
Citation: Liu, Y.; Wang, H.; Li, J.; Li, P.;

Li, S. Gecko-Inspired Controllable

Adhesive: Structure, Fabrication, and

Application. Biomimetics 2024, 9, 149.

https://doi.org/10.3390/

biomimetics9030149

Academic Editor: Seong Min Kang

Received: 31 January 2024

Revised: 18 February 2024

Accepted: 24 February 2024

Published: 1 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Review

Gecko-Inspired Controllable Adhesive: Structure, Fabrication,
and Application
Yanwei Liu 1,2,*, Hao Wang 1,2, Jiangchao Li 1,2, Pengyang Li 1,2 and Shujuan Li 1,2

1 Key Laboratory of NC Machine Tools and Integrated Manufacturing Equipment of the Ministry of Education,
Xi’an University of Technology, Xi’an 710048, China

2 School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology,
Xi’an 710048, China

* Correspondence: liuyw@xaut.edu.cn

Abstract: The gecko can achieve flexible climbing on various vertical walls and even ceilings, which
is closely related to its unique foot adhesion system. In the past two decades, the mechanism of
the gecko adhesion system has been studied in-depth, and a verity of gecko-inspired adhesives
have been proposed. In addition to its strong adhesion, its easy detachment is also the key to
achieving efficient climbing locomotion for geckos. A similar controllable adhesion characteristic
is also key to the research into artificial gecko-inspired adhesives. In this paper, the structures,
fabrication methods, and applications of gecko-inspired controllable adhesives are summarized for
future reference in adhesive development. Firstly, the controllable adhesion mechanism of geckos
is introduced. Then, the control mechanism, adhesion performance, and preparation methods of
gecko-inspired controllable adhesives are described. Subsequently, various successful applications of
gecko-inspired controllable adhesives are presented. Finally, future challenges and opportunities to
develop gecko-inspired controllable adhesive are presented.

Keywords: gecko adhesion; bio-inspired controllable adhesive; biomimetic; climbing robot

1. Introduction

Since ancient times, the natural world has been the source of various technological
ideas, engineering principles, and major inventions for human beings. For example,
frogs have highly regular toe pad microstructures that allow them to climb on slippery
surfaces like moist leaves or tree trunks [1–3], octopuses can capture prey of various sizes
stably underwater [4–6], and mussels can adhere to rocks [7–9]. By gaining an in-depth
understanding of the physiological characteristics of these organisms, researchers have
developed synthetic adhesives with unique properties, which enable them to replicate the
surface characteristics of living organisms [10].

In the animal kingdom, geckos are renowned for their excellent climbing ability. They
can crawl or run effortlessly on the ground, walls, and ceilings. However, it was only a
decade ago that the extraordinary climbing ability of geckos was revealed. Geckos can
achieve adhesion and detachment of their feet to the surface in a matter of milliseconds,
a capability known as controllable adhesion. Since the remarkable controllable adhesion
ability of gecko feet was discovered, scientists have extensively studied their microstructure
and controllable adhesion mechanism. Drawing inspiration from the structure and con-
trollable adhesion mechanism of gecko feet, researchers have developed imitation-gecko
controllable adhesives and conducted extensive research on the key factors affecting their
controllable adhesion performance. Despite the significant research achievements made by
scientists in this highly innovative field, bio-inspired controllable adhesives still face many
challenges and unresolved issues.

In order to further promote the research of gecko-inspired controllable adhesives
and improve their practical applicability, the latest progress in gecko-inspired controllable
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adhesives, along with their application, is reviewed. First, the adhesion mechanism of the
gecko’s feet is introduced from three aspects: the structure of the gecko’s feet, the source
of the adhesion force, and the behavior of the gecko’s adhesion system in the process of
attachment and detachment. Then, design methods of gecko-inspired controllable adhe-
sives based on shear adhesion are summarized from the perspective of structure, and their
adhesion performances are summarized. Later, active controllable adhesion strategies
based on SMP (shape memory polymers) microstructures, magnetic microstructures, and
controllable back layers are introduced, and the representative fabrication methods of the
gecko-inspired controllable adhesive including photolithography, ultraprecision machin-
ing, and 3D (three dimensional) printing are presented. After that, the applications of
gecko-inspired controllable adhesives in climbing robots and gecko grippers are demon-
strated. Finally, the future development direction of gecko-inspired controllable adhesives
is predicted.

2. Adhesion Mechanism of Gecko’s Feet
2.1. The Structure of Gecko’s Feet and the Sources of Adhesion

Understanding the source of gecko foot adhesion is the key to developing a gecko-
like adhesive material. With the invention of the scanning electron microscope (SEM),
researchers have observed dozens of rows of lamellar structures on the toes of geckos, each
consisting of thousands of setae [11]. Each seta is approximately 30–130 um in length [12]
and 5 um in diameter [11]. At the end of the setae, there are about 100–1000 spatulas [12].
The length of a single spatula is about 300 nm, and the spatula ends with a flat tip that is
about 280 nm at its widest point [11,13]. This multi-scale adhesive structure of the gecko
from centimeters to nanometers allows the gecko paw to be in close contact with the wall,
which gives the gecko an excellent climbing ability. The multi-scale composite adhesive
structure of the gecko is shown in Figure 1.

Biomimetics 2024, 9, x FOR PEER REVIEW 2 of 28 
 

 

In order to further promote the research of gecko-inspired controllable adhesives and 
improve their practical applicability, the latest progress in gecko-inspired controllable ad-
hesives, along with their application, is reviewed. First, the adhesion mechanism of the 
gecko’s feet is introduced from three aspects: the structure of the gecko’s feet, the source 
of the adhesion force, and the behavior of the gecko’s adhesion system in the process of 
attachment and detachment. Then, design methods of gecko-inspired controllable adhe-
sives based on shear adhesion are summarized from the perspective of structure, and their 
adhesion performances are summarized. Later, active controllable adhesion strategies 
based on SMP (shape memory polymers) microstructures, magnetic microstructures, and 
controllable back layers are introduced, and the representative fabrication methods of the 
gecko-inspired controllable adhesive including photolithography, ultraprecision machin-
ing, and 3D (three dimensional) printing are presented. After that, the applications of 
gecko-inspired controllable adhesives in climbing robots and gecko grippers are demon-
strated. Finally, the future development direction of gecko-inspired controllable adhesives 
is predicted. 

2. Adhesion Mechanism of Gecko’s Feet 
2.1. The Structure of Gecko’s Feet and the Sources of Adhesion 

Understanding the source of gecko foot adhesion is the key to developing a gecko-
like adhesive material. With the invention of the scanning electron microscope (SEM), re-
searchers have observed dozens of rows of lamellar structures on the toes of geckos, each 
consisting of thousands of setae [11]. Each seta is approximately 30–130 um in length [12] 
and 5 um in diameter [11]. At the end of the setae, there are about 100–1000 spatulas [12]. 
The length of a single spatula is about 300 nm, and the spatula ends with a flat tip that is 
about 280 nm at its widest point [11,13]. This multi-scale adhesive structure of the gecko 
from centimeters to nanometers allows the gecko paw to be in close contact with the wall, 
which gives the gecko an excellent climbing ability. The multi-scale composite adhesive 
structure of the gecko is shown in Figure 1. 

 
Figure 1. Gecko adhesive structures (reprinted with permission from Ref. [14]. Copyright 2006, 
Springer-Verlag). (a) The body of the gecko is usually in the centimeter range. (b) Lamellae struc-
tures on gecko paws, usually in the millimeter range. (c) Lamellae structures with micrometer-scale 
arrays of seta. (d) The ends of the seta have nanometer-scale spatulas. 

Adhesion is the force of attraction created by the close contact of two different mate-
rials. There are various theories to explain adhesion such as electrostatic attraction, micro-
interlocking, adhesion secretion, suction, etc. As a result, the source of adhesion in geckos 
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adhesion in geckos date back to the 19th century. Initially, a number of hypotheses were 
proposed to explain the source of gecko adhesion such as suction, friction, and micro-
interlocking [15–17], but none of them were supported by experimental observations. 
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Figure 1. Gecko adhesive structures (reprinted with permission from Ref. [14]. Copyright 2006,
Springer-Verlag). (a) The body of the gecko is usually in the centimeter range. (b) Lamellae structures
on gecko paws, usually in the millimeter range. (c) Lamellae structures with micrometer-scale arrays
of seta. (d) The ends of the seta have nanometer-scale spatulas.

