The Functions of Phasic Wing-Tip Folding on Flapping-Wing Aerodynamics
Abstract
:1. Introduction
2. Results and Discussion
2.1. In-flight Wing-Tip Folding and Its Aerodynamic Effects
2.2. Bionic Design of the Flapping Mechanism
2.3. Testing of Wing Flapping and Folding Angles and Measurement of Aerodynamic Forces
3. Materials and Methods
3.1. Study Animals
3.2. Flapping Angles and Folding-Angle Acquisition
3.3. Aerodynamic Forces Measurement
3.4. Prototype Design and Fabrication
3.5. Simulation Setup
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bi, Y.; Lan, M.; Li, J.; Lai, S.; Chen, B.M. A lightweight autonomous MAV for indoor search and rescue. Asian J. Control 2019, 21, 1732–1744. [Google Scholar] [CrossRef]
- Lindqvist, B.; Kanellakis, C.; Mansouri, S.S.; Agha-Mohammadi, A.-A.; Nikolakopoulos, G. COMPRA: A COMPact Reactive Autonomy Framework for Subterranean MAV Based Search-And-Rescue Operations. J. Intell. Robot. Syst. 2022, 105, 49. [Google Scholar] [CrossRef]
- Solis, J.; Karlsson, C.; Johansson, S.; Richardsson, K. Towards the Development of an Automatic UAV-Based Indoor Environmental Monitoring System: Distributed Off-Board Control System for a Micro Aerial Vehicle. Appl. Sci. 2021, 11, 2347. [Google Scholar] [CrossRef]
- Hou, K.; Tan, T.; Wang, Z.; Wang, B.; Yan, Z. Scarab Beetle-Inspired Embodied-Energy Membranous-Wing Robot with Flapping-Collision Piezo-Mechanoreception and Mobile Environmental Monitoring. Adv. Funct. Mater. 2023, 34, 2303745. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, N.; Qu, F. Bio-inspired flapping wing robots with foldable or deformable wings: A review. Bioinspir. Biomim. 2023, 18, 011002. [Google Scholar] [CrossRef]
- Ma, K.Y.; Chirarattananon, P.; Fuller, S.B.; Wood, R.J. Controlled Flight of a Biologically Inspired, Insect-Scale Robot. Science 2013, 340, 603–607. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, H.; Helbling, E.F.; Jafferis, N.T.; Zufferey, R.; Ong, A.; Ma, K.; Gravish, N.; Chirarattananon, P.; Kovac, M.; et al. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Sci. Robot. 2017, 2, eaao5619. [Google Scholar] [CrossRef]
- Graule, M.A.; Chirarattananon, P.; Fuller, S.B.; Jafferis, N.T.; Ma, K.Y.; Spenko, M.; Kornbluh, R.; Wood, R.J. Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion. Science 2016, 352, 978–982. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, H.; Mao, J.; Chirarattananon, P.; Helbling, E.F.; Hyun, N.-S.P.; Clarke, D.R.; Wood, R.J. Controlled flight of a microrobot powered by soft artificial muscles. Nature 2019, 575, 324–329. [Google Scholar] [CrossRef]
- James, J.; Fuller, S. A high-voltage power electronics unit for flying insect robots that can modulate wing thrust. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 7212–7218. Available online: https://ieeexplore.ieee.org/document/9561869/ (accessed on 21 December 2023).
- Hines, L.; Campolo, D.; Sitti, M. Liftoff of a Motor-Driven, Flapping-Wing Microaerial Vehicle Capable of Resonance. IEEE Trans. Robot. 2014, 30, 220–232. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, W.; Zhang, Z. Liftoff of an Electromagnetically Driven Insect-Inspired Flapping-Wing Robot. IEEE Trans. Robot. 2016, 32, 1285–1289. [Google Scholar] [CrossRef]
- Lau, G.-K.; Lim, H.-T.; Teo, J.-Y.; Chin, Y.-W. Lightweight mechanical amplifiers for rolled dielectric elastomer actuators and their integration with bio-inspired wing flappers. Smart Mater. Struct. 2014, 23, 025021. [Google Scholar] [CrossRef]
- Phan, H.V.; Kang, T.; Park, H.C. Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control. Bioinspir. Biomim. 2017, 12, 036006. [Google Scholar] [CrossRef]
- Gong, D.; Lee, D.; Shin, S.; Kim, S. String-based flapping mechanism and modularized trailing edge control system for insect-type FWMAV. Int. J. Micro Air Veh. 2019, 11, 175682931984254. [Google Scholar] [CrossRef]
- Phan, H.V.; Aurecianus, S.; Kang, T.; Park, H.C. KUBeetle-S: An insect-like, tailless, hover-capable robot that can fly with a low-torque control mechanism. Int. J. Micro Air Veh. 2019, 11, 175682931986137. [Google Scholar] [CrossRef]
- Phan, H.V.; Park, H.C. Mechanisms of collision recovery in flying beetles and flapping-wing robots. Science 2020, 370, 1214–1219. [Google Scholar] [CrossRef]
- Karásek, M.; Muijres, F.T.; De Wagter, C.; Remes, B.D.W.; de Croon, G.C.H.E. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns. Science 2018, 361, 1089–1094. [Google Scholar] [CrossRef]
