Gecko-Inspired Controllable Adhesive: Structure, Fabrication, and Application
Abstract
:1. Introduction
2. Adhesion Mechanism of Gecko’s Feet
2.1. The Structure of Gecko’s Feet and the Sources of Adhesion
2.2. Gecko Controllable Adhesion Mechanism
2.2.1. High Adhesion Strength
2.2.2. Controllable Adhesion and Easy Detachment
3. Gecko-Inspired Controllable Adhesive
3.1. Gecko-Inspired Controllable Adhesive Based on Asymmetric Structures
3.2. Gecko-Inspired Controllable Adhesives Based on Active Modulation
3.2.1. Adhesives with SMP Microstructures
3.2.2. Adhesives with Magnetic Microstructures
3.2.3. Adhesives with Controllable Back Layers
4. Fabrication and Materials
4.1. Fabrication
4.1.1. Photolithography
4.1.2. Ultraprecision Machining Technology
4.1.3. 3D Printing
4.2. Materials
- (1)
- Modulus of elasticity of the material. The modulus of elasticity affects the degree of deformation of the adherent surface under the action of shear force, where the lower the modulus of elasticity, the softer the adhesive surface, as only a small preload can be generated with the wall of the contact area. However, too small a modulus of elasticity will lead to a gecko-inspired controllable adhesive of the microstructure between each other, leading to a gecko-inspired controllable adhesive surface of the self-adhesive properties of the decline, while a higher modulus of elasticity will help the self-cleaning of the adhesive surface. Therefore, materials with a suitable elastic modulus should be selected for the preparation of the adhesive surface.
- (2)
- Material fluidity. The microstructure of the gecko-inspired controllable adhesive is usually at the micron level, so the casting material needs to have a high fluidity in order to completely fill the cavity of the mold. The index used to measure the fluidity of the material is generally the viscosity of the material; too much viscosity will lead to a slow filling process and require additional pressure to fill. At the same time, the low viscosity of most of the material does not have a strong adhesive force after curing, making it easy to separate from the mold surface.
- (3)
- Tensile strength. The casting material needs to overcome the vacuum and the friction of the mold surface to separate from the mold after curing. Due to the micron size of the microstructure, the mold will be damaged if the casting material breaks during the demolding process and thus falls into the mold.
- (4)
- Adhesion after curing. The adhesion of the casting material after curing and demolding also has an effect on the performance of the gecko-inspired controllable adhesive, and the adhesion strength of the material with adhesion after curing is generally higher than that of the material without adhesion.
- (5)
- Curing type. There are two main kinds of curing type for casting materials: heating curing and room temperature curing. Heating curing requires the corresponding molds to have the nature of high temperature resistance, which affects the selection of a process for the preparation of a gecko-inspired controllable adhesion surface.
5. Applications
5.1. Climbing Robots
5.2. Gecko Grippers
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Federle, W.; Barnes, W.J.P.; Baumgartner, W.; Drechsler, P.; Smith, J.M. Wet but not slippery: Boundary friction in tree frog adhesive toe pads. J. R. Soc. Interface 2006, 3, 689–697. [Google Scholar] [CrossRef]
- Drotlef, D.; Stepien, L.; Kappl, M.; Barnes, W.J.P.; Butt, H.; del Campo, A. Insights into the Adhesive Mechanisms of Tree Frogs using Artificial Mimics. Adv. Funct. Mater. 2013, 23, 1137–1146. [Google Scholar] [CrossRef]
- Iturri, J.; Xue, L.; Kappl, M.; García-Fernández, L.; Barnes, W.J.P.; Butt, H.; del Campo, A. Torrent Frog-Inspired Adhesives: Attachment to Flooded Surfaces. Adv. Funct. Mater. 2015, 25, 1499–1505. [Google Scholar] [CrossRef]
- Smith, A.M. Cephalopod Sucker Design and the Physical Limits to Negative Pressure. J. Exp. Biol. 1996, 199, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Tramacere, F.; Beccai, L.; Kuba, M.; Gozzi, A.; Bifone, A.; Mazzolai, B. The Morphology and Adhesion Mechanism of Octopus vulgaris Suckers. PLoS ONE 2013, 8, e65074. [Google Scholar] [CrossRef]
- Kier, W.M. The Structure and Adhesive Mechanism of Octopus Suckers. Integr. Comp. Biol. 2002, 42, 1146–1153. [Google Scholar] [CrossRef] [PubMed]
- Sikdar, S.; Rahman, M.H.; Siddaiah, A.; Menezes, P.L. Gecko-Inspired Adhesive Mechanisms and Adhesives for Robots—A Review. Robotics 2022, 11, 143. [Google Scholar] [CrossRef]
- Tamarin, A.; Lewis, P.; Askey, J. The structure and formation of the byssus attachment plaque in Mytilus. J. Morphol. 1976, 149, 199–221. [Google Scholar] [CrossRef]
- Waite, J.H.; Tanzer, M.L. Polyphenolic Substance of Mytilus edulis: Novel Adhesive Containing L-Dopa and Hydroxyproline. Science 1981, 212, 1038–1040. [Google Scholar] [CrossRef]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science 2007, 318, 426–430. [Google Scholar] [CrossRef]
- Zhao, B.; Pesika, N.; Rosenberg, K.; Tian, Y.; Zeng, H.; McGuiggan, P.; Autumn, K.; Israelachvili, J. Adhesion and Friction Force Coupling of Gecko Setal Arrays: Implications for Structured Adhesive Surfaces. Langmuir 2008, 24, 1517–1524. [Google Scholar] [CrossRef]
- Ruibal, R.; Ernst, V. The structure of the digital setae of lizards. J. Morphol. 1965, 117, 271–293. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tao, D.; Lu, H.; Bai, P.; Liu, Z.; Ma, L.; Meng, Y.; Tian, Y. Recent developments in gecko-inspired dry adhesive surfaces from fabrication to application. Surf. Topogr. Metrol. Prop. 2019, 7, 023001. [Google Scholar] [CrossRef]
- Autumn, K.; Hansen, W. Ultrahydrophobicity indicates a non-adhesive default state in gecko setae. J. Comp. Physiol. A 2006, 192, 1205–1212. [Google Scholar] [CrossRef]
- Simmermacher, G. Untersuchungen über Haftapparate an Tar- salgliedern von Insekten. Zeitschr 1884, 225–238. [Google Scholar]
- Hora, S.L. The Adhesive Apparatus of the “Sucking-fish”. Nature 1923, 111, 668. [Google Scholar] [CrossRef]
- Dellit, W.-D. Zur Anatomie und Physiologie der Geckozehe. Jena Z. Naturw 1934, 68, 613–656. [Google Scholar]
- Israelachvili, J.N. Intermolecular and Surface Forces, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 191–499. [Google Scholar]
- Autumn, K. Mechanisms of Adhesion in Geckos. Integr. Comp. Biol. 2002, 42, 1081–1090. [Google Scholar] [CrossRef]
- Autumn, K.; Liang, Y.A.; Hsieh, S.T.; Zesch, W.; Chan, W.P.; Kenny, T.W.; Fearing, R.; Full, R.J. Adhesive force of a single gecko foot-hair. Nature 2000, 405, 681–685. [Google Scholar] [CrossRef]
- Huber, G.; Mantz, H.; Spolenak, R.; Mecke, K.; Jacobs, K.; Gorb, S.N.; Arzt, E. Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc. Natl. Acad. Sci. USA 2005, 102, 16293–16296. [Google Scholar] [CrossRef]
- Sun, W.; Neuzil, P.; Kustandi, T.S.; Oh, S.; Samper, V.D. The Nature of the Gecko Lizard Adhesive Force. Biophys. J. 2005, 89, L14–L17. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.W.; Bhushan, B. The adhesion model considering capillarity for gecko attachment system. J. R. Soc. Interface 2008, 5, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Puthoff, J.B.; Prowse, M.S.; Wilkinson, M.; Autumn, K. Changes in materials properties explain the effects of humidity on gecko adhesion. J. Exp. Biol. 2010, 213, 3699–3704. [Google Scholar] [CrossRef] [PubMed]
- Pesika, N.S.; Zeng, H.; Kristiansen, K.; Zhao, B.; Tian, Y.; Autumn, K.; Israelachvili, J. Gecko adhesion pad: A smart surface? J. Phys. Condens. Matter 2009, 21, 464132. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.R. Zur Anatomie und Physiologie der Geckopfote. Jena Z. Naturw 1904, 39, 551. [Google Scholar]