Adhesion is the force of attraction created by the close contact of two different ma-
terials. There are various theories to explain adhesion such as electrostatic attraction,
microinterlocking, adhesion secretion, suction, etc. As a result, the source of adhesion
in geckos has been the subject of much controversy Attempts aimed at determining the
source of adhesion in geckos date back to the 19th century. Initially, a number of hypothe-
ses were proposed to explain the source of gecko adhesion such as suction, friction, and
micro-interlocking [15–17], but none of them were supported by experimental observations.

With the development of science and technology and many experiments by researchers,
it has been found that the adhesion of geckos may be an intermolecular interaction [18].
Autumn et al. used the method of micro-mechanical biaxial resistive cantilever beams to
measure the force behavior of a single gecko hair in the adhesion process for the first time.
The measurement results showed that the adhesion force when gecko hairs slide parallel
to the wall and peel off vertically from the wall was within the range predicted by the
van der Waals force model, supporting the hypothesis that the adhesion force of geckos
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originates from van der Waals forces [19]. Subsequently, Autumn also tested the adhesion
force of individual gecko toes and single gecko hairs on hydrophobic and hydrophilic
semiconductors, confirming that the adhesion force of geckos is determined by van der
Waals forces, and not capillary force [20].

Although the experimental results of the gecko’s adhesion to the surface by Autumn
verified that the main adhesion force between the gecko and the surface came from the van
der Waals forces between molecules, they did not indicate whether humidity affected the
adhesion force. Huber et al. tested the adhesion force of a single gecko seta on substrates
with different hydrophobicities and at different air humidities. The results indicate that
lower humidity and hydrophobicity can enhance the adhesion force of gecko setae, and
when the humidity is high, the adhesion force significantly decreases [21]. However,
Sun et al. found that when the relative humidity (RH) was greater than 16%, capillary
force became the primary source of adhesion force. As the relative humidity increased,
the adhesion force also increased [22]. Kim et al. further found through experiments that
when the contact angle between the setae and the surface was 10◦, the adhesion force
increased with increasing relative humidity, and when the contact angle increased, the
adhesion force decreased with increasing relative humidity [23]. Puthoff et al. found that
with increasing humidity, the increase in adhesion force on hydrophobic and hydrophilic
surfaces was similar, and even at high shear rates, the adhesion force increased with
increasing relative humidity. This is because the increase in relative humidity softens
the gecko setae, increasing the viscoelastic damping of the setae, thereby increasing the
adhesion force, which is inconsistent with the assumption that capillary force is the main
source of the gecko adhesion force [24]. Pesika et al. believe that when the setae are exposed
to water, changes in the surface hydrophilic equilibrium of the setae will result in a change
in the conformation of surface proteins, thereby increasing the surface energy and thus
increasing the adhesion force [25].

In addition to this, some researchers have suggested that electrostatic force is the
main source of gecko adhesion [26]. Lzadi et al. [27] showed that contact electrification
contributed to the adhesion of geckos by measuring the magnitude of the charge and the
adhesion force generated by the gecko paws when they came in contact with different
materials. The measurements showed that the strength of electrostatic adhesion generated
by gecko paws on Teflon AF was higher than that on the PDMS surface, so they concluded
that it was CE-driven electrostatic interactions that dictated the strength of gecko adhesion.
Later, Song et al. [28] proposed that the electrostatic force only accounted for 3% of the gecko
adhesion force through experimental and modeling analysis. Thus, the low contribution
of electrostatic force explains the movement of geckos on Teflon through the fact that
although they can easily generate frictional charges, it is difficult to generate van der Waals
forces. Singla et al. used interface-sensitive spectroscopy to study the contact interfaces
between sapphire and bristles with and without unbound lipids. By observing the distance
moved by the OH peak of sapphire, they concluded that the acid–base interaction between
the gecko setae and the hydroxylated sapphire surface was the main source of gecko
adhesion [29]. In addition, they mentioned a strong correlation between the acid–base
properties of the material and its ability to generate charge, which supports the hypothesis
that electrostatic forces enhance adhesion [29].

Figure 2 illustrates the process of exploring the source of gecko adhesion forces.
Although there is much controversy regarding the primary source of gecko adhesion,
this paper argues that the prevalent van der Waals forces are the primary source of gecko
adhesion, whereas non-van der Waals forces depend primarily on the nature of the substrate,
which can have an effect on adhesion. For example, capillary forces have an effect on
adhesion on wet surfaces. Therefore, van der Waals forces, as the main source of gecko
adhesion, is more in line with the biological properties of geckos.
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2.2. Gecko Controllable Adhesion Mechanism
2.2.1. High Adhesion Strength

Artificial adhesives inspired by geckos have essential applications in wall-climbing
robots, grippers, and adhesive devices for space debris [30–32]. Therefore, an in-depth
understanding of the mechanism of gecko-inspired controllable adhesives can help people
better research the design, preparation, and performance of gecko-mimicking control-
lable adhesives.

The gecko can easily hang upside down on the wall using just one toe [33]. This
strong adhesion ability is closely related to the hierarchical adhesion system on its foot.
The main component of gecko setae is similar to bird feathers and human nails, both
made of β-keratin with a Young’s modulus of 2 Gpa [34–37]. According to the Dahlquist
criterion, β-keratin cannot achieve adhesion [38,39]. Therefore, human nails also cannot
adhere to walls. However, geckos continuously divide their toes into thin sheets, stiff hairs,
and a scalpel-like layered fiber structure, reducing the equivalent elastic modulus of their
adhesion system to below 100 kPa, increasing the contact area with rough surfaces and
achieving adhesion [34].

As shown in Figure 3, when in contact with a surface, the gecko’s toes utilize a
hierarchical structure with tree-like setae and spatula structures to achieve contact splitting.
Subsequently, millions of nanoscale fibers undergo “molecular contact” with the contact
surface, and each contact surface generates van der Waals forces. As a universally present
intermolecular force, molecular polarity and distance primarily determine the van der Waals
force. Although the van der Waals forces generated between each spatula and the contact
surface are very weak, geckos have a large number of nanofibers, and the combined force
they produce can effectively support a gecko’s agile movement on a surface. Experiments
have demonstrated that a gecko’s front two feet can produce approximately 20 N of
frictional force, while each seta can produce 6.2 N of shear force, with the maximum shear
force reaching 194 N [40], and geckos can produce an adhesion strength of 100 Kpa [13,34].
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2.2.2. Controllable Adhesion and Easy Detachment

The strong adhesive force ensures the gecko’s stable attachment to the contact sur-
face. The gecko is able to climb flexibly on the wall, switching between stable adhesion
and easy detachment. Researchers refer to this characteristic as the gecko’s controllable
adhesion feature.

The experimental findings revealed that when the contact angle between the gecko
setae and the wall is 30◦, no adhesive force is generated between the setae and the
wall [41–43]. Tian et al. [44] established a motion model of a single seta during adhesion
and detachment (as shown in Figure 4a) and analyzed the generation of gecko adhesion
and detachment forces in detail. In the natural state, the spatula pad is at a 30◦ angle to
the seta shaft and nearly perpendicular to the surface of the spatula shaft. Therefore, a
weak adhesion force is generated when the spatula is almost parallelly attached to the wall.
When the gecko needs to stick to the wall, its toes bend inward and shear (as shown in
Figure 4b). This results in a decrease in the pull angle θs between the setal shaft and the
wall as well as the pull angle θ between the spatula shaft and the wall, thereby generating
adhesion force. The smaller θs and θ are, the stronger the adhesion force produced. During
the gecko’s detachment process, the gecko’s toes bend outward, causing the setae to peel
off from the wall, and intense shearing and squeezing occur between the setae and the wall,
increasing the effective elastic modulus of the gecko adhesion system to above 100 Kpa,
making it easy to separate from the wall. Therefore, the gecko controls the hierarchical
adhesion system through the movement of its feet, and the hierarchical adhesion system
closely contacts and separates from the wall under macroscopic control, thereby achieving
controllable adhesion and detachment.
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3. Gecko-Inspired Controllable Adhesive

In the early 21st century, researchers began to explore the microstructure design of
gecko-inspired adhesives [46]. Van der Waals forces are the primary source of gecko adhe-
sion and are highly sensitive to the distance between the adhesive and the wall, typically at
the sub-nanometer scale [13]. Therefore, researchers have focused on the microstructure
design of high aspect ratio structures [47,48], nanoscale fibers [49–51], and the geometric
shapes of fiber ends [52–55] to enhance the adhesion of gecko-inspired adhesives.

Although the above gecko-inspired adhesive can generate a strong adhesion force,
its adhesion force is not anisotropic, meaning that it cannot realize controllable adhesion.
Distinguished from traditional adhesives, the controllability of adhesion force and friction
force is the key feature of gecko-inspired controllable adhesive surface design, which is
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also the key to its application in gecko robotic adhesive feet and bionic grippers. Moreover,
designing anisotropic microstructures (tilted fibers, asymmetric fibers) and using function-
alized materials (shape memory polymers, adding magnetizable particles in polymers)
have become the two main methods in which to make gecko-inspired controllable adhe-
sives smarter. Therefore, this section will review the design of gecko-inspired controllable
adhesives and summarize their preparation methods from these two aspects.

3.1. Gecko-Inspired Controllable Adhesive Based on Asymmetric Structures

Setal arrays of angled geckos are characterized by high normal compliance [56] and
are vital in generating high adhesion and friction [42]. When sliding along fixed and
anti-fixed directions, the array of bristles provides controlled adhesion [57]. Therefore, to
achieve controlled adhesion and separation, microstructured arrays designed to be angled
(anisotropic microstructured arrays) have become the preferred method for researchers to
prepare controllable adhesives.

In 2007, Murphy et al. first prepared tilted micropillar arrays (as shown in Figure 5a)
using an angled lithography process, but they did not exhibit controlled adhesion proper-
ties [58]. Subsequently, Santos et al. [59] designed inclined micropillar structures with tilted
elliptical tips, called oriented polymer stems (as shown in Figure 5b). With its tip tilted at an
angle of 45◦ and the micropillar tilted at an angle of 20◦, a 3.9 cm2 sample can generate an
adhesion force of about 1 N when sheared along a fixed direction, and there is no adhesion
force when sheared along a counter-fixed direction. Lee et al. [60] prepared tilted nanofibers
with a high AR (aspect ratio) (as shown in Figure 5c) by replica imaging and post electron
beam exposure, which featured the ability to time and power the electron beam expo-
sure to control the degree of collision and bending of the nanofibers. After experimental
testing, the oriented nanofibers improved the normal adhesion on soft PUA, hard PUA
(polyurethane acrylate), and Teflon materials by 70%, 41%, and 129%, respectively, relative
to the vertical fibers, with an anisotropy ratio of frictional adhesion of 5. The above angled
microstructures were mainly prepared from soft polymers, for example, polyurethanes with
a modulus of elasticity of 3 Mpa [59] and polydimethylsiloxane [61], and the microstructure
arrays thus prepared are prone to collapse and self-adhesion phenomena, which affect the
adhesion performance. Therefore, inclined micropillar arrays (as shown in Figure 5d) were
prepared using a rigid polymer polypropylene with a modulus of elasticity of 1.5 Gpa,
which has high durability and self-cleaning ability and can generate anisotropic shear
forces of 4.5 N/cm2 and 0.1 N/cm2 [62]. In addition to controllable adhesion and shear,
the high reusability of gecko-inspired controllable adhesives is a necessary requirement
for their application in fields such as wall-climbing robots. The angled semi-cylindrical
microstructure array (as shown in Figure 5e) maintains high adhesion performance after
1000 consecutive cycle tests and can generate a maximum shear adhesion force of 78 Kpa
with a shear adhesion anisotropy ratio of 6.2 [63].

In addition to the inclined micropillar structure, the micro-wedge structure designed
by the researchers is also a typical structure to make the adhesion force anisotropic. The
mechanism of the wedge structure to realize the controllable adhesion force is shown
in Figure 6. When the wedge array is in initial contact with the wall, the contact area
between the tip of the wedge structure and the wall is small, and the resulting adhesion
force is almost negligible. When the wedge array is subjected to a shear load along
the preferred direction, the wedge structure deforms and the contact area with the wall
increases, resulting in an adhesion force. When sheared along the anti-preferred direction,
the wedge structure is extruded against the wall and becomes more rigid, resulting in a
small contact area and a weaker adhesion force.
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tool to cut aluminum to form an annular metal mold (as shown in Figure 7b) that pro-
longed the life cycle of the mold and reduced the cost. A total of 2.84 mm2 of the adherent 
surface yielded normal adhesion and tangential shear forces of 23 mN and 125 mN in the 
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Figure 5. Tilted micropillar array. (a) Tilted micropillars without controlled adhesion properties
(reprinted with permission from Ref. [58]. Copyright 2007, American Chemical Society). (b) Direc-
tional polymer stalks (reprinted with permission from Ref. [59]. Copyright 2012, Taylor & Francis).
(c) Tilted high AR nanofibers (reprinted with permission from Ref. [60]. Copyright 2009, John Wiley
and Sons). (d) Rigid polymer-polypropylene tilted microstructure arrays (reprinted with permis-
sion from Ref. [62]. Copyright 2008, American Institute of Physics). (e) Semi-cylindrical tilted
microstructure (reprinted with permission from Ref. [63]. Copyright 2013, IOP Publishing Ltd).
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as an example). The red part indicates the contact area between the adhesive and the wall.

Parness et al. prepared vertical wedge microstructures (as shown in Figure 7a) using
a two-step lithography process and a replica molding process with normal adhesion
and shear strengths of 5.1 Kpa and 17.0 Kpa, respectively, which maintained 67% of
the initial normal adhesion and 76% of the initial shear after 30,000 cycles of adhesion
and de-adhesion process training [64]. To further reduce the equivalent stiffness of the
microstructure array, Paul et al. used a micromachining process to fabricate a double-sided
inclined wedge-shaped microstructure that could produce a normal adhesion force of
38 Kpa when a shear force of 49 Kpa was applied [65]. However, this wedge-shaped
microstructure was replicated and molded based on a wax mold, which is not reusable
and limits the adhesive surface’s multiple preparations. Therefore, Tao et al. [66] used an
ultraprecision diamond tool to cut aluminum to form an annular metal mold (as shown
in Figure 7b) that prolonged the life cycle of the mold and reduced the cost. A total of
2.84 mm2 of the adherent surface yielded normal adhesion and tangential shear forces of
23 mN and 125 mN in the adherence direction and 6 mN and 100 mN in the detachment
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direction, respectively, exhibiting prominent controlled adhesion characteristics. Capella
Kerst et al. [67] fabricated copper metal molds using PDMS to replicate the wax mold cavity
features and then sputtered titanium, platinum, and electroplated copper metal on a PDMS
negative mold. The prepared wedge microstructures in terms of appearance and adhesion
properties did not differ from those prepared from wax molds. However, the metal molds
were more durable than the wax molds, did not require the molds to be sprayed with a
release agent, and were easy to clean. Since aluminum is prone to thermal deformation
during ultraprecision cutting, which affects the machining accuracy of the wedge structure,
Zhou et al. plated Ni-P on the surface of tungsten carbide and used it as a mold to fabricate
an annular wedge structure (as shown in Figure 7c) with an anisotropy ratio of each of the
shear adhesion forces of 1.36 [68].
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Figure 7. Wedge-shaped structural arrays. (a) Vertical wedge structures array (reprinted with
permission from Ref. [64]. Copyright 2009, the Royal Society). (b) Array of circular wedge-shaped
structures (reprinted with permission from Ref. [66]. Copyright 2017, John Wiley and Sons). (c) Array
of wedge structures prepared on tungsten carbide molds (reprinted with permission from Ref. [68].
Copyright 2021, Tianfeng Zhou et al).

The several above-mentioned controllable adhesives with wedge structures are only a
collection of arrays of wedge structures with a single size feature, and some researchers
have mentioned that there are also shorter bristles located closer to the thin plate and longer
bristles located farther away from the thin plate in the gecko’s adhesion system [69,70].
Therefore, Suresh et al. [71] designed an array of wedge structures containing spatial
variations (shown in Figure 8a), in which the height of the wedges is varied, with the tallest
wedge located at the edge of the deep groove. When sheared in the preferred direction,
this wedge array behaves similarly to previous homogeneous wedge features (as shown
in Figure 8b). When sheared in the opposite direction, as shown in Figure 8c, the tallest
wedge contacts the wall first and deforms, resulting in adhesion. Since it is higher than
the rest of the wedges, it prevents the rest of the wedge structure from contacting the wall.
After experimental testing, although the anisotropy ratio of the shear adhesion force could
be up to 100, the value of the adhesion force was not as high as that of the adhesion surface
characterized by the uniformity wedge.

The wedge feature provides considerable controlled adhesion properties to gecko-
inspired adhesives. However, it cannot generate sufficient adhesion force. It has been
shown that adding tips to microstructures can enhance the adhesion force of the adherent
surface. Murphy et al. [72] modified tilted polyurethane microstructures using a tip im-
pregnation process to obtain tilted microstructures with spherical and spade tips (as shown
in Figure 9a), and in comparison to the unmodified adherent surfaces, the normal adhesion
force of the spherical and spade tip samples increased by a factor of 10 and 20 times, and
the shear adhesion increased by 1.6 and 4.7 times, respectively. Jeong et al. [73] prepared
nanoscale tilted microstructures (as shown in Figure 9b) with a tip diameter of 250 nm, a
maximum shear force of 26 N/cm2 in the direction of adhesion, and a shear anisotropy ratio
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of about 11.8 using an isotropic etch and replica molding method. Then, Gwon et al. im-
proved the adhesion performance of the adhesive surface of the inclined structure prepared
by 3D printing through an impregnation process (as shown in Figure 9c). The maximum
adhesion force of the adhesive surface with the added silica gel coating was increased by
a factor of 4 compared to the unadded one [74]. However, the adhesion force was still
minimal, only 1.53 Kpa. Experimental results have demonstrated that mushroom-shaped
tips are more likely to produce higher adhesion than concave, spherical, or flat tips [75–77].
Therefore, Murphy modified his impregnation process, and the new impregnation pro-
cess involves applying a constant load to the gecko-inspired adhesion surface during the
impregnation process to prepare microstructures with an inclined mushroom-shaped tip
(shown in Figure 9d), where the shear force in the adhesion direction is 5.6 times higher than
that in the de-adhesion direction [78]. The impregnation process suffers from alignment
and a definite lack of reflux material limitation, which leads to difficulties in accurately
controlling the transverse shape and spatial consistency of the large-area tip [77]. Therefore,
Wang et al. [79] prepared tilted mushroom-shaped microstructures (shown in Figure 9e) by
maskless and mask exposure at the bottom and top of the photoresist, respectively, with a
maximum shear adhesion of 8.4 N/cm2 in the preferred direction and an anisotropy ratio
of 2.4. Subsequently, Wang et al. prepared tilted microstructures with a rectangular cap tip
using the same preparation method (as shown in Figure 9f) that could generate a maximum
shear adhesion force of 5.5 N/cm2 in the long-axis direction and an anisotropy ratio of 2.2
in the short-axis direction [80]. Considering that mask exposure requires a new set of mask
sets for any preparation of adhesive for new microstructures, and only a small number of
designs can be investigated in a short period, Busche et al. prepared micropillar arrays with
tilted mushroom-shaped tips (shown in Figure 9g) using a two-photon polymerization
3D-printing process, which showed an anisotropy ratio of the normal adhesion force of
7.52 [81].
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Figure 8. Spatially variant microstructured adhesive with one-way friction (reprinted with permission
from Ref. [71]. Copyright 2019, Srinivasan A. Suresh et al). (a) Definition of parameters for one-way
adhesive geometry. (b) Application of a shear force in the preferred direction results in the flap
deforming to conform to the surface, yielding a large contact area (blue). (c) The tallest wedge
at the tip of the flap prevents any other wedge from contacting the surface, reducing the contact
area (orange).

Besides designing tilted and controllable adhesive with tip features, some researchers
have also designed adhesives with non-aligned features. For example, dividing the
mushroom-shaped tip into upper and lower surfaces as shown in Figure 9h–j [82], adding a
trapezoidal structure at the bottom of the mushroom-shaped tip [83], and fabricating tilted
triangular prismatic microstructures with a rectangular tip [84] have achieved controllable
adhesion strength.
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Figure 9. Tip-modified adhesive. (a) Inclined micropillar structures with spherical and spade tips
(reprinted with permission from Ref. [72]. Copyright 2012, Taylor & Francis). (b) Nanoscale tilted
microstructures with flat tips [73]. (c) Impregnation process modifies microstructures prepared by
3D printing (reprinted with permission from Ref. [74]. Copyright 2021, Springer Nature). (d) Tilted
mushroom-shaped tip with modified impregnation process (reprinted with permission from Ref. [78].
Copyright 2009, John Wiley and Sons). (e) Tilted mushroom structure (reprinted with permission from
Ref. [79]. Copyright 2014, American Chemical Society). (f) Rectangular cap tip structure (reprinted
with permission from Ref. [80]. Copyright 2015, Yue Wang et al). (g) Inclined mushroom tip structure
(reprinted with permission from Ref. [81]. Copyright 2020, Elsevier B.V.). (h) Stepped mushroom
structure (reprinted with permission from Ref. [82]. Copyright 2016, American Chemical Society).
(i) Mushroom-like structures containing TPS in the stem (reprinted with permission from Ref. [83].
Copyright 2023, Chohei Pang et al). (j) Inclined triangular prism with rectangular tip (reprinted with
permission from Ref. [84]. Copyright 2013, John Wiley and Sons). (Ref. [73] was adapted through
open access permission).

Throughout the above-mentioned adhesion surfaces, the principle of realizing con-
trolled adhesion is to change the shear direction of the adhesion surface, thus realizing
a different contact area with the wall, so the basic principle is called shear adhesion. In
order to more clearly show the difference in performance between the adhesive based
on shear adhesion, Table 1 summarizes the fabrication methods, adhesion strength, and
anisotropy coefficient.
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Table 1. Gecko-inspired controllable adhesives based on shear adhesion.

Material Shape of
Microstructure

Fabrication
Method

Tested
Area

Normal
Adhesion

Shear
Friction

Anisotropy
Coefficient *

Polyurethane
(IE-20 AH)

[59]

Directional
polymer stalks

UV lithography
andmolding 3.9 cm2 1 N 8.0 Kpa NA

Teflon [60] Tilt nanohairs Molding and
e-beam irradiation 1 cm2 16 nN 110 Kpa 5

Polypropylene [62] Tilted microcolumn Molding and
etching 4 cm2 NA 45 Kpa 45

Sylgard 184 [63] Angled
half-cylinder

Two-step
photolithography

and molding
12.6 mm2 NA 78 Kpa 6.2

Sylgard 170 [64] Vertical wedge
Two-mask angled

exposure and
molding

1 cm2 5.1 Kpa 17.0 Kpa NA

Sylgard 170 [65] Tilted wedge
Micromachining

process and
molding

1.21 cm2 38 ± 2 Kpa 49 ± 1 Kpa NA

Sylgard 184 [66] Tilted wedge
Micromachining

process and
molding

2.84 mm2 10.5 Kpa 50 Kpa 1.67

Sylgard 184 [68] Annular wedge
Ultraprecision
machining and

molding
NA NA 35.48 mN 1.36

Polyurethane
Acrylate [73]

Tilted nanohairs
with flat tip

Etching and
molding 3 cm2 NA 260 Kpa 11.8

ST-1060
[78]

Tilted mushroom
tip

Photolithography
and molding 1 cm2 NA 100 Kpa 5

NOA81 [79] Tilted mushroom
shape

UV
photolithography

and molding
1 cm2 NA 84 Kpa 2.4

Sylgard 184 [80]
Inclined

quadrangles with
rectangular tips

Two-step
photolithography

and molding
1 cm2 45 Kpa 55 Kpa 2.2

Sylgard 184 [81] Tilted mushroom
tip 2PP and molding 1 cm2 11.0529 ± 0.4093 Kpa NA 7.52

Sylgard 184 [82]
Mushroom shape

with
stepped end

Two-step
photolithography

and molding
9 mm2 26 mN NA NA

Sylgard 184 [83]
Stem with
mushroom

structure of TPS
2PP and molding NA 87.8 Kpa NA 1254

ST-1060
[84]

Tilted trigonal with
rectangular tips

Two-layer etch and
molding 32 mm2 12.5 Kpa 28 Kpa 7.37

* Anisotropy coefficient: the ratio of the adhesion force in the direction of adhesion to the detachment force in the
direction of detachment.

3.2. Gecko-Inspired Controllable Adhesives Based on Active Modulation

Gecko-inspired controllable adhesives based on shear adhesion are designed to achieve
strong adhesion and easy detachment by changing the shear loading direction of the adhe-
sive surface. Meanwhile, researchers are also working on other techniques to change the
adhesion state of the adhesive surface. For example, researchers have prepared adhesives
that can actively regulate the adhesion forces from the materials used to prepare the adhe-
sive. In this section, we will introduce gecko-inspired adhesive surfaces that can be actively
regulated from two aspects, namely, shape memory polymers and composite materials as
the preparation material.
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3.2.1. Adhesives with SMP Microstructures

Shape memory polymers, abbreviated as SMPs, can deform in response to external
stimuli (electricity, heat, light) and be fixed in the deformed state when the stimuli are
removed. If the external stimulus changes again in a specific way and with a specific
pattern, it can be reversibly restored to the starting state. This deformation property of
shape memory polymers is similar to the inward-bending adhesion and outward-bending
peeling behavior of the gecko’s paws during the adhesion process. Therefore, researchers
have attempted to use shape memory polymers to prepare controllable adhesives to obtain
gecko-imitation controllable adhesives that can actively regulate the adhesion force.

In 2007, Reddy et al. used the shape memory thermoplastic elastomer Tecoflex 72D for
the first time to prepare an adhesive surface with vertical micropillar structures (as shown
in Figure 10a). When the adhesive surface was heated above the transition temperature
of 70 ◦C, the vertical micropillar structure would tilt under the pressure of the substrate
surface with almost negligible adhesion. In contrast, the vertical micropillar could produce
a normal adhesion strength of 29.7 Kpa. Furthermore, the authors tested the adhesion
force that could be generated after the tilted micropillars were restored to vertical micropil-
lars, which was only half that of the vertical micropillars, possibly due to the incomplete
restoration of the micropillar arrays [85]. Since then, researchers have prepared control-
lable adhesives with vertical micropillar structures with NGDE2 [86], graphene/shape
memory polymers [87], and nickel-titanium (NiTi) shape memory alloys [88], all of which
exhibited actively switchable adhesion forces. Meanwhile, SMP adhesives with pyramidal
microstructures have also been designed (shown in Figure 10b), which can generate a nor-
mal adhesion force of 184 N/cm2 on glass substrates. However, its de-adhesion force is less
than 3 × 10−3 N/cm2, which exhibits a very high switchability [89]. Seo et al. combined
SMPs and wedge-structured adhesives (as shown in Figure 10c) and prepared a micro-
wedge array surface of a shape memory polymer that could generate a shear adhesion
force in the preferred direction of 5 atm shear adhesion strength, more than three times that
of the opposite direction [90].
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Figure 10. Adhesives with SMP microstructures. (a) Adhesive prepared by Tecoflex 72D (reprinted
with permission from Ref. [85]. Copyright 2007, John Wiley and Sons). (b) Pyramidal microstructures
(reprinted with permission from Ref. [89]. Copyright 2013, American Chemical Society). (c) Micro-
wedge array surface of a shape memory polymer (reprinted with permission from Ref. [90]. Copyright
2016, Elsevier Ltd).

The adhesion force generated by the gecko-inspired controllable adhesive surface to
the wall is van der Waals forces, which significantly decreases when liquid is present be-
tween them, affecting the adhesion performance of the adhesive surface and its application
on some wet walls. Therefore, researchers have explored the application of shape memory
polymers in preparing wet adhesives. Shao et al. made it possible for the surface to be
switched between the Cassie–Baxter state and the Cassie impregnating state by depositing
hydrophobic nanoparticles on adhesives prepared from shape memory polymers. In the
Cassie–Baxter state, the surface had a high contact angle and low roll-off angle, exhibiting
low adhesion. In the Cassie impregnating state, the surface had a high contact angle and
high roll-off angle, exhibiting high adhesion. However, its adhesion decreased significantly
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after 25 deformation/recovery cycles due to the partial dropout of the deposited hydropho-
bic nanoparticles [91]. Afterward, Wang et al. combined a PU-CNF shape memory material
that could be wetted with water as a substrate and an adhesion surface with a vertical
microcolumn structure, which also achieved dynamic switching of adhesion to water
droplets [92]. Moreover, Park et al. investigated the behavior of thermo-responsive shape
memory polymers that extrude liquid when driven by pressure in the rubbery state (as
shown in Figure 11). It was experimentally tested that a high strength adhesion of 17 atm
could be produced, even at a slight preload of 0.25 atm when heated to 125 ◦C. As the
preload force increased, a maximum adhesion force of 18 atm could be produced [93]. This
provides guidance for improving the adhesion of gecko-inspired controllable adhesives on
wet walls.
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Figure 11. A schematic diagram of the working mechanism of an SMP underwater adhesive (reprinted
with permission from Ref. [93]. Copyright 2018, John Wiley and Sons).

The basic process described above for the shape memory polymer-based controllable
adhesive surface to achieve active switching between a high adhesion state and an almost
zero adhesion state can be summarized as follows. As shown in Figure 12, first, at room
temperature, the adherent surface maintains its permanent shape. At the time of adhesion,
the temperature of the adherent surface is raised above the transition temperature by
heating. At this time, the adherent surface becomes soft and deforms under a certain
pressure, creating a large contact area with the test wall. Then, the adherent surface will
gradually cool down to room temperature. Its microstructure will remain temporarily
fixed and have conformal contact with the wall with high adhesive force. Finally, when
it is time to detach, the adherent surface is reheated above the transition temperature,
and the adherent surface returns to its starting state and becomes soft, resulting in almost
0 adhesion force when detached from the wall.
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3.2.2. Adhesives with Magnetic Microstructures

The deformation of shape memory polymers requires a long warming process, limiting
the application of gecko-inspired controllable adhesives in fields such as wall-climbing
robots. Instead, it can provide fast switching using a magnetic field. For example, Michael
et al. used a combination of photoresist and nickel to prepare an adhesive surface shaped
like a gecko composite structure (as shown in Figure 13a), where the composite structure
with nickel cantilever beams repositioned the nickel cantilever beams under the action of a
magnetic field, resulting in a lateral rotation of the end, which significantly reduced the
contact area with the wall and decreased the adhesion force [94].
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Figure 13. Adhesives with magnetic microstructures. (a) Controllable adhesive with nickel beams
(reprinted with permission from Ref. [94]. Copyright 2008, John Wiley and Sons). (b) Magnetically
actuated arrays of micropillars (reprinted with permission from Ref. [95]. Copyright 2013, John Wiley
and Sons). (c) Adhesives composed of lamellar structures and setal arrays (reprinted with permission
from Ref. [96]. Copyright 2023, Springer Nature). (d) Slanted functional gradient micropillars
(reprinted with permission from Ref. [97]. Copyright 2018, American Chemical Society).

NdFeB particles are characterized by high saturation magnetization strength, low
coercivity, and low hysteresis loss. The doping of NdFeB particles in PDMS will give
the material high magnetization and easy response to changes in the external magnetic
field, which is suitable for the preparation of magnetically-driven composites. Based on
this principle, Dirk-Michael et al. prepared magnetic PDMS microcolumns (as shown in
Figure 13b) by adding NdFeB particles with a concentration of 20% in PDMS. The adhesion
force of the microarrays was 11 mN when no magnetic field was present, and it decreased
to 0.7 mN in the presence of a magnetic field [95]. Shi et al. prepared a laminated wedge-
shaped structured adhesive (as shown in Figure 13c) using a mixture of PDMS/NdFeB,
with a switchable range of adhesion force of 40% [96].

Although the above magnetically-driven adhesive achieved rapid modulation of the
adhesion force, the authors did not report on the durability of their adhesive. Wang et al.
obtained novel nanocomposites by using nano-reinforcements of iron oxides modified
with polyurethane acrylates, thus fabricating tilted functional-gradient pillars (s-FGPs) (as
shown in Figure 13d). The shear adhesion of the s-FGPs was 9 N/cm2, and there was no
adhesion degradation even after more than 2000 cycles of adhesion/desorption [97]. The
stability of magnetorheological elastomers (MREs) can effectively mitigate the flow and
deposition tendency of magnetorheological materials [98], and the controllable adhesive
prepared from them showed a 2-fold increase in adhesion force. Furthermore, they could
switch between strong and weak adhesion states within 1 s [99].

3.2.3. Adhesives with Controllable Back Layers

Studies have shown that adjusting the stiffness of an adhesive surface’s backing layer
can affect the adhesive surface’s controllable adhesion properties. A lower stiffness of the
backing layer adapts better to the wall surface and has a larger contact area at the time
of contact. Moreover, the shift to higher stiffness of the backing layer can lead to a more
uniform load distribution and avoid localized detachment, resulting in higher adhesion
strength [100,101]. Krahn et al. embedded CrystalbondTM phase change material into
the backing layer of a mushroom-shaped adhesive surface (as shown in Figure 14a). The
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adhesion surface can thus be controlled by controlling the softness of the phase change
material to control the adhesion force. During the adhesion process, the softening of the
phase change material increases the contact area with the wall. Subsequent change of the
phase change material from soft to hard can lead to a more uniform load distribution on
individual mushroom-like fibers, thus avoiding stress concentration and improving the
de-adhesion force [102]. Li et al. prepared a three-layered composite adhesion surface
(as shown in Figure 14b) that used a mushroom-like adhesion layer as the top layer, a
stiffness-variable layer made of thermoplastic polyurethane as the middle layer, and an
electro-thermal film as the bottom layer. The electric heating film was heated by controlling
its voltage. When the temperature exceeded the softening point of the thermoplastic
polyurethane, the overall structural stiffness of the adhesive surface became smaller, the
contact area with the non-flat wall increased, and the adhesion force could be increased by
three orders of magnitude [103].
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In summary, gecko-inspired controllable adhesives can be divided into two types:
(1) By designing anisotropic microstructures, the adhesive will have different adhesion
strengths under shear in different directions, thus realizing controllable adhesion force.
(2) Controlled adhesion to the adhesive is achieved by active modulation methods such as
temperature and magnetic field.

First of all, for the first type, the advantage is that the precise control of adhesion
force can be realized by designing special anisotropic microstructures, thus improving
the control efficiency. However, its normal adhesion force is generally lower than normal
mushroom-type microcolumns. Second, for the second type, active modulation strategies
such as temperature field, magnetic field, electric field, etc. provide new ideas for switching
the adhesion state of gecko-inspired adhesives and generally have very large switching
ratios. However, they need to carry additional energy devices, and temperature regulation
methods suffer from long regulation cycles. In addition, for adhesion surfaces with ad-
justable stiffness of the backing layer, the microstructure of the adhesion layer is generally
characterized by mushroom-shaped microcolumns, which enhances the detachment force.
Therefore, in the future, the combination of anisotropic microstructured adhesion layers
with stiffness-tunable backing layers can be investigated to achieve strong adhesion and
easy detachment.

4. Fabrication and Materials

In addition to the microstructural design of gecko-inspired controllable adhesives, the
preparation method and the choice of materials are also important factors affecting the
adhesion performance of gecko-inspired controllable adhesives.
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4.1. Fabrication

Based on the microstructural design of controllable adhesives, a series of unique
methods have been used to prepare these mimetic structures. Currently, the preparation
methods of gecko-inspired controllable adhesives are mainly divided into two categories:
the replica molding process and gas-phase growth method. The gas-phase growth method
is not as widely used as the replica molding process because of the expensive experimental
equipment and extremely harsh experimental conditions [104]. In addition, the surface
area of the imitation gecko adhesion prepared by the gas-phase growth method is currently
too small, and most are at most 1 cm2 [104–108]. Therefore, this section focuses on the
research related to the replica molding process.

The replica molding process refers to the polymer material cast into the template with
the micro geometric features of the gecko-inspired controllable adhesive surface, and the
adhesive surface is obtained by peeling off the polymer material after curing, which is
the most widely used method in the preparation of gecko-inspired controllable adhesives.
Molds for casting are usually prepared using photolithography, ultraprecision machining,
3D printing, and other methods.

4.1.1. Photolithography

Photolithography refers to the use of a photoresist to transfer patterns from a mask
plate to a substrate (silicon wafer) under the irradiation of ultraviolet light, an electron beam,
or an ion beam. Since it can precisely control the size and shape of micro/nanostructures, it
is widely used to prepare gecko-inspired controllable adhesive surface molds. As shown
in Figure 15, photolithography generally involves glue application, soft baking, exposure,
development, and rinsing. First, photoresist in liquid form is spin-coated onto a clean
substrate. Then, it is soft baked to remove solvents from the photoresist and improve the
photoresist’s adhesion to the substrate. After that, selected portions of the photoresist
are exposed to light sources such as UV light and electron beams. During exposure, the
photoresist undergoes a series of reactions that change its physical and chemical properties.
During development, the exposed or unexposed portion of the photoresist is dissolved by
the developer solution so that the microstructure of the adherent surface is obtained.

Biomimetics 2024, 9, x FOR PEER REVIEW 16 of 28 
 

 

Molds for casting are usually prepared using photolithography, ultraprecision machining, 
3D printing, and other methods. 

4.1.1. Photolithography 
Photolithography refers to the use of a photoresist to transfer patterns from a mask 

plate to a substrate (silicon wafer) under the irradiation of ultraviolet light, an electron 
beam, or an ion beam. Since it can precisely control the size and shape of micro/nanostruc-
tures, it is widely used to prepare gecko-inspired controllable adhesive surface molds. As 
shown in Figure 15, photolithography generally involves glue application, soft baking, 
exposure, development, and rinsing. First, photoresist in liquid form is spin-coated onto 
a clean substrate. Then, it is soft baked to remove solvents from the photoresist and im-
prove the photoresist’s adhesion to the substrate. After that, selected portions of the pho-
toresist are exposed to light sources such as UV light and electron beams. During expo-
sure, the photoresist undergoes a series of reactions that change its physical and chemical 
properties. During development, the exposed or unexposed portion of the photoresist is 
dissolved by the developer solution so that the microstructure of the adherent surface is 
obtained. 

 
Figure 15. Photolithography for the preparation of gecko-inspired controllable adhesives. (a) The 
photoresist is spin-coated on the substrate. (b) The photoresist is exposed with a mask from the front 
side. (c) The photoresist is precisely exposed by controlling the time. (d) The photoresist is precisely 
developed by controlling the time, leaving undercut holes. (e) Polymer is mixed, then poured on 
the mold and cured. (f) The cured polymer is demolded, leading to the cylindrical structure. 

Various shapes of gecko-inspired controllable adhesives have been prepared by ad-
justing the exposure angle and exposure time or performing multi-step lithography. For 
example, Murphy et al. prepared master molds for two microcolumn structures, vertical 
and inclined, by spin-coating SU-8 photoresist on a glass wafer substrate and exposing it 
using UV light (as shown in Figure 16a). Liquid silicone rubber was then cast on the pri-
mary mold, and a flexible mold with a negative shape was obtained after curing for 24 h. 
Finally, polyurethane elastomers ST-1087 and ST-1060 were cast on the negative mold to 
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not prepare adhesives with more complex structures like mushroom shapes, so research-
ers developed a two-sided exposure method and two-step lithography to prepare gecko-
inspired controllable adhesives with tilted mushroom-shaped structures [79], wedge-
shaped structures [64], step-shaped mushroom-shaped structures [82], and semi-cylindri-
cal microstructures [63]. For instance, Wang et al. first prepared SiO2 films on transparent 
slides using plasma-enhanced chemical vapor deposition and then fabricated EPG533 
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etching them in an ICP-CVD chamber (as shown in Figure 16b). Based on the structured 
SiO2 films, the authors prepared step-shaped mushroom-like adhesives using double-
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Figure 15. Photolithography for the preparation of gecko-inspired controllable adhesives. (a) The
photoresist is spin-coated on the substrate. (b) The photoresist is exposed with a mask from the front
side. (c) The photoresist is precisely exposed by controlling the time. (d) The photoresist is precisely
developed by controlling the time, leaving undercut holes. (e) Polymer is mixed, then poured on the
mold and cured. (f) The cured polymer is demolded, leading to the cylindrical structure.

Various shapes of gecko-inspired controllable adhesives have been prepared by ad-
justing the exposure angle and exposure time or performing multi-step lithography. For
example, Murphy et al. prepared master molds for two microcolumn structures, vertical
and inclined, by spin-coating SU-8 photoresist on a glass wafer substrate and exposing
it using UV light (as shown in Figure 16a). Liquid silicone rubber was then cast on the
primary mold, and a flexible mold with a negative shape was obtained after curing for
24 h. Finally, polyurethane elastomers ST-1087 and ST-1060 were cast on the negative
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mold to obtain an adhesive surface [58]. However, this one-sided, single-tilt exposure
method cannot prepare adhesives with more complex structures like mushroom shapes, so
researchers developed a two-sided exposure method and two-step lithography to prepare
gecko-inspired controllable adhesives with tilted mushroom-shaped structures [79], wedge-
shaped structures [64], step-shaped mushroom-shaped structures [82], and semi-cylindrical
microstructures [63]. For instance, Wang et al. first prepared SiO2 films on transparent slides
using plasma-enhanced chemical vapor deposition and then fabricated EPG533 masks on
SiO2 films using photolithography. Finally, the SiO2 films were structured by etching them
in an ICP-CVD chamber (as shown in Figure 16b). Based on the structured SiO2 films, the
authors prepared step-shaped mushroom-like adhesives using double-sided exposure.
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it has been possible to machine surfaces with an optical finish (Ra < 10 nm) and sub-mi-
crometer geometric errors, and it has been widely used in the fields of electronics, aero-
space, and medicine [110]. For example, Fresnel lens molds with a surface roughness of 
7.3 have been fabricated [111], and Fresnel lens molds are available in lengths up to 2 m 
[66]. Therefore, ultraprecision machining technology has excellent potential for applying 
gecko-inspired controllable adhesives where the structural size is usually in the micro/na-
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Figure 16. Fabrication of gecko-inspired controllable adhesives. (a) Fabrication process of inclined
micropillar fibers (reprinted with permission from Ref. [58]. Copyright 2007, American Chemical
Society). (b) Two-step photolithographic fabrication process for step-shaped mushroom tip adhesive
(reprinted with permission from Ref. [82]. Copyright 2016, American Chemical Society). (c) Ring
wedge metal molds made by ultraprecision diamond cutting (reprinted with permission from Ref. [66].
Copyright 2017, John Wiley and Sons). (d) The schematic diagram of ultraprecision multistep and
layered scribing (reprinted with permission from Ref. [109]. Copyright 2021, Springer Nature) (e) Two-
photon lithography fabricates an adhesive with tilted mushroom-like tips (reprinted with permission
from Ref. [81]. Copyright 2020, Elsevier B.V.). (f) Two-photon lithography to fabricate mushroom-like
microstructures with TPS structures (reprinted with permission from Ref. [83]. Copyright 2023,
Chohei Pang et al.).

Photolithography has been widely used in the preparation of bioinspired gecko-
inspired controllable adhesive surface molds. However, it involves a series of complex
steps and has the disadvantages of small sample size (from a few millimeters to several tens
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of millimeters), low yield, and high cost. Therefore, researchers have begun to explore the
application of ultraprecision machining technology in preparing adhesive surface molds.

4.1.2. Ultraprecision Machining Technology

In recent years, with the rapid development of ultraprecision machining technology,
it has been possible to machine surfaces with an optical finish (Ra < 10 nm) and sub-
micrometer geometric errors, and it has been widely used in the fields of electronics,
aerospace, and medicine [110]. For example, Fresnel lens molds with a surface roughness of
7.3 have been fabricated [111], and Fresnel lens molds are available in lengths up to 2 m [66].
Therefore, ultraprecision machining technology has excellent potential for applying gecko-
inspired controllable adhesives where the structural size is usually in the micro/nanoscale.

Tao et al. first prepared a circular wedge-shaped structural mold (as shown in
Figure 16c) using an ultraprecision diamond-cut aluminum die. Then, they cast PDMS to
obtain a gecko-inspired wedge-shaped adhesion surface [66]. Afterward, Zhou et al. used
ultraprecision diamond to cut nickel-phosphorus coated tungsten carbide to fabricate a
ring-shaped wedge-shaped structural mold without passing through the width, which im-
proved the disadvantage of aluminum’s susceptibility to deformation under pressure and
heat and enhanced the microstructural accuracy of the adherent surface [68]. In addition,
Wang et al. proposed an ultraprecise multistep layered scribing method for machining
square copper-metal molds with continuous and inclined wedge-shaped cavities. As shown
in Figure 16d, multistep layered scribing utilizes a diamond tool with a V-shaped cross-
section parallel to the wedge-shaped cavity to be formed. Then, the tool is made to cut the
blanks along the lower surface of the wedge-shaped cavity in multiple steps, layer by layer,
to form the wedge-shaped cavity, which has an average finish of Sa = (9.333 ± 0.577) nm
on the lower surface of the wedge-shaped cavity [109].

4.1.3. 3D Printing

3D printing is an advanced technology for rapid production by layer-by-layer pro-
totyping with the help of computer-aided design/analysis/manufacturing. 3D printing
has developed various additive manufacturing methods such as fused deposition molding
(FDM), digital light processing (DLP), and two-photon polymerization (TPP) and can print
metals, ceramics, polymers, and composites [112]. Since 3D printing uses a bottom-up
manufacturing method and can process complex structures with high precision, it is ideally
suited for the direct preparation of gecko-inspired controllable adhesives or the fabrication
of molds. As shown in Figure 16e, Bushe et al. used a two-photon photolithographic
to fabricate adhesive surface molds with tilted mushroom-like tip structures. To shorten
the printing time, 2PP cured only the scaffold portion of the microstructure, which was
developed, rinsed, and exposed for 5 min using a UV flood to maximize the stability of
the structure. In order to prevent the PDMS from adhering to the mold during subsequent
casting and demolding, a plasma-enhanced chemical vapor deposition method was used
to deposit an octafluorocyclobutane head layer on the surface of the mold, and its anti-
adhesive properties were reduced after several castings [81]. After that, Pang et al. [83] also
prepared mushroom-like microstructures with a TPS structure (shown in Figure 16f) using
the same method.

4.2. Materials

Most of the materials used to prepare gecko-inspired controllable adhesives are poly-
meric materials. Therefore, the physical properties of the casting material directly affect
the adhesion properties of the gecko-inspired controllable adhesive. In general, the influ-
ence of several factors should be considered when selecting the casting material. Table 2
summarizes the performance parameters of common casting materials in the replica mold-
ing process.

(1) Modulus of elasticity of the material. The modulus of elasticity affects the degree of
deformation of the adherent surface under the action of shear force, where the lower
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the modulus of elasticity, the softer the adhesive surface, as only a small preload can
be generated with the wall of the contact area. However, too small a modulus of
elasticity will lead to a gecko-inspired controllable adhesive of the microstructure
between each other, leading to a gecko-inspired controllable adhesive surface of the
self-adhesive properties of the decline, while a higher modulus of elasticity will help
the self-cleaning of the adhesive surface. Therefore, materials with a suitable elastic
modulus should be selected for the preparation of the adhesive surface.

(2) Material fluidity. The microstructure of the gecko-inspired controllable adhesive is
usually at the micron level, so the casting material needs to have a high fluidity in
order to completely fill the cavity of the mold. The index used to measure the fluidity
of the material is generally the viscosity of the material; too much viscosity will lead to
a slow filling process and require additional pressure to fill. At the same time, the low
viscosity of most of the material does not have a strong adhesive force after curing,
making it easy to separate from the mold surface.

(3) Tensile strength. The casting material needs to overcome the vacuum and the friction
of the mold surface to separate from the mold after curing. Due to the micron size of
the microstructure, the mold will be damaged if the casting material breaks during
the demolding process and thus falls into the mold.

(4) Adhesion after curing. The adhesion of the casting material after curing and demold-
ing also has an effect on the performance of the gecko-inspired controllable adhesive,
and the adhesion strength of the material with adhesion after curing is generally
higher than that of the material without adhesion.

(5) Curing type. There are two main kinds of curing type for casting materials: heating
curing and room temperature curing. Heating curing requires the corresponding
molds to have the nature of high temperature resistance, which affects the selection of
a process for the preparation of a gecko-inspired controllable adhesion surface.

Table 2. Physical properties of common casting materials.

Material Elastic Modulus
(Mpa)

Tensile Strength
(Mpa) Viscosity (cp) Hardness Curing Type

ST-1060 2.9 6 NA 60 A Ordinary
Sylgard 184 2.16 [113] 6.7 3500 43 A Heater
Sylgard 170 1.95 [113] 3.7 2135 47 A Heater

As evident from the data presented in Tables 1 and 2, ST-1060 type polyurethane was
selected as the material for creating the early-stage gecko-inspired controllable adhesive.
Nonetheless, it exhibited stickiness after solidification, leading to challenges in demold-
ing. Consequently, in recent years, Sylgard 184 and Sylgard 170, characterized by easier
demolding and relatively lower modulus of elasticity and hardness, have been employed
as substitutes. Sylgard 170 is prone to fracture during the demolding process because of its
low tensile strength, so it is now common to use Sylgard 184, which has a higher tensile
strength, as the preferred preparation material.

5. Applications
5.1. Climbing Robots

The ability of geckos to walk on walls has inspired researchers to study gecko adhesion
mechanisms and gecko-inspired controllable adhesive materials. Attempts have been
made to reproduce the same excellent wall-climbing ability as geckos in wall-climbing
robots. Kim et al. fabricated Stickybot quadrupedal wall-climbing robots using previously
fabricated oriented polymer shanks as the adhesion unit (as shown in Figure 17a) that
are capable of climbing on a 90◦ of various smooth surfaces such as glass, smooth tiles,
and acrylic at a speed of 4 cm/s [114]. However, its adhesive surface has no self-cleaning
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ability due to its large size, and it can only crawl upwards along the wall due to insufficient
degrees of freedom.

Most gecko-inspired adhesives are tested in the laboratory. When applied to wall-
climbing robots, there are problems with alignment and uneven loading, thus they fail
to reproduce the excellent adhesion performance of the adhesive on the test bench. For
example, a Stickbot robot fitted with an oriented polymer shank should be able to support
a deadweight of 5 kg, but the Stickbot is only 0.3 kg [115]. Therefore, Hawkes et al. built
a composite foot structure consisting of a wedge-shaped adhesive surface, a rigid tile
backing, a flexible support, and tendons. The rigid tile backing helped to distribute the
load uniformly over the wedge-shaped adhesion surface. The flexible support inspired by
the venous blood sinus of geckos [116,117] allowed the wedge-shaped adhesion surface to
be more compliant with the wall to increase the contact area and provides some preload to
the rigid backing to initiate the wedge-shaped gecko-inspired adhesive surface. The tendon
connected to the center of the rigid tile backing was connected to the pressurized bladder,
which allowed the load to be evenly distributed across the rigid backings to maximize the
adhesion performance of the entire foot, and a single adhesion surface with this composite
structure could support a 0.8 kg Stickybot III and a 4 kg RiSE robot [117].
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Figure 17. The climbing robots based on the gecko-inspired controllable adhesives. (a) Stickybot, a
bioinspired robot capable of climbing smooth surfaces (reprinted with permission from Ref. [114].
Copyright 2008, IEEE).(b) Wall and ceiling climbing quadruped robot with superior water repellency
(UNIclimb) (reprinted with permission from Ref. [118]. Copyright 2017, Springer Nature). (c) Gecko-
inspired four-legged robot climbing on an inverted glass ceiling (reprinted with permission from
Ref. [119]. Copyright 2021, Xiaosong LI et al.).

The wedge-shaped structure of the adhesive surface suffered from low normal adhe-
sion force and insufficient design of the adhesion foot and gait, which led to the failure
of the above wall-climbing robot in realizing transition climbing between the vertical
wall and the ceiling. One practical solution is to use an adhesive with mushroom-like
microstructures and a high adhesion strength. Ko et al. proposed a wall-climbing robot
named UNIclimb that could walk on ceilings and wall surfaces with different angles. As
shown in Figure 17b, its adhesion layer consists of four individually separated mushroom-
like adhesives, and the separated adhesive prevents crack extension to ensure the robot’s
stability for wall climbing. The robot can walk on walls at about 1.4 mm/s and can crawl
on ceiling surfaces at 1 mm/s [118]. Li et al. proposed a design scheme for a soft–rigid–soft
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sandwich composite adhesion surface (as shown in Figure 17c), where the bending layer
consisting of foam and rigid substrate will, when in a bending state, push the adhesion
layer to be peeled off at a large angle, resulting in a significant reduction in the adhesion
area that leads to de-adhesion, while the strong adhesion force during adhesion consists of
a mushroom-like structure adhesive [119].

Existing gecko-inspired robots can realize climbing on smooth walls and ceilings, but
have not yet been successfully applied in practice. The main factors that limit its practical
application are as follows. First, the current gecko-inspired adhesives usually do not have
a self-cleaning function, and the adaptability of the wall morphology is insufficient, thus
leading to a gecko-inspired robot that can only adhere to a smooth wall surface. Second,
compared with geckos, existing robots are relatively large in structural size and weight,
leading to high requirements for the strength of the foot of the gecko-inspired adhesive.
Finally, the gecko’s stable climbing on the wall is a result of the synergistic cooperation
between the foot and the body, and the existing climbing robots have not yet considered
the effect of this, resulting in their poor flexibility and climbing speed.

5.2. Gecko Grippers

The end-effectors of conventional robots are mainly categorized into contact (neg-
ative pressure adsorption, magnetic adsorption, mechanical clamping) and non-contact.
Negative pressure adsorption can cause damage to fragile parts, and magnetic adsorption
requires specific adsorption materials. Ultrasonic technology has the advantages of high
precision and low energy consumption, but it can cause the warping of precision objects.
Gecko-inspired controllable adhesives with an ultra-low preload can adhere to the object’s
surface, which provides a solution for robotic end-effectors to achieve the non-destructive
manipulation of precision objects.

Cutkosky et al. designed simple curved grippers containing a wedge-like gecko-
inspired adhesive (as shown in Figure 18a) that conformed to the curvature of a convex
object surface and used the central tendon to pull up the adhesive on both sides, thus
enabling shear grasping. The authors also proposed a theoretical model that predicted a
decrease in adhesion force as the radius of curvature of the object increased [120]. However,
these grippers cannot apply moments, so they cannot manipulate the object at will. In
many cases, the grippers need to rotate the object, and to fulfill this requirement, the
authors then designed curved grippers with the ability to apply moments, where the shear
force was combined with the normal pressure of the frame on the object, allowing the
device to apply moments on the object [121]. Subsequently, Cutkosky et al. also designed
lateral grippers that had airbags on the back of the wedge-shaped adherent surfaces, which
allowed the grippers to conform to uneven surfaces, with a pair of wedge-shaped adhesives
moving in opposite directions guided by linear bearings, thus lifting the object using shear
force [122,123].

Gecko-inspired adhesives perform well on smooth surfaces but tend to fail on rough
surfaces. Electrostatic adhesion uses a set of conductive electrodes deposited inside a
dielectric. Applying a high voltage potential to the electrodes creates an electric field, which
generates adhesion on both conductive and nonconductive surfaces but provides little
adhesion [123]. In contrast, adhesives that combine the characteristics of electrostatic and
gecko-inspired adhesives can work on smooth, slightly rough, curved, flat, conductive,
and nonconductive surfaces. For example, combining a hybrid electrostatic/gecko ad-
hesion surface with an elastic soft grip (as shown in Figure 18b) increased the gripping
force on acrylic and polyimide film hemispheres with different diameters by 100% and
168%, respectively [124]. Dadkhah et al. [125] changed positive and negative electrodes,
which were in the same plane, to be in different planes, which increased the adhesion’s
strength by almost three times. Additionally, they designed a gripper with a three hybrid
electrostatic/gecko adhesive (as shown in Figure 18c). Kim et al. designed a gripper based
on shear-induced adhesion using elastomer-AgNW composite surface electrodes with
different angles, shapes, and sizes as adhesion surfaces (as shown in Figure 18d). The
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gripper can regulate the electrostatic attraction at the contact interface by manipulating
the localized electric field between the 3D flexible surface electrodes, and can grasp fruits,
metals, plastics, ceramics, and other objects [126].The hybrid electrostatic/gecko adhesive
utilized an electrostatic element to increase the preload of the gecko adhesive, resulting in a
larger actual contact area and, thus, improved adhesion. In turn, the gecko adhesive could
bring the electrostatic adhesive closer to the surface of the object due to its microstructure,
resulting in deeper electric field penetration and higher electrostatic adhesion; through this
positive feedback loop, the adhesion of both the single gecko adhesive and the electrostatic
adