Identification of Individual Target Molecules Using Antibody-Decorated DeepTipTM Atomic-Force Microscopy Probes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Functionalization of MicroDeckTM Substrates with Sulfo-LC-SPDP
2.3. Decoration of Sulfo-LC-SPDP Functionalized Substrates with LDH
2.4. Functionalization of DeepTipTM AFM Probes with Anti-LDH Antibodies
2.5. Affinity Microscopy Assays
3. Results and Discussions
3.1. Fluorescence Assays
3.1.1. MicroDeckTM Decorated with Sulfo-LC-SPDP
3.1.2. DeepTipTM AFM Probes Decorated with anti-LDH Antibodies
3.2. Enzymatic Assay
3.3. Affinity Microscopy Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Binnig, G.; Quate, C.F.; Gerber, C. Atomic Force Microscope. In Anonymous Scanning Tunneling Microscopy; Springer: Dordrecht, The Netherlands, 1986; pp. 55–58. [Google Scholar]
- Eroles, M.; Lopez-Alonso, J.; Ortega, A.; Boudier, T.; Gharzeddine, K.; Lafont, F.; Franz, C.M.; Millet, A.; Valotteau, C.; Rico, F. Coupled mechanical mapping and interference contrast microscopy reveal viscoelastic and adhesion hallmarks of monocyte differentiation into macrophages. Nanoscale 2023, 15, 12255–12269. [Google Scholar] [CrossRef] [PubMed]
- Martín-González, N.; Hernando-Pérez, M.; Condezo, G.N.; Pérez-Illana, M.; Šiber, A.; Reguera, D.; Ostapchuk, P.; Hearing, P.; Martín, C.S.; de Pablo, P.J. Adenovirus major core protein condenses DNA in clusters and bundles, modulating genome release and capsid internal pressure. Nucleic Acids Res. 2019, 47, 9231–9242. [Google Scholar] [CrossRef]
- Rigato, A.; Miyagi, A.; Scheuring, S.; Rico, F. High-frequency microrheology reveals cytoskeleton dynamics in living cells. Nat. Phys. 2017, 13, 771–775. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yang, J.; Tillieux, S.; Guo, Z.; Natividade, R.D.S.; Koehler, M.; Petitjean, S.; Cui, Z.; Alsteens, D. Stepwise Enzymatic-Dependent Mechanism of Ebola Virus Binding to Cell Surface Receptors Monitored by AFM. Nano Let. 2022, 22, 1641–1648. [Google Scholar] [CrossRef] [PubMed]
- Viljoen, A.; Mathelié-Guinlet, M.; Ray, A.; Strohmeyer, N.; Oh, Y.J.; Hinterdorfer, P.; Müller, D.J.; Alsteens, D.; Dufrêne, Y.F. Force spectroscopy of single cells using atomic force microscopy. Nat. Rev. Methods Primers 2021, 1, 63. [Google Scholar] [CrossRef]
- Delguste, M.; Zeippen, C.; Machiels, B.; Mast, J.; Gillet, L.; Alsteens, D. Multivalent binding of herpesvirus to living cells is tightly regulated during infection. Sci. Adv. 2018, 4, eaat1273. [Google Scholar] [CrossRef]
- Milles, L.F.; Schulten, K.; Gaub, H.E.; Bernardi, R.C. Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science 2018, 359, 1527–1533. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.W.; Shin, D.; Kwak, J.M.; Seog, J. Direct force measurement of single DNA-peptide interactions using atomic force microscopy. J. Mol. Recognit. 2013, 26, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Muddassir, M.; Manna, B.; Singh, P.; Singh, S.; Kumar, R.; Ghosh, A.; Sharma, D. Single-molecule force-unfolding of titin I27 reveals a correlation between the size of the surrounding anions and its mechanical stability. Chem. Commun. 2018, 54, 9635–9638. [Google Scholar] [CrossRef]
- Milles, L.; Gaub, H. Is mechanical receptor ligand dissociation driven by unfolding or unbinding? BioRxiv 2019, 132725398. [Google Scholar] [CrossRef]
- Bergkvist, M.; Cady, N.C. Chemical Functionalization and Bioconjugation Strategies for Atomic Force Microscope Cantilevers. Bioconjug. Protoc. 2011, 751, 381–400. [Google Scholar] [CrossRef]
- Volcke, C.; Gandhiraman, R.P.; Gubala, V.; Doyle, C.; Fonder, G.; Thiry, P.A.; Cafolla, A.A.; James, B.; Williams, D.E. Plasma functionalization of AFM tips for measurement of chemical interactions. J. Colloid Interface Sci. 2010, 348, 322–328. [Google Scholar] [CrossRef]
- Barattin, R.; Voyer, N. Chemical modifications of AFM tips for the study of molecular recognition events. Chem. Commun. 2008, 13, 1513–1532. [Google Scholar] [CrossRef]
- Wildling, L.; Unterauer, B.; Zhu, R.; Rupprecht, A.; Haselgrübler, T.; Rankl, C.; Ebner, A.; Vater, D.; Pollheimer, P.; Pohl, E.E.; et al. Linking of Sensor Molecules with Amino Groups to Amino-Functionalized AFM Tips. Bioconjug. Chem. 2011, 22, 1239–1248. [Google Scholar] [CrossRef]
- Sedlak, S.M.; Schendel, L.C.; Gaub, H.E.; Bernardi, R.C. Streptavidin/biotin: Tethering geometry defines unbinding mechanics. Sci. Adv. 2020, 6, eaay5999. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Ray, C.; Kirkpatrick, A.; Lad, N.; Akhremitchev, B.B. Effects of Multiple-Bond Ruptures on Kinetic Parameters Extracted from Force Spectroscopy Measurements: Revisiting Biotin-Streptavidin Interactions. Biophys. J. 2008, 95, 3964–3976. [Google Scholar] [CrossRef]
- Corregidor, D.; Tabraue, R.; Colchero, L.; Daza, R.; Elices, M.; Guinea, G.V.; Pérez-Rigueiro, J. High-Yield Characterization of Single Molecule Interactions with DeepTip[sup.TM] Atomic Force Microscopy Probes. Molecules 2023, 28, 226. [Google Scholar] [CrossRef]
- Daza, R.; Garrido-Arandia, M.; Corregidor-Ortiz, D.; Pérez, C.I.; Colchero, L.; Tabraue-Rubio, R.; Elices, M.; Guinea, G.V.; Diaz-Perales, A.; Pérez-Rigueiro, J. Statistical Study of Low-Intensity Single-Molecule Recognition Events Using DeepTipTM Probes: Application to the Pru p 3-Phytosphingosine System. Biomimetics 2023, 8, 595. [Google Scholar] [CrossRef] [PubMed]
- Hnasko, R. Elisa; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Kurien, B.T.; Scofield, R.H. Western blotting. Methods 2006, 38, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Urh, M.; Simpson, D.; Zhao, K. Chapter 26 Affinity Chromatography: General Methods. Meth. Enzymol. 2009, 463, 417–438. [Google Scholar] [CrossRef]
- Le, T.; Chang, P.; Benton, D.J.; McCauley, J.W.; Iqbal, M.; Cass, A.E. Dual recognition element lateral flow assay (DRELFA) towards multiplex strain-specific influenza virus detection. Anal. Chem. 2017, 89, 6781–6786. [Google Scholar] [CrossRef]
- Harada, Y.; Kuroda, M.; Ishida, A. Specific and Quantized Antigen—Antibody Interaction Measured by Atomic Force Microscopy. Langmuir 2000, 16, 708–715. [Google Scholar] [CrossRef]
- Ouerghi, O.; Touhami, A.; Othmane, A.; Ouada, H.B.; Martelet, C.; Fretigny, C.; Jaffrezic-Renault, N. Investigating antibody–antigen binding with atomic force microscopy. Sens. Actuators B Chem. 2002, 84, 167–175. [Google Scholar] [CrossRef]
- Hinterdorfer, P.; Dufrêne, Y.F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 2006, 3, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Marcuello, C.; de Miguel, R.; Lostao, A. Molecular Recognition of Proteins through Quantitative Force Maps at Single Molecule Level. Biomolecules 2022, 12, 594. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Hernández, M.; Daza, R.; Pérez-Rigueiro, J.; Elices, M.; Nieto-Márquez, J.; Guinea, G.V. Optimization of functionalization conditions for protein analysis by AFM. Appl. Surf. Sci. 2014, 317, 462–468. [Google Scholar] [CrossRef]
- Horcas, I.; Fernández, R.; Gómez-Rodríguez, J.M.; Colchero, J.; Gómez-Herrero, J.; Baro, A.M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 13705. [Google Scholar] [CrossRef]
- Pérez Rigueiro, J. Biological Materials and Biomaterials, 1st ed.; UPM Press: Madrid, Spain, 2023. [Google Scholar]
- Abbas, A.K.; Lichtman, A.H.; Pillai, S. Cellular and Molecular Immunology, 9th ed.; Elsevier: Philadelphia, PA, USA, 2018. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corregidor-Ortiz, D.; Daza, R.; Colchero, L.; Tabraue-Rubio, R.; Atienza, J.M.; Elices, M.; Guinea, G.V.; Pérez-Rigueiro, J. Identification of Individual Target Molecules Using Antibody-Decorated DeepTipTM Atomic-Force Microscopy Probes. Biomimetics 2024, 9, 192. https://doi.org/10.3390/biomimetics9040192
Corregidor-Ortiz D, Daza R, Colchero L, Tabraue-Rubio R, Atienza JM, Elices M, Guinea GV, Pérez-Rigueiro J. Identification of Individual Target Molecules Using Antibody-Decorated DeepTipTM Atomic-Force Microscopy Probes. Biomimetics. 2024; 9(4):192. https://doi.org/10.3390/biomimetics9040192
Chicago/Turabian StyleCorregidor-Ortiz, Daniel, Rafael Daza, Luis Colchero, Raquel Tabraue-Rubio, José Miguel Atienza, Manuel Elices, Gustavo V. Guinea, and José Pérez-Rigueiro. 2024. "Identification of Individual Target Molecules Using Antibody-Decorated DeepTipTM Atomic-Force Microscopy Probes" Biomimetics 9, no. 4: 192. https://doi.org/10.3390/biomimetics9040192
APA StyleCorregidor-Ortiz, D., Daza, R., Colchero, L., Tabraue-Rubio, R., Atienza, J. M., Elices, M., Guinea, G. V., & Pérez-Rigueiro, J. (2024). Identification of Individual Target Molecules Using Antibody-Decorated DeepTipTM Atomic-Force Microscopy Probes. Biomimetics, 9(4), 192. https://doi.org/10.3390/biomimetics9040192