underlying Mechanisms
- Integration of Learning and Reflection: The BGO distinguishes itself by its dual approach that combines two fundamental phases: the learning phase and the reflection phase. In the learning phase, the algorithm explores the search space by selecting “better” and “worse” solutions for each individual, fostering diversity and global exploration. On the other hand, in the reflection phase, the BGO employs reflection on decision variables to generate new random positions, promoting local exploitation and convergence towards optimal solutions.
- Adaptive Dynamics and Escape from Local Minima: The BGO introduces adaptive dynamics that dynamically adjust the probability of accepting worse solutions during the search. This feature allows the algorithm to adapt to the changing nature of the search landscape, increasing exploration in early stages and focusing on exploitation in later stages, thus enhancing the algorithm’s ability to find high-quality solutions in different types of optimization problems. To address the challenge of local minima, the BGO incorporates diversification mechanisms that enable the occasional acceptance of worse solutions with a small probability. This strategy helps the algorithm avoid getting stuck in suboptimal local minima and explore new regions of the search space, increasing the chances of finding globally optimal solutions.
- Well-defined Exploration and Exploitation Stages: The BGO is characterized by well-defined exploration and exploitation stages, allowing it to conduct extensive sampling of the search space in the early iterations and then focus on promising regions to refine solutions. This alternation between exploration and exploitation contributes to an efficient search and rapid convergence towards optimal solutions.
- Initialization with Longer Time and Rapid Convergence Compared to other metaheuristics: The BGO may require more time in initialization due to its dual approach and adaptive dynamics. However, once the search is underway, the BGO demonstrates faster convergence towards optimal solutions thanks to its ability to effectively explore and exploit the search space.
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MH | Metaheuristic |
SCP | Set-covering problem |
P | Polynomial time |
NP | Nondeterministic polynomial time |
EAs | Evolutionary algorithms |
MSA | Binary monkey search algorithm |
ALO | Antlion optimization |
CSA | Crow search algorithm |
GA | Genethic Algorithm |
MLST | Minimum labeling spanning tree |
VANETs | Vehicular ad hoc networks |
MST | Minimum spanning tree |
MILP | Mixed-integer linear programs |
ESN | Echo state network |
ELM | Extreme Learning Machines |
MRE | Magnetorheological elastomer |
CNN | Convolutional neural network |
NN | Neural network |
DE | Differential evolution |
GO | Growth optimizer |
BGO | Binary Growth Optimizer |
GR | Growth resistance |
Current iteration | |
LF | Learning factor |
KA | Knowledge acquisition |
AF | Attenuation factor |
FE | Current number of evaluations |
MaxFE | Maximum number of evaluations |
ub | Domain upper bound |
lb | Domain lower bound |
D | Population dimension |
GWO | Grey wolf optimizer |
PSA | Pendulum Search Algorithm |
SCA | Sine–cosine algorithm |
References
- Karp, R.M. On the Computational Complexity of Combinatorial Problems. Networks 1975, 5, 45–68. [Google Scholar] [CrossRef]
- Karp, R.M. Reducibility Among Combinatorial Problems. In 50 Years of Integer Programming; Springer: Berlin/Heidelberg, Germany, 2009; pp. 219–241. [Google Scholar]
- Cook, S.C. The Complexity of Theorem Proving Procedures. In Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, Shaker Heights, OH, USA, 3–5 May 1971; pp. 151–158. [Google Scholar]
- Cook, S.C. Characterizations of Pushdown Machines in Terms of Time-Bounded Computers. J. ACM 1971, 18, 4–18. [Google Scholar] [CrossRef]
- Jünger, M.; Reinelt, G.; Rinaldi, G. Chapter 4: The Traveling Salesman Problem. In Handbooks in Operations Research and Management Science; Elsevier: Amsterdam, The Netherlands, 1995; pp. 225–330. [Google Scholar]
- Crawford, B.; Soto, R.; Olivares, R.; Embry, G.; Flores, D.; Palma, W.; Castro, C.; Paredes, F.; Rubio, J.M. A Binary Monkey Search Algorithm Variation for Solving the Set Covering Problem. Nat. Comput. 2019, 19, 825–841. [Google Scholar] [CrossRef]
- Xia, T.; Zhang, M.; Wang, S. Dynamic System Stability Modeling Approach with Sparrow-Inspired Meta-Heuristic Optimization Algorithm. Biomimetics 2023, 8, 424. [Google Scholar] [CrossRef] [PubMed]
- Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W. H. Freeman and Company: New York, NY, USA, 1979; pp. 13–45+190–194. [Google Scholar]
- Bartz-Beielstein, T.; Zaefferer, M. Model-based Methods for Continuous and Discrete Global Optimization. Appl. Soft Comput. 2017, 55, 154–167. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Sloss, A.N.; Gustafson, S. 2019 Evolutionary Algorithms Review. arXiv 2019, arXiv:1906.08870. [Google Scholar]
- Glover, F.; Laguna, M.; Marti, R. Tabu Search; Springer: New York, NY, USA, 1997; Volume 16. [Google Scholar] [CrossRef]
- Talbi, E.G. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Šarac, D.; Kopić, M.; Mostarac, K.; Kujačić, M.; Jovanović, B. Application of Set Covering Location Problem for Organizing the Public Postal Network. Promet-Traffic Transp. 2016, 28, 403–413. [Google Scholar] [CrossRef]
- Chaovalitwongse, W.; Berger-Wolf, T.; Dasgupta, B.; Ashley, M. Set covering approach for reconstruction of sibling relationships. Optim. Methods Softw. 2007, 22, 11–24. [Google Scholar] [CrossRef]
- Cacchiani, V.; Hemmelmayr, V.; Tricoire, F. A set-covering based heuristic algorithm for the periodic vehicle routing problem. Discret. Appl. Math. 2014, 163, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Jaszkiewicz, A. Do multiple-objective metaheuristics deliver on their promises? A computational experiment on the set-covering problem. IEEE Trans. Evol. Comput. 2003, 7, 133–143. [Google Scholar] [CrossRef]
- Kılıç, H.; Yüzgeç, U. Tournament selection based antlion optimization algorithm for solving quadratic assignment problem. Eng. Sci. Technol. 2019, 22, 673–691. [Google Scholar] [CrossRef]
- Lin, M.; Liu, F.; Zhao, H.; Chen, J. A novel binary firefly algorithm for the minimum labeling spanning tree problem. Comput. Model. Eng. Sci. 2020, 125, 197–214. [Google Scholar]
- Zhang, X.; Zhang, X. A binary artificial bee colony algorithm for constructing spanning trees in vehicular ad hoc networks. Ad Hoc Netw. 2017, 58, 198–204. [Google Scholar] [CrossRef]
- Da Silva, T.; Queiroga, E.; Ochi, L.; Cabral, L.A.F.; Gueye, S.; Michelon, P. A hybrid metaheuristic for the minimum labeling spanning tree problem. Eur. J. Oper. Res. 2019, 274, 22–34. [Google Scholar] [CrossRef]
- Jimenez, R.; Jurado-Pina, R. A simple genetic algorithm for calibration of stochastic rock discontinuity networks. Rock Mech. Rock Eng. 2012, 45, 461–473. [Google Scholar] [CrossRef]
- Taormina, R.; Chau, K. Data-driven input variable selection for rainfall-runoff modeling using binary-coded particle swarm optimization and extreme learning machines. J. Hydrol. 2015, 529, 1617–1632. [Google Scholar] [CrossRef]
- Taormina, R.; Chau, K.; Sivakumar, B. Neural network river forecasting through baseflow separation and binary-coded swarm optimization. J. Hydrol. 2015, 529, 1788–1797. [Google Scholar] [CrossRef]
- Vuolio, T.; Visuri, V.; Sorsa, A.; Paananen, T.; Fabritius, T. Genetic algorithm-based variable selection in prediction of hot metal desulfurization kinetics. Steel Res. Int. 2019, 90, 1900090. [Google Scholar] [CrossRef]
- Liu, J.; Sun, T.; Luo, Y.; Yang, S.; Cao, Y.; Zhai, J. Echo state network optimization using binary grey wolf algorithm. Neurocomputing 2020, 385, 310–318. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Y.; Li, J.; Gu, X.; Royel, S. Nonlinear characterization of the MRE isolator using binary-coded discrete CSO and ELM. Int. J. Struct. Stab. Dyn. 2018, 18, 1840007. [Google Scholar] [CrossRef]
- Joshi, S.; Kumar, R.; Dwivedi, A. Hybrid DSSCS and convolutional neural network for peripheral blood cell recognition system. IET Image Process. 2020, 14, 4450–4460. [Google Scholar] [CrossRef]
- Ahmad, M.; Abdullah, M.; Moon, H.; Yoo, S.J.; Han, D. Image classification based on automatic neural architecture search using binary crow search algorithm. IEEE Access 2020, 8, 189891–189912. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Kong, X. Evolving feedforward artificial neural networks using a two-stage approach. Neurocomputing 2019, 360, 25–36. [Google Scholar] [CrossRef]
- Sadiq, A.; Tahir, M.; Ahmed, A.; Alghushami, A. Normal parameter reduction algorithm in soft set based on hybrid binary particle swarm and biogeography optimizer. Neural Comput. Appl. 2020, 32, 12221–12239. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, F.; Zhang, D.; Tang, P. Research on charging and discharging control strategy for electric vehicles as distributed energy storage devices. IOP Conf. Ser. Earth Environ. Sci. 2018, 121, 042019. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, H.; Zhan, Z.H.; Li, J.; Zhang, H. Growth Optimizer: A powerful metaheuristic algorithm for solving continuous and discrete global optimization problems. Knowl.-Based Syst. 2023, 261, 110206. [Google Scholar] [CrossRef]
- Crawford, B.; Soto, R.; Astorga, G.; García, J.; Castro, C.; Paredes, F. Putting Continuous Metaheuristics to Work in Binary Search Spaces. Complexity 2017, 2017, 8404231. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.; Yang, X. Binary Bat Algorithm. Neural Comput. Appl. 2014, 25, 663–681. [Google Scholar] [CrossRef]
- Rodrigues, D.; Pereira, L.; Nakamura, R.; Costa, K.; Yang, X.; Souza, A.; Papa, J. A Wrapper Approach for Feature Selection Based on Bat Algorithm and Optimum-Path Forest. Expert Syst. Appl. 2014, 41, 2250–2258. [Google Scholar] [CrossRef]
- Khanesar, M.A.; Teshnehlab, M.; Shoorehdeli, M.A. A novel binary particle swarm optimization. In Proceedings of the 2007 Mediterranean Conference on Control & Automation, Athens, Greece, 27–29 June 2007; pp. 1–6. [Google Scholar] [CrossRef]
- Cisternas-Caneo, F.; Crawford, B.; Soto, R.; de la Fuente-Mella, H.; Tapia, D.; Lemus-Romani, J.; Castillo, M.; Becerra-Rozas, M.; Paredes, F.; Misra, S. A Data-Driven Dynamic Discretization Framework to Solve Combinatorial Problems Using Continuous Metaheuristics. In Innovations in Bio-Inspired Computing and Applications; Abraham, A., Sasaki, H., Rios, R., Gandhi, N., Singh, U., Ma, K., Eds.; Springer: Cham, Switzerland, 2021; pp. 76–85. [Google Scholar]
- Lemus-Romani, J.; Becerra-Rozas, M.; Crawford, B.; Soto, R.; Cisternas-Caneo, F.; Vega, E.; Castillo, M.; Tapia, D.; Astorga, G.; Palma, W.; et al. A Novel Learning-Based Binarization Scheme Selector for Swarm Algorithms Solving Combinatorial Problems. Mathematics 2021, 9, 2887. [Google Scholar] [CrossRef]
- Faris, H.; Mafarja, M.; Heidari, A.; Aljarah, I.; Ala’M, A.; Mirjalili, S.; Fujita, H. An Efficient Binary Salp Swarm Algorithm with Crossover Scheme for Feature Selection Problems. Knowl.-Based Syst. 2018, 154, 43–67. [Google Scholar] [CrossRef]
- Sharma, P.; Sundaram, S.; Sharma, M.; Sharma, A.; Gupta, D. Diagnosis of Parkinson’s Disease Using Modified Grey Wolf Optimization. Cogn. Syst. Res. 2019, 54, 100–115. [Google Scholar] [CrossRef]
- Mafarja, M.; Aljarah, I.; Heidari, A.; Faris, H.; Fournier-Viger, P.; Li, X.; Mirjalili, S. Binary Dragonfly Optimization for Feature Selection Using Time-Varying Transfer Functions. Knowl.-Based Syst. 2018, 161, 185–204. [Google Scholar] [CrossRef]
- Eluri, R.; Devarakonda, N. Binary Golden Eagle Optimizer with Time-Varying Flight Length for Feature Selection. Knowl.-Based Syst. 2022, 247, 108771. [Google Scholar] [CrossRef]
- Mirjalili, S.; Hashim, S. BMOA: Binary Magnetic Optimization Algorithm. Int. J. Mach. Learn. Comput. 2012, 2, 204. [Google Scholar] [CrossRef]
- Lemus-Romani, J.; Crawford, B.; Cisternas-Caneo, F.; Soto, R.; Becerra-Rozas, M. Binarization of Metaheuristics: Is the Transfer Function Really Important? Biomimetics 2023, 8, 400. [Google Scholar] [CrossRef] [PubMed]
- Leonard, B.; Engelbrecht, A.; Cleghorn, C. Critical Considerations on Angle Modulated Particle Swarm Optimisers. Swarm Intell. 2015, 9, 291–314. [Google Scholar] [CrossRef]
- Zhang, G. Quantum-Inspired Evolutionary Algorithms: A Survey and Empirical Study. J. Heuristics 2011, 17, 303–351. [Google Scholar] [CrossRef]
- García, J.; Crawford, B.; Soto, R.; Castro, C.; Paredes, F. A K-Means Binarization Framework Applied to Multidimensional Knapsack Problem. Appl. Intell. 2018, 48, 357–380. [Google Scholar] [CrossRef]
- García, J.; Moraga, P.; Valenzuela, M.; Crawford, B.; Soto, R.; Pinto, H.; Peña, A.; Altimiras, F.; Astorga, G. A Db-Scan Binarization Algorithm Applied to Matrix Covering Problems. Comput. Intell. Neurosci. 2019, 2019, 3238574. [Google Scholar] [CrossRef]
- Becerra-Rozas, M.; Lemus-Romani, J.; Cisternas-Caneo, F.; Crawford, B.; Soto, R.; Astorga, G.; Castro, C.; García, J. Continuous Metaheuristics for Binary Optimization Problems: An Updated Systematic Literature Review. Mathematics 2022, 11, 129. [Google Scholar] [CrossRef]
- Saremi, S.; Mirjalili, S.; Lewis, A. How Important Is a Transfer Function in Discrete Heuristic Algorithms. Neural Comput. Appl. 2015, 26, 625–640. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. S-shaped Versus V-shaped Transfer Functions for Binary Particle Swarm Optimization. Swarm Evol. Comput. 2013, 9, 58–68. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. A Discrete Binary Version of the Particle Swarm Algorithm. In Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, USA, 12–15 October 1997; Volume 5, pp. 4104–4108. [Google Scholar] [CrossRef]
- Rajalakshmi, N.; Padma Subramanian, D.; Thamizhavel, K. Performance Enhancement of Radial Distributed System with Distributed Generators by Reconfiguration Using Binary Firefly Algorithm. J. Inst. Eng. Ser. B 2015, 96, 91–99. [Google Scholar] [CrossRef]
- Wolpert, D.; Macready, W. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Ab. Aziz, N.A.; Ab. Aziz, K. Pendulum search algorithm: An optimization algorithm based on simple harmonic motion and its application for a vaccine distribution problem. Algorithms 2022, 15, 214. [Google Scholar] [CrossRef]
- Taghian, S.; Nadimi-Shahraki, M. Binary Sine Cosine Algorithms for Feature Selection from Medical Data. arXiv 2019, arXiv:1911.07805. [Google Scholar] [CrossRef]
- Lanza-Gutierrez, J.M.; Crawford, B.; Soto, R.; Berrios, N.; Gomez-Pulido, J.A.; Paredes, F. Analyzing the effects of binarization techniques when solving the set covering problem through swarm optimization. Expert Syst. Appl. 2017, 70, 67–82. [Google Scholar] [CrossRef]
- Cisternas-Caneo, F.; Crawford, B.; Soto, R.; Giachetti, G.; Paz, Á.; Peña Fritz, A. Chaotic Binarization Schemes for Solving Combinatorial Optimization Problems Using Continuous Metaheuristics. Mathematics 2024, 12, 262. [Google Scholar] [CrossRef]
- Al-Tashi, Q.; Abdul Kadir, S.J.; Rais, H.M.; Mirjalili, S.; Alhussian, H. Binary Optimization Using Hybrid Grey Wolf Optimization for Feature Selection. IEEE Access 2019, 7, 39496–39508. [Google Scholar] [CrossRef]
- Mafarja, M.M.; Mirjalili, S. Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing 2017, 260, 302–312. [Google Scholar] [CrossRef]
- Python Code Experimentation. Available online: https://github.com/BenjaminAleRamosT/BGO/tree/main (accessed on 29 April 2024).
- Mann, H.; Whitney, D. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- García, S.; Molina, D.; Lozano, M.; Herrera, F. A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: A case study on the CEC’2005 special session on real parameter optimization. J. Heuristics 2009, 15, 617–644. [Google Scholar] [CrossRef]
Ref. | Optimization Algorithm | Application | Convergence | Complexity |
---|---|---|---|---|
[22] | GA | Parameter calibration | Low | Low |
[23] | Binary PSO | Input variable selection in ELM | Medium | High |
[24] | Binary PSO | Parameter optimization in ELM | Medium | High |
[25] | GA | Variable selection in hot metal desulfurization kinetics | Low | Low |
[26] | Binary GWO | ESN | Low | High |
[27] | Binary CSO | Parameter optimization in MRE isolator | Low | High |
[28] | CSO and salp swarm algorithm | CNN | Medium | High |
[29] | Binary CSA | CNN | Low | High |
[30] | DE and binary DE | NN | Medium | High |
[31] | Binary PSO and BBO | Set ret reduction | Fast | High |
[32] | Binary PSO | Parameter optimization in Electric Vehicles | Medium | Low |
Instance Set | Number of Instances | m | n | Cost Range | Density (%) | Optimal Solution |
---|---|---|---|---|---|---|
4 | 10 | 200 | 1000 | [1, 100] | 2 | Known |
5 | 10 | 200 | 2000 | [1, 100] | 2 | Known |
6 | 5 | 200 | 1000 | [1, 100] | 5 | Known |
A | 5 | 300 | 3000 | [1, 100] | 2 | Known |
B | 5 | 300 | 3000 | [1, 100] | 5 | Known |
C | 5 | 400 | 4000 | [1, 100] | 2 | Known |
D | 5 | 400 | 4000 | [1, 100] | 5 | Known |
NRE | 5 | 500 | 5000 | [1, 100] | 10 | Unknown |
NRF | 5 | 500 | 5000 | [1, 100] | 20 | Unknown |
NRG | 5 | 1000 | 10,000 | [1, 100] | 2 | Unknown |
NRH | 5 | 1000 | 10,000 | [1, 100] | 5 | Unknown |
SCA | PSA | GWO | BGO | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inst. | Opt. | Min | Avg | RPD | Min | Avg | RPD | Min | Avg | RPD | Min | Avg | RPD |
41 | 429 | 431.0 | 433.75 | 0.466 | 431.0 | 433.7812 | 0.4662 | 433.0 | 434.0 | 0.9324 | 433.0 | 433.03125 | 0.9324 |
42 | 512 | 523 | 527 | 2.1484 | 517 | 528.2903 | 0.9766 | 525 | 526.2258 | 2.5391 | 518 | 525.7097 | 1.1719 |
43 | 516 | 520 | 521.0625 | 0.7752 | 520 | 521.4688 | 0.7752 | 520 | 520.8750 | 0.7752 | 520 | 520.4063 | 0.7752 |
44 | 494 | 496 | 504.4516 | 0.4049 | 500 | 506.5806 | 1.2146 | 499 | 505.4194 | 1.0121 | 499 | 504.4839 | 1.0121 |
45 | 512 | 514 | 518.2903 | 0.3906 | 518 | 519.6774 | 1.1719 | 518 | 518.1290 | 1.1719 | 518 | 518 | 1.1719 |
46 | 560 | 564 | 567.8065 | 0.7143 | 565 | 569 | 0.8929 | 564 | 567.7742 | 0.7143 | 567 | 567.8710 | 1.2500 |
47 | 430 | 432 | 434.2903 | 0.4651 | 433 | 434.2581 | 0.6977 | 432 | 434 | 0.4651 | 433 | 433.9677 | 0.6977 |
48 | 492 | 493 | 494.0645 | 0.2033 | 493 | 494.3871 | 0.2033 | 493 | 493.8387 | 0.2033 | 493 | 493.2903 | 0.2033 |
49 | 641 | 655 | 663.7742 | 2.1841 | 656 | 667.5161 | 2.3401 | 654 | 662.7742 | 2.0281 | 653 | 662.0968 | 1.8721 |
410 | 514 | 517 | 522.6774 | 0.5837 | 518 | 523.6129 | 0.7782 | 519 | 523.4194 | 0.9728 | 517 | 524.0645 | 0.5837 |
51 | 253 | 267 | 267.8387 | 5.5336 | 267 | 267.7742 | 5.5336 | 257 | 267.0323 | 1.5810 | 267 | 267.4839 | 5.5336 |
52 | 302 | 315 | 318.6563 | 4.3046 | 315 | 319.5 | 4.3046 | 313 | 319.125 | 3.6424 | 315 | 319.0938 | 4.3046 |
53 | 226 | 229 | 231.9032 | 1.3274 | 230 | 232.0323 | 1.7699 | 229 | 231.8387 | 1.3274 | 232 | 232 | 2.6549 |
54 | 242 | 244 | 247.8387 | 0.8264 | 244 | 248.3226 | 0.8264 | 244 | 247.9032 | 0.8264 | 244 | 248.0968 | 0.8264 |
55 | 211 | 212 | 213.5161 | 0.4739 | 212 | 214.4516 | 0.4739 | 212 | 213.4194 | 0.4739 | 212 | 213.0645 | 0.4739 |
56 | 213 | 216 | 223.1613 | 1.4085 | 216 | 223.3548 | 1.4085 | 216 | 223.3548 | 1.4085 | 216 | 221.9032 | 1.4085 |
57 | 293 | 299 | 301.6774 | 2.0478 | 296 | 302.1935 | 1.0239 | 297 | 301.8065 | 1.3652 | 299 | 301.2903 | 2.0478 |
58 | 288 | 290 | 295.7097 | 0.6944 | 290 | 297.5161 | 0.6944 | 290 | 297.6129 | 0.6944 | 290 | 297.3871 | 0.6944 |
59 | 279 | 284 | 287.5161 | 1.7921 | 284 | 288.1290 | 1.7921 | 284 | 288.2581 | 1.7921 | 284 | 286.2258 | 1.7921 |
510 | 265 | 272 | 274.1935 | 2.6415 | 272 | 274.4194 | 2.6415 | 272 | 273.8710 | 2.6415 | 273 | 274.0323 | 3.0189 |
61 | 138 | 141 | 143.3871 | 2.1739 | 141 | 144.0968 | 2.1739 | 141 | 143.0323 | 2.1739 | 141 | 142.2258 | 2.1739 |
62 | 146 | 148 | 150.4839 | 1.3699 | 148 | 151.0645 | 1.3699 | 148 | 150.0968 | 1.3699 | 148 | 150.4194 | 1.3699 |
63 | 145 | 148 | 149.2258 | 2.0690 | 148 | 150.0323 | 2.0690 | 147 | 149.2258 | 1.3793 | 148 | 148.6129 | 2.0690 |
64 | 131 | 134 | 135.3871 | 2.2901 | 135 | 135.3871 | 3.0534 | 135 | 135.1290 | 3.0534 | 134 | 135.2258 | 2.2901 |
65 | 161 | 172 | 174.8710 | 6.8323 | 165 | 174.8065 | 2.4845 | 172 | 174.5161 | 6.8323 | 171 | 174.4839 | 6.2112 |
a1 | 253 | 257 | 257.5484 | 1.5810 | 257 | 257.6774 | 1.5810 | 257 | 257 | 1.5810 | 257 | 257.0645 | 1.5810 |
a2 | 252 | 258 | 262.2581 | 2.3810 | 258 | 263.1290 | 2.3810 | 258 | 261.3871 | 2.3810 | 258 | 261.1290 | 2.3810 |
a3 | 232 | 235 | 241 | 1.2931 | 236 | 241.7742 | 1.7241 | 237 | 240.8387 | 2.1552 | 235 | 240.3226 | 1.2931 |
a4 | 234 | 236 | 237.4839 | 0.8547 | 236 | 237.0645 | 0.8547 | 236 | 236.7419 | 0.8547 | 236 | 236.6129 | 0.8547 |
a5 | 236 | 237 | 239.3226 | 0.4237 | 237 | 238.6774 | 0.4237 | 237 | 238.7742 | 0.4237 | 237 | 238.4516 | 0.4237 |
b1 | 69 | 69 | 70.4839 | 0 | 69 | 70.6452 | 0 | 69 | 70.2581 | 0 | 69 | 70.2258 | 0 |
b2 | 76 | 76 | 76.5806 | 0 | 76 | 77.1613 | 0 | 76 | 76.3548 | 0 | 76 | 76.1935 | 0 |
b3 | 80 | 80 | 81.2258 | 0 | 80 | 81.2581 | 0 | 80 | 81.1290 | 0 | 81 | 81.1613 | 1.2500 |
b4 | 79 | 79 | 81.0968 | 0 | 79 | 81.8065 | 0 | 79 | 80.5806 | 0 | 79 | 80.5161 | 0 |
b5 | 72 | 72 | 72.3871 | 0 | 72 | 72.5484 | 0 | 72 | 72.2903 | 0 | 72 | 72.5484 | 0 |
c1 | 227 | 232 | 234.0968 | 2.2026 | 231 | 234.3548 | 1.7621 | 232 | 233.5161 | 2.2026 | 232 | 233.4194 | 2.2026 |
c2 | 219 | 221 | 224.5161 | 0.9132 | 221 | 225 | 0.9132 | 221 | 224.1613 | 0.9132 | 221 | 223.7419 | 0.9132 |
c3 | 243 | 245 | 249.7742 | 0.8230 | 247 | 252.2581 | 1.6461 | 245 | 248.0323 | 0.8230 | 245 | 247.7742 | 0.8230 |
c4 | 219 | 224 | 226.9677 | 2.2831 | 224 | 228.8387 | 2.2831 | 221 | 226.5806 | 0.9132 | 222 | 225.5161 | 1.3699 |
c5 | 215 | 217 | 219.6129 | 0.9302 | 216 | 219.5161 | 0.4651 | 216 | 218.8387 | 0.4651 | 216 | 219.0645 | 0.4651 |
d1 | 60 | 60 | 61.9355 | 0 | 60 | 61.8065 | 0 | 60 | 62.1290 | 0 | 61 | 62.1613 | 1.6667 |
d2 | 66 | 67 | 68.2258 | 1.5152 | 67 | 68.0968 | 1.5152 | 67 | 68.1290 | 1.5152 | 67 | 67.7742 | 1.5152 |
d3 | 72 | 73 | 75.8065 | 1.3889 | 73 | 76.2903 | 1.3889 | 74 | 75.6774 | 2.7778 | 74 | 75.8387 | 2.7778 |
d4 | 62 | 62 | 63.0968 | 0 | 62 | 63.6774 | 0 | 62 | 63.2581 | 0 | 62 | 62.8387 | 0 |
d5 | 61 | 63 | 63.1613 | 3.2787 | 62 | 63.2903 | 1.6393 | 63 | 63.1613 | 3.2787 | 63 | 63.0323 | 3.2787 |
nre5 | - | 28 | 28.2813 | - | 28 | 28.5313 | - | 28 | 28.3125 | - | 28 | 28.1563 | - |
nrg5 | - | 171 | 175.3125 | - | 168 | 176.3125 | - | 170 | 175.0313 | - | 172 | 175.0625 | - |
nrh2 | - | 64 | 65.7419 | - | 64 | 66.0323 | - | 64 | 65.3226 | - | 64 | 65.2581 | - |
nrh4 | - | 59 | 60.9355 | - | 60 | 61.1935 | - | 59 | 60.4516 | - | 59 | 60.3548 | - |
nrh5 | - | 55 | 57.1613 | - | 55 | 57.5161 | - | 55 | 57 | - | 55 | 56.5484 | - |
SCA | PSA | GWO | |
---|---|---|---|
41 | 0.032526 | 0.017652 | 0.00505 |
42 | 0.083416 | 0.008453 | 0.178185 |
43 | 0.142326 | 0.017925 | 0.040147 |
44 | 0.673895 | 0.358608 | 0.17129 |
45 | 0.000777 | 0.000075 | 0.020949 |
46 | 0.777121 | 0.101089 | 0.947336 |
47 | 0.026426 | 0.027054 | 0.221067 |
48 | 0.049813 | 0.015255 | 0.092276 |
49 | 0.231335 | 0.000373 | 0.457734 |
410 | 0.971242 | 0.800105 | 0.837222 |
51 | 0.08422 | 0.204932 | 0.769852 |
52 | 0.656474 | 0.235486 | 0.368845 |
53 | 0.849024 | 0.509173 | 0.926297 |
54 | 0.378881 | 0.037574 | 0.588779 |
55 | 0.020766 | 0.000228 | 0.174886 |
56 | 0.194771 | 0.069321 | 0.212655 |
57 | 0.008287 | 0.006762 | 0.049149 |
58 | 0.990298 | 0.424729 | 0.538867 |
59 | 0.025665 | 0.003579 | 0.027499 |
510 | 0.379496 | 0.110218 | 0.883339 |
61 | 0.013689 | 0.00103 | 0.052988 |
62 | 0.396878 | 0.125416 | 0.666065 |
63 | 0.115385 | 0.09021 | 0.154446 |
64 | 0.297105 | 0.034655 | 0.552952 |
65 | 0.185046 | 0.147401 | 0.482672 |
a1 | 0.000253 | 0.008388 | 0.926324 |
a2 | 0.124053 | 0.002265 | 0.431456 |
a3 | 0.016308 | 0.000256 | 0.100149 |
a4 | 0.003371 | 0.012922 | 0.550884 |
a5 | 0.000524 | 0.082315 | 0.023963 |
b1 | 0.213058 | 0.151325 | 0.43297 |
b2 | 0.146666 | 0.038143 | 0.375167 |
b3 | 0.345372 | 0.245959 | 0.612847 |
b4 | 0.090897 | 0.002352 | 0.33707 |
b5 | 0.887149 | 0.548425 | 0.975947 |
c1 | 0.002907 | 0.001879 | 0.385972 |
c2 | 0.114905 | 0.028943 | 0.175642 |
c3 | 0.000398 | 0.0 | 0.539888 |
c4 | 0.002055 | 0.000006 | 0.039399 |
c5 | 0.026575 | 0.320787 | 0.991447 |
d1 | 0.892595 | 0.950455 | 0.506028 |
d2 | 0.010529 | 0.06074 | 0.033358 |
d3 | 0.31389 | 0.004401 | 0.887789 |
d4 | 0.039419 | 0.000385 | 0.025442 |
d5 | 0.504675 | 0.097037 | 0.250647 |
nre5 | 0.1169 | 0.000888 | 0.072876 |
nrg5 | 0.202966 | 0.009097 | 0.41873 |
nrh2 | 0.013674 | 0.003689 | 0.440986 |
nrh4 | 0.004821 | 0.000504 | 0.335568 |
nrh5 | 0.011639 | 0.000306 | 0.052988 |
Instance | Win | No Significant Difference | Loss |
---|---|---|---|
41 | 3 | 0 | 0 |
42 | 1 | 2 | 0 |
43 | 2 | 1 | 0 |
44 | 0 | 3 | 0 |
45 | 3 | 0 | 0 |
46 | 0 | 3 | 0 |
47 | 2 | 1 | 0 |
48 | 2 | 1 | 0 |
49 | 1 | 2 | 0 |
410 | 0 | 2 | 1 |
51 | 0 | 3 | 0 |
52 | 0 | 3 | 0 |
53 | 0 | 3 | 0 |
54 | 1 | 2 | 0 |
55 | 2 | 1 | 0 |
56 | 0 | 3 | 0 |
57 | 3 | 0 | 0 |
58 | 0 | 2 | 1 |
59 | 3 | 0 | 0 |
510 | 0 | 3 | 0 |
61 | 2 | 1 | 0 |
62 | 0 | 3 | 0 |
63 | 0 | 3 | 0 |
64 | 1 | 2 | 0 |
65 | 0 | 3 | 0 |
a1 | 2 | 1 | 0 |
a2 | 1 | 2 | 0 |
a3 | 2 | 1 | 0 |
a4 | 2 | 1 | 0 |
a5 | 2 | 1 | 0 |
b1 | 0 | 3 | 0 |
b2 | 1 | 2 | 0 |
b3 | 0 | 3 | 0 |
b4 | 1 | 2 | 0 |
b5 | 0 | 2 | 1 |
c1 | 2 | 1 | 0 |
c2 | 1 | 2 | 0 |
c3 | 2 | 1 | 0 |
c4 | 3 | 0 | 0 |
c5 | 1 | 1 | 1 |
d1 | 0 | 3 | 0 |
d2 | 2 | 1 | 0 |
d3 | 1 | 2 | 0 |
d4 | 3 | 0 | 0 |
d5 | 1 | 2 | 0 |
nre5 | 1 | 2 | 0 |
nrg5 | 1 | 2 | 0 |
nrh2 | 2 | 1 | 0 |
nrh4 | 2 | 1 | 0 |
nrh5 | 2 | 1 | 0 |
Total | 61 | 85 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leiva, D.; Ramos-Tapia, B.; Crawford, B.; Soto, R.; Cisternas-Caneo, F. A Novel Approach to Combinatorial Problems: Binary Growth Optimizer Algorithm. Biomimetics 2024, 9, 283. https://doi.org/10.3390/biomimetics9050283
Leiva D, Ramos-Tapia B, Crawford B, Soto R, Cisternas-Caneo F. A Novel Approach to Combinatorial Problems: Binary Growth Optimizer Algorithm. Biomimetics. 2024; 9(5):283. https://doi.org/10.3390/biomimetics9050283
Chicago/Turabian StyleLeiva, Dante, Benjamín Ramos-Tapia, Broderick Crawford, Ricardo Soto, and Felipe Cisternas-Caneo. 2024. "A Novel Approach to Combinatorial Problems: Binary Growth Optimizer Algorithm" Biomimetics 9, no. 5: 283. https://doi.org/10.3390/biomimetics9050283
APA StyleLeiva, D., Ramos-Tapia, B., Crawford, B., Soto, R., & Cisternas-Caneo, F. (2024). A Novel Approach to Combinatorial Problems: Binary Growth Optimizer Algorithm. Biomimetics, 9(5), 283. https://doi.org/10.3390/biomimetics9050283