- Izadi, H.; Stewart, K.M.E.; Penlidis, A. Role of contact electrification and electrostatic interactions in gecko adhesion. J. R. Soc. Interface 2014, 11, 20140371. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wang, Z.; Li, Y.; Dai, Z. Electrostatic attraction caused by triboelectrification in climbing geckos. Friction 2022, 10, 44–53. [Google Scholar] [CrossRef]
- Singla, S.; Jain, D.; Zoltowski, C.M.; Voleti, S.; Stark, A.Y.; Niewiarowski, P.H.; Dhinojwala, A. Direct evidence of acid-base interactions in gecko adhesion. Sci. Adv. 2021, 7, eabd9410. [Google Scholar] [CrossRef]
- Sameoto, D.; Menon, C. Recent advances in the fabrication and adhesion testing of biomimetic dry adhesives. Smart Mater. Struct. 2010, 19, 103001. [Google Scholar] [CrossRef]
- Parness, A.; Heverly, M.; Hilgemann, E.; Copel, D.; Wettels, N.; Hilgendorf, T.; White, V.; Kennedy, B. ON-off Adhesive Grippers for Earth-Orbit. In Proceedings of the AIAA SPACE 2013 Conference and Exposition, San Diego, CA, USA, 10 September 2013. [Google Scholar]
- Billings, T.L.; McGown, R.D.; York, C.L.; Walden, B. Gecko-Tech in Planetary Exploration and Base Operations. In Proceedings of the Space 2002 and Robotics, Albuquerque, NM, USA, 17 March 2002; pp. 64–70. [Google Scholar]
- Irschick, D. A comparative analysis of clinging ability among pad-bearing lizards. Biol. J. Linn. Soc. 1996, 59, 21–35. [Google Scholar] [CrossRef]
- Autumn, K.; Majidi, C.; Groff, R.E.; Dittmore, A.; Fearing, R. Effective elastic modulus of isolated gecko setal arrays. J. Exp. Biol. 2006, 209, 3558–3568. [Google Scholar] [CrossRef] [PubMed]
- Bonser, R.H.C.; Purslow, P.P. The Young’s Modulus of Feather Keratin. J. Exp. Biol. 1995, 198, 1029–1033. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.P. The morphological basis of weight-bearing in the scansors of the tokay gecko (Reptilia: Sauria). Can. J. Zool. 1986, 64, 948–955. [Google Scholar] [CrossRef]
- Cromroy, H.L.; Wainwright, S.A.; Biggs, W.D.; Currey, J.D.; Gosline, J.M. Mechanical Design in Organisms. Fla. Entomol. 1976, 59, 320. [Google Scholar] [CrossRef]
- Creton, C.; Ciccotti, M. Fracture and adhesion of soft materials: A review. Rep. Prog. Phys. 2016, 79, 046601. [Google Scholar] [CrossRef] [PubMed]
- Greiner, C.; Spolenak, R.; Arzt, E. Adhesion design maps for fibrillar adhesives: The effect of shape. Acta Biomater. 2009, 5, 597–606. [Google Scholar] [CrossRef]
- Yu, J.; Chary, S.; Das, S.; Tamelier, J.; Pesika, N.S.; Turner, K.L.; Israelachvili, J.N. Gecko-Inspired Dry Adhesive for Robotic Applications. Adv. Funct. Mater. 2011, 21, 3010–3018. [Google Scholar] [CrossRef]
- Autumn, K.; Niewiarowski, P.H.; Puthoff, J.B. Gecko Adhesion as a Model System for Integrative Biology, Interdisciplinary Science, and Bioinspired Engineering. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 445–470. [Google Scholar] [CrossRef]
- Autumn, K.; Dittmore, A.; Santos, D.; Spenko, M.; Cutkosky, M. Frictional adhesion: A new angle on gecko attachment. J. Exp. Biol. 2006, 209, 3569–3579. [Google Scholar] [CrossRef]
- Tian, Y.; Tao, D.; Pesika, N.; Wan, J.; Meng, Y.; Zhang, X. Flexible Control and Coupling of Adhesion and Friction of Gecko Setal Array During Sliding. Tribol. Online 2015, 10, 106–114. [Google Scholar] [CrossRef]
- Tian, Y.; Pesika, N.; Zeng, H.; Rosenberg, K.; Zhao, B.; McGuiggan, P.; Autumn, K.; Israelachvili, J. Adhesion and friction in gecko toe attachment and detachment. Proc. Natl. Acad. Sci. USA 2006, 103, 19320–19325. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Z.; Wang, B.; Yuan, Q.; Weng, Z.; Dai, Z. Reversible Adhesive Bio-Toe with Hierarchical Structure Inspired by Gecko. Biomimetics 2023, 8, 40. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Bhushan, B. Fabrication and characterization of hierarchical nanostructured smart adhesion surfaces. J. Colloid Interface Sci. 2012, 372, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Dubonos, S.V.; Grigorieva, I.V.; Novoselov, K.S.; Zhukov, A.A.; Shapoval, S.Y. Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2003, 2, 461–463. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhao, A.; Jiang, R.; Wang, D.; Li, D.; Guo, H.; Tao, W.; Gan, Z.; Zhang, M. Regulation of the elastic modulus of polyurethane microarrays and its influence on gecko-inspired dry adhesion. Appl. Surf. Sci. 2011, 257, 3336–3340. [Google Scholar] [CrossRef]
- Yurdumakan, B.; Raravikar, N.R.; Ajayan, P.M.; Dhinojwala, A. Synthetic gecko foot-hairs from multiwalled carbon nanotubes. Chem. Commun. 2005, 30, 3799. [Google Scholar] [CrossRef] [PubMed]
- Schubert, B.; Lee, J.; Majidi, C.; Fearing, R.S. Sliding-induced adhesion of stiff polymer microfibre arrays. II. Microscale behaviour. J. R. Soc. Interface 2008, 5, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Kovalev, A.; Thöle, F.; Rengarajan, G.T.; Steinhart, M.; Gorb, S.N. Tailoring Normal Adhesion of Arrays of Thermoplastic, Spring-like Polymer Nanorods by Shaping Nanorod Tips. Langmuir 2012, 28, 10781–10788. [Google Scholar] [CrossRef]
- Gorb, S.; Varenberg, M.; Peressadko, A.; Tuma, J. Biomimetic mushroom-shaped fibrillar adhesive microstructure. J. R. Soc. Interface 2007, 4, 271–275. [Google Scholar] [CrossRef]
- Greiner, C.; del Campo, A.; Arzt, E. Adhesion of Bioinspired Micropatterned Surfaces: Effects of Pillar Radius, Aspect Ratio, and Preload. Langmuir 2007, 23, 3495–3502. [Google Scholar] [CrossRef]
- del Campo, A.; Greiner, C.; Arzt, E. Contact Shape Controls Adhesion of Bioinspired Fibrillar Surfaces. Langmuir 2007, 23, 10235–10243. [Google Scholar] [CrossRef] [PubMed]
- Kang, O.H.; Lee, S.H.; Yun, J.H.; Yi, H.; Kwak, M.K.; Lee, S.R. Adhesion tunable bio-inspired dry adhesives by twisting. Int. J. Precis. Eng. Manuf. 2017, 18, 1433–1437. [Google Scholar] [CrossRef]
- Peattie, A.M.; Majidi, C.; Corder, A.; Full, R.J. Ancestrally high elastic modulus of gecko setal β-keratin. J. R. Soc. Interface 2007, 4, 1071–1076. [Google Scholar] [CrossRef] [PubMed]
- Gravish, N.; Wilkinson, M.; Autumn, K. Frictional and elastic energy in gecko adhesive detachment. J. R. Soc. Interface 2008, 5, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Aksak, B.; Murphy, M.P.; Sitti, M. Adhesion of biologically inspired vertical and angled polymer microfiber arrays. Langmuir 2007, 23, 3322–3332. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.; Spenko, M.; Parness, A.; Kim, S.; Cutkosky, M. Directional adhesion for climbing: Theoretical and practical considerations. J. Adhes. Sci. Technol. 2007, 21, 1317–1341. [Google Scholar] [CrossRef]
- Kim, T.I.; Jeong, H.E.; Suh, K.Y.; Lee, H.H. Stooped nanohairs: Geometry-controllable, unidirectional, reversible, and robust Gecko-like dry adhesive. Adv. Mater. 2009, 21, 2276–2281. [Google Scholar] [CrossRef]
- Yao, H.; Rocca, G.D.; Guduru, P.R.; Gao, H. Adhesion and sliding response of a biologically inspired fibrillar surface: Experimental observations. J. R. Soc. Interface 2008, 5, 723–733. [Google Scholar] [CrossRef]
- Lee, J.; Fearing, R.S.; Komvopoulos, K. Directional adhesion of gecko-inspired angled microfiber arrays. Appl. Phys. Lett. 2008, 93, 191910. [Google Scholar] [CrossRef]
- Chary, S.; Tamelier, J.; Turner, K. A microfabricated gecko-inspired controllable and reusable dry adhesive. Smart Mater. Struct. 2013, 22, 025013. [Google Scholar] [CrossRef]
- Parness, A.; Soto, D.; Esparza, N.; Gravish, N.; Wilkinson, M.; Autumn, K.; Cutkosky, M. A microfabricated wedge-shaped adhesive array displaying gecko-like dynamic adhesion, directionality and long lifetime. J. R. Soc. Interface 2009, 6, 1223–1232. [Google Scholar] [CrossRef] [PubMed]
- Day, P.; Eason, E.V.; Esparza, N.; Christensen, D.; Cutkosky, M. Microwedge Machining for the Manufacture of Directional Dry Adhesives. J. Micro Nano-Manuf. 2013, 1, 011001. [Google Scholar] [CrossRef]
- Tao, D.; Gao, X.; Lu, H.; Liu, Z.; Li, Y.; Tong, H.; Pesika, N.; Meng, Y.; Tian, Y. Controllable Anisotropic Dry Adhesion in Vacuum: Gecko Inspired Wedged Surface Fabricated with Ultraprecision Diamond Cutting. Adv. Funct. Mater. 2017, 27, 1606576. [Google Scholar] [CrossRef]
- Kerst, C.; Suresh, S.A.; Cutkosky, M.R. Creating Metal Molds for Directional Gecko-Inspired Adhesives. J. Micro Nano-Manuf. 2020, 8, 011004. [Google Scholar] [CrossRef]
- Zhou, T.; Ruan, B.; Che, J.; Li, H.; Chen, X.; Jiang, Z. Gecko-Inspired Biomimetic Surfaces with Annular Wedge Structures Fabricated by Ultraprecision Machining and Replica Molding. ACS Omega 2021, 6, 6757–6765. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, X.; Mei, T.; Sun, S. Mechanical analyses on the digital behaviour of the Tokay gecko (Gekko gecko) based on a multi-level directional adhesion model. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20150085. [Google Scholar] [CrossRef] [PubMed]
- Filippov, A.E.; Gorb, S.N. Spatial model of the gecko foot hair: Functional significance of highly specialized non-uniform geometry. Interface Focus 2015, 5, 20140065. [Google Scholar] [CrossRef] [PubMed]
- Suresh, S.A.; Kerst, C.F.; Cutkosky, M.R.; Hawkes, E.W. Spatially variant microstructured adhesive with one-way friction. J. R. Soc. Interface 2019, 16, 20180705. [Google Scholar] [CrossRef]
- Murphy, M.P.; Aksak, B.; Sitti, M. Adhesion and anisotropic friction enhancements of angled heterogeneous micro-fiber arrays with spherical and spatula tips. J. Adhes. Sci. Technol. 2007, 21, 1281–1296. [Google Scholar] [CrossRef]
- Jeong, H.E.; Lee, J.-K.; Kim, H.N.; Moon, S.H.; Suh, K.Y. A nontransferring dry adhesive with hierarchical polymer nanohairs. Proc. Natl. Acad. Sci. USA 2009, 106, 5639–5644. [Google Scholar] [CrossRef]
- Gwon, M.; Park, G.; Hong, D.; Park, Y.J.; Han, S.; Kang, D.; Koh, J.S. Soft Directional Adhesion Gripper Fabricated by 3D Printing Process for Gripping Flexible Printed Circuit Boards. Int. J. Precis. Eng. Manuf. Green Technol. 2022, 9, 1151–1163. [Google Scholar] [CrossRef]
- Kim, S.; Aksak, B.; Sitti, M. Enhanced friction of elastomer microfiber adhesives with spatulate tips. Appl. Phys. Lett. 2007, 91, 221913. [Google Scholar] [CrossRef]
- Carbone, G.; Pierro, E. Sticky Bio-inspired Micropillars: Finding the Best Shape. Small 2012, 8, 1449–1454. [Google Scholar] [CrossRef]
- del Campo, A.; Greiner, C.; Álvarez, I.; Arzt, E. Patterned Surfaces with Pillars with Controlled 3D Tip Geometry Mimicking Bioattachment Devices. Adv. Mater. 2007, 19, 1973–1977. [Google Scholar] [CrossRef]
- Murphy, M.P.; Aksak, B.; Sitti, M. Gecko-inspired directional and controllable adhesion. Small 2009, 5, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, H.; Shao, J.; Ding, Y. Fabrication of Well-Defined Mushroom-Shaped Structures for Biomimetic Dry Adhesive by Conventional Photolithography and Molding. ACS Appl. Mater. Interfaces 2014, 6, 2213–2218. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, X.; Tian, H.; Hu, H.; Tian, Y.; Shao, J.; Ding, Y. Rectangle-capped and tilted micropillar array for enhanced anisotropic antishearing in biomimetic adhesion. J. R. Soc. Interface 2015, 12, 20150090. [Google Scholar] [CrossRef] [PubMed]
- Busche, J.F.; Starke, G.; Knickmeier, S.; Dietzel, A. Controllable dry adhesion based on two-photon polymerization and replication molding for space debris removal. Micro Nano Eng. 2020, 7, 100052. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, H.; Shao, J.; Sameoto, D.; Li, X.; Wang, L.; Hu, H.; Ding, Y.; Lu, B. Switchable Dry Adhesion with Step-like Micropillars and Controllable Interfacial Contact. ACS Appl. Mater. Interfaces 2016, 8, 10029–10037. [Google Scholar] [CrossRef]
- Pang, C.; Kim, J.K.; Wu, Y.; Wang, M.Y.; Yu, H.; Sitti, M. Bioinspired Microstructured Adhesives with Facile and Fast Switchability for Part Manipulation in Dry and Wet Conditions. Adv. Funct. Mater. 2023, 33, 2303116. [Google Scholar] [CrossRef]
- Jin, K.; Cremaldi, J.C.; Erickson, J.S.; Tian, Y.; Israelachvili, J.N.; Pesika, N.S. Biomimetic Bidirectional Switchable Adhesive Inspired by the Gecko. Adv. Funct. Mater. 2014, 24, 574–579. [Google Scholar] [CrossRef]
- Reddy, S.; Arzt, E.; del Campo, A. Bioinspired surfaces with switchable adhesion. Adv. Mater. 2007, 19, 3833–3837. [Google Scholar] [CrossRef]
- Kim, S.; Sitti, M.; Xie, T.; Xiao, X. Reversible dry micro-fibrillar adhesives with thermally controllable adhesion. Soft Matter 2009, 5, 3689. [Google Scholar] [CrossRef]
- Tan, D.; Wang, X.; Liu, Q.; Shi, K.; Yang, B.; Liu, S.; Wu, Z.S.; Xue, L. Switchable Adhesion of Micropillar Adhesive on Rough Surfaces. Small 2019, 15, 1904248. [Google Scholar] [CrossRef] [PubMed]
- Kroner, E. Switchable bio-inspired adhesives. Bioinspiration Biomim. Bioreplication 2015, 9429, 94290F. [Google Scholar]
- Eisenhaure, J.D.; Xie, T.; Varghese, S.; Kim, S. Microstructured shape memory polymer surfaces with reversible dry adhesion. ACS Appl. Mater. Interfaces 2013, 5, 7714–7717. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.; Eisenhaure, J.; Kim, S. Micro-wedge array surface of a shape memory polymer as a reversible dry adhesive. Extrem. Mech. Lett. 2016, 9, 207–214. [Google Scholar] [CrossRef]
- Shao, Y.; Zhao, J.; Fan, Y.; Wan, Z.; Lu, L.; Zhang, Z.; Ming, W.; Ren, L. Shape memory superhydrophobic surface with switchable transition between “Lotus Effect” to “Rose Petal Effect”. Chem. Eng. J. 2020, 382, 122989. [Google Scholar] [CrossRef]
- Wang, Y.; Lai, H.; Cheng, Z.; Zhang, H.; Zhang, E.; Lv, T.; Liu, Y.; Jiang, L. Gecko toe pads inspired: In situ switchable superhydrophobic shape memory adhesive film. Nanoscale 2019, 11, 8984–8993. [Google Scholar] [CrossRef]
- Park, J.K.; Eisenhaure, J.D.; Kim, S. Reversible Underwater Dry Adhesion of a Shape Memory Polymer. Adv. Mater. Interfaces 2019, 6, 1801542. [Google Scholar] [CrossRef]
- Northen, M.T.; Greiner, C.; Arzt, E.; Turner, K.L. A gecko-inspired reversible adhesive. Adv. Mater. 2008, 20, 3905–3909. [Google Scholar] [CrossRef]
- Drotlef, D.M.; Blümler, P.; del Campo, A. Magnetically actuated patterns for bioinspired reversible adhesion (dry and wet). Adv. Mater. 2014, 26, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Yang, L.; Li, S.; Guo, Y.; Zhao, Z. Magnetic-field-driven switchable adhesion of NdFeB/PDMS composite with gecko-like surface. Nano Res. 2023, 16, 6840–6848. [Google Scholar] [CrossRef]
- Wang, Z. Slanted Functional Gradient Micropillars for Optimal Bioinspired Dry Adhesion. ACS Nano 2018, 12, 1273–1284. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Sun, L.Z. Dynamic mechanical behavior of magnetorheological nanocomposites filled with carbon nanotubes. Appl. Phys. Lett. 2011, 99, 131912. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, P.; Yang, X.; Zhang, Y.; Zhang, J.; He, X.; Gu, P.; Gong, X.; Zhao, Y. Rapidly switchable double-layered adhesive modified by magnetic field. Chem. Eng. J. 2022, 438, 135441. [Google Scholar] [CrossRef]
- Kim, S.; Sitti, M.; Hui, C.-Y.; Long, R.; Jagota, A. Effect of backing layer thickness on adhesion of single-level elastomer fiber arrays. Appl. Phys. Lett. 2007, 91, 161905. [Google Scholar] [CrossRef]
- Long, R.; Hui, C.-Y.; Kim, S.; Sitti, M. Modeling the soft backing layer thickness effect on adhesion of elastic microfiber arrays. J. Appl. Phys. 2008, 104, 044301. [Google Scholar] [CrossRef]
- Krahn, J.; Sameoto, D.; Menon, C. Controllable biomimetic adhesion using embedded phase change material. Smart Mater. Struct. 2011, 20, 015014. [Google Scholar] [CrossRef]
- Li, S.; Tian, H.; Shao, J.; Liu, H.; Wang, D.; Zhang, W. Switchable Adhesion for Nonflat Surfaces Mimicking Geckos’ Adhesive Structures and Toe Muscles. ACS Appl. Mater. Interfaces 2020, 12, 39745–39755. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, K.; Wan, J.; Li, X.; Jiang, K.; Zeng, H.; Zhang, X.; Meng, Y.; Wen, S.; Zhu, H.; et al. Anisotropic interfacial friction of inclined multiwall carbon nanotube array surface. Carbon 2012, 50, 5372–5379. [Google Scholar] [CrossRef]
- Qu, L.; Dai, L.; Stone, M.; Xia, Z.; Wang, Z.L. Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off. Science 2008, 322, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Ge, L.; Ci, L.; Ajayan, P.M.; Dhinojwala, A. Gecko-Inspired Carbon Nanotube-Based Self-Cleaning Adhesives. Nano Lett. 2008, 8, 822–825. [Google Scholar] [CrossRef] [PubMed]
- Maeno, Y.; Nakayama, Y. Geckolike high shear strength by carbon nanotube fiber adhesives. Appl. Phys. Lett. 2009, 94, 012103. [Google Scholar] [CrossRef]
- Wirth, C.T.; Hofmann, S.; Robertson, J. Surface properties of vertically aligned carbon nanotube arrays. Diam. Relat. Mater. 2008, 17, 1518–1524. [Google Scholar] [CrossRef]
- Wang, W.; Xie, Z. Fabrication of a biomimetic controllable adhesive surface by ultraprecision multistep and layered scribing and casting molding. Sci. China Technol. Sci. 2021, 64, 1814–1826. [Google Scholar] [CrossRef]
- Huang, P.; Lee, W.B.; Chan, C.Y. Investigation on the position drift of the axis average line of the aerostatic bearing spindle in ultra-precision diamond turning. Int. J. Mach. Tools Manuf. 2016, 108, 44–51. [Google Scholar] [CrossRef]
- Li, C.J.; Li, Y.; Gao, X.; Duong, C.V. Ultra-precision machining of Fresnel lens mould by single-point diamond turning based on axis B rotation. Int. J. Adv. Manuf. Technol. 2015, 77, 907–913. [Google Scholar] [CrossRef]
- Yan, C.; Jiang, P.; Jia, X.; Wang, X. 3D printing of bioinspired textured surfaces with superamphiphobicity. Nanoscale 2020, 12, 2924–2938. [Google Scholar] [CrossRef]
- Simaite, A.; Spenko, M. Evaluation of silicone elastomers as structural materials for microstructured adhesives. Bioinspiration Biomim. 2019, 14, 046005. [Google Scholar] [CrossRef]
- Kim, S.; Spenko, M.; Trujillo, S.; Heyneman, B.; Santos, D.; Cutkoskly, M.R. Smooth vertical surface climbing with directional adhesion. IEEE Trans. Robot. 2008, 24, 65–74. [Google Scholar]
- Hawkes, E.W.; Ulmen, J.; Esparza, N.; Cutkosky, M.R. Scaling walls: Applying dry adhesives to the real world. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 5100–5106. [Google Scholar]
- Glaser, N.C.; Langowski, J.K.A. Stiff skin, soft core: Soft backings enhance the conformability and friction of fibre-reinforced adhesives. R. Soc. Open Sci. 2023, 10, 221263. [Google Scholar] [CrossRef] [PubMed]
- Kalouche, S.; Wiltsie, N.; Su, H.-J.; Parness, A. Inchworm style gecko adhesive climbing robot. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 2319–2324. [Google Scholar]
- Ko, H.; Yi, H.; Jeong, H.E. Wall and ceiling climbing quadruped robot with superior water repellency manufactured using 3D printing (UNIclimb). Int. J. Precis. Eng. Manuf. Green Technol. 2017, 4, 273–280. [Google Scholar] [CrossRef]
- Li, X.; Bai, P.; Li, X.; Li, L.; Li, Y.; Lu, H.; Ma, L.; Meng, Y.; Tian, Y. Robust scalable reversible strong adhesion by gecko-inspired composite design. Friction 2022, 10, 1192–1207. [Google Scholar] [CrossRef]
- Hawkes, E.W.; Christensen, D.L.; Han, A.K.; Jiang, H.; Cutkosky, M.R. Grasping without squeezing: Shear adhesion gripper with fibrillar thin film. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 2305–2312. [Google Scholar]
- Estrada, M.A.; Jiang, H.; Noll, B.; Hawkes, E.W.; Pavone, M.; Cutkosky, M.R. Force and moment constraints of a curved surface gripper and wrist for assistive free flyers. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 2824–2830. [Google Scholar]
- Hawkes, E.W.; Jiang, H.; Christensen, D.L.; Han, A.K.; Cutkosky, M.R. Grasping Without Squeezing: Design and Modeling of Shear-Activated Grippers. IEEE Trans. Robot. 2018, 34, 303–316. [Google Scholar] [CrossRef]
- Ruffatto, D.; Parness, A.; Spenko, M. Improving controllable adhesion on both rough and smooth surfaces with a hybrid electrostatic/gecko-like adhesive. J. R. Soc. Interface 2014, 11, 20131089. [Google Scholar] [CrossRef] [PubMed]
- Alizadehyazdi, V.; Bonthron, M.; Spenko, M. An Electrostatic/Gecko-Inspired Adhesives Soft Robotic Gripper. IEEE Robot. Autom. Lett. 2020, 5, 4679–4686. [Google Scholar] [CrossRef]
- Dadkhah, M.; Zhao, Z.; Wettels, N.; Spenko, M. A self-aligning gripper using an electrostatic/gecko-like adhesive. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; pp. 1006–1011. [Google Scholar]
- Kim, D.G.; Je, H.; Hart, A.J.; Kim, S. Additive manufacturing of flexible 3D surface electrodes for electrostatic adhesion control and smart robotic gripping. Friction 2023, 11, 1974–1986. [Google Scholar] [CrossRef]
- Ruotolo, W.; Brouwer, D.; Cutkosky, M.R. From grasping to manipulation with gecko-inspired adhesives on a multifinger gripper. Sci. Robot. 2021, 6, eabi9773. [Google Scholar] [CrossRef]
- Song, S.; Drotlef, D.-M.; Majidi, C.; Sitti, M. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces. Proc. Natl. Acad. Sci. USA 2017, 114, E4344–E4353. [Google Scholar] [CrossRef]
Material | Shape of Microstructure | Fabrication Method | Tested Area | Normal Adhesion | Shear Friction | Anisotropy Coefficient * |
---|---|---|---|---|---|---|
Polyurethane (IE-20 AH) [59] | Directional polymer stalks | UV lithography andmolding | 3.9 cm2 | 1 N | 8.0 Kpa | NA |
Teflon [60] | Tilt nanohairs | Molding and e-beam irradiation | 1 cm2 | 16 nN | 110 Kpa | 5 |
Polypropylene [62] | Tilted microcolumn | Molding and etching | 4 cm2 | NA | 45 Kpa | 45 |
Sylgard 184 [63] | Angled half-cylinder | Two-step photolithography and molding | 12.6 mm2 | NA | 78 Kpa | 6.2 |
Sylgard 170 [64] | Vertical wedge | Two-mask angled exposure and molding | 1 cm2 | 5.1 Kpa | 17.0 Kpa | NA |
Sylgard 170 [65] | Tilted wedge | Micromachining process and molding | 1.21 cm2 | 38 ± 2 Kpa | 49 ± 1 Kpa | NA |
Sylgard 184 [66] | Tilted wedge | Micromachining process and molding | 2.84 mm2 | 10.5 Kpa | 50 Kpa | 1.67 |
Sylgard 184 [68] | Annular wedge | Ultraprecision machining and molding | NA | NA | 35.48 mN | 1.36 |
Polyurethane Acrylate [73] | Tilted nanohairs with flat tip | Etching and molding | 3 cm2 | NA | 260 Kpa | 11.8 |
ST-1060 [78] | Tilted mushroom tip | Photolithography and molding | 1 cm2 | NA | 100 Kpa | 5 |
NOA81 [79] | Tilted mushroom shape | UV photolithography and molding | 1 cm2 | NA | 84 Kpa | 2.4 |
Sylgard 184 [80] | Inclined quadrangles with rectangular tips | Two-step photolithography and molding | 1 cm2 | 45 Kpa | 55 Kpa | 2.2 |
Sylgard 184 [81] | Tilted mushroom tip | 2PP and molding | 1 cm2 | 11.0529 ± 0.4093 Kpa | NA | 7.52 |
Sylgard 184 [82] | Mushroom shape with stepped end | Two-step photolithography and molding | 9 mm2 | 26 mN | NA | NA |
Sylgard 184 [83] | Stem with mushroom structure of TPS | 2PP and molding | NA | 87.8 Kpa | NA | 1254 |
ST-1060 [84] | Tilted trigonal with rectangular tips | Two-layer etch and molding | 32 mm2 | 12.5 Kpa | 28 Kpa | 7.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, H.; Li, J.; Li, P.; Li, S. Gecko-Inspired Controllable Adhesive: Structure, Fabrication, and Application. Biomimetics 2024, 9, 149. https://doi.org/10.3390/biomimetics9030149
Liu Y, Wang H, Li J, Li P, Li S. Gecko-Inspired Controllable Adhesive: Structure, Fabrication, and Application. Biomimetics. 2024; 9(3):149. https://doi.org/10.3390/biomimetics9030149
Chicago/Turabian StyleLiu, Yanwei, Hao Wang, Jiangchao Li, Pengyang Li, and Shujuan Li. 2024. "Gecko-Inspired Controllable Adhesive: Structure, Fabrication, and Application" Biomimetics 9, no. 3: 149. https://doi.org/10.3390/biomimetics9030149
APA StyleLiu, Y., Wang, H., Li, J., Li, P., & Li, S. (2024). Gecko-Inspired Controllable Adhesive: Structure, Fabrication, and Application. Biomimetics, 9(3), 149. https://doi.org/10.3390/biomimetics9030149