- Tijmons, S.; Karásek, M.; de Croon, G. Attitude control system for a lightweight flapping wing MAV. Bioinspir. Biomim. 2018, 13, 056004. [Google Scholar] [CrossRef]
- Elzinga, M.J.; van Breugel, F.; Dickinson, M.H. Strategies for the stabilization of longitudinal forward flapping flight revealed using a dynamically-scaled robotic fly. Bioinspir. Biomim. 2014, 9, 025001. [Google Scholar] [CrossRef]
- Beatus, T.; Guckenheimer, J.M.; Cohen, I. Controlling roll perturbations in fruit flies. J. R. Soc. Interface 2015, 12, 20150075. [Google Scholar] [CrossRef]
- Sun, M. Insect flight dynamics: Stability and control. Rev. Mod. Phys. 2014, 86, 615–646. [Google Scholar] [CrossRef]
- Wootton, R. From insects to microvehicles. Nature 2000, 403, 144–145. [Google Scholar] [CrossRef]
- Li, Y.; Cao, F.; Doan, T.T.V.; Sato, H. Controlled banked turns in coleopteran flight measured by a miniature wireless inertial measurement unit. Bioinspir. Biomim. 2016, 11, 056018. [Google Scholar] [CrossRef]
- Haas, F.; Gorb, S.; Blickhan, R. The function of resilin in beetle wings. Proc. R. Soc. B Biol. Sci. 2000, 267, 1375–1381. [Google Scholar] [CrossRef] [PubMed]
- Chapman, R.F. The Insects: Structure and Function, 5th ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Fu, F.; Li, Y.; Wang, H.; Li, B.; Sato, H. The function of pitching in Beetle’s flight revealed by insect-wearable backpack. Biosens. Bioelectron. 2022, 198, 113818. [Google Scholar] [CrossRef] [PubMed]
- Ajanic, E.; Feroskhan, M.; Mintchev, S.; Noca, F.; Floreano, D. Bioinspired wing and tail morphing extends drone flight capabilities. Sci. Robot. 2020, 5, eabc2897. [Google Scholar] [CrossRef] [PubMed]
- Cong, M.; Li, J. Design and analysis of three-dimensional bio-inspired flapping-wing mechanism based on spatial RURS linkage. J. Aerosp. Power 2019, 34, 692–700. [Google Scholar]
- Vance, J.T.; Altshuler, D.L.; Dickson, W.B.; Dickinson, M.H.; Roberts, S.P. Hovering Flight in the Honeybee Apis mellifera: Kinematic Mechanisms for Varying Aerodynamic Forces. Physiol. Biochem. Zool. 2014, 87, 870–881. [Google Scholar] [CrossRef]
- Combes, S.A.; Gagliardi, S.F.; Switzer, C.M.; Dillon, M.E. Kinematic flexibility allows bumblebees to increase energetic efficiency when carrying heavy loads. Sci. Adv. 2020, 6, eaay3115. [Google Scholar] [CrossRef] [PubMed]
- Gau, J.; Gemilere, R.; LDS-VIP (FM Subteam); Lynch, J.; Gravish, N.; Sponberg, S. Rapid frequency modulation in a resonant system: Aerial perturbation recovery in hawkmoths. Proc. R. Soc. B Biol. Sci. 2021, 288, 20210352. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sato, H.; Li, B. Feedback Altitude Control of a Flying Insect–Computer Hybrid Robot. IEEE Trans. Robot. 2021, 37, 2041–2051. [Google Scholar] [CrossRef]
- Li, Y.; Wu, J.; Sato, H. Feedback Control-Based Navigation of a Flying Insect-Machine Hybrid Robot. Soft Robot. 2018, 10, 365–374. [Google Scholar] [CrossRef]
- Oh, S.; Lee, B.; Park, H.; Choi, H.; Kim, S.-T. A numerical and theoretical study of the aerodynamic performance of a hovering rhinoceros beetle (Trypoxylus dichotomus). J. Fluid Mech. 2020, 885, A18. [Google Scholar] [CrossRef]
- Nedunchezian, K. Effects of Flapping Wing Kinematics on the Aeroacoustics of Hovering Flight. J. Sound Vib. 2019, 442, 366–383. [Google Scholar] [CrossRef]
- Naka, H.; Hashimoto, H. Effects of deformation and vibration characteristics of wings on flapping flight. Mech. Eng. J. 2015, 2, 14-00262. [Google Scholar] [CrossRef]
- Zheng, W.; Zhao, F. Research on flexible hinges. Opt. Precis. Eng. 2003, 11, 89–93. [Google Scholar]
Material Type | Density (g/cm3) | Elastic Modulus (GPa) |
---|---|---|
Carbon fiber | 1.4~1.8 | 120~240 |
Polyformaldehyde resin | 1.42 | 2~4 |
Bamboo wood | 0.6~0.8 | 20~30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Li, K.; Fu, F.; Li, Y.; Li, B. The Functions of Phasic Wing-Tip Folding on Flapping-Wing Aerodynamics. Biomimetics 2024, 9, 183. https://doi.org/10.3390/biomimetics9030183
Li Y, Li K, Fu F, Li Y, Li B. The Functions of Phasic Wing-Tip Folding on Flapping-Wing Aerodynamics. Biomimetics. 2024; 9(3):183. https://doi.org/10.3390/biomimetics9030183
Chicago/Turabian StyleLi, Yiming, Keyu Li, Fang Fu, Yao Li, and Bing Li. 2024. "The Functions of Phasic Wing-Tip Folding on Flapping-Wing Aerodynamics" Biomimetics 9, no. 3: 183. https://doi.org/10.3390/biomimetics9030183
APA StyleLi, Y., Li, K., Fu, F., Li, Y., & Li, B. (2024). The Functions of Phasic Wing-Tip Folding on Flapping-Wing Aerodynamics. Biomimetics, 9(3), 183. https://doi.org/10.3390/biomimetics9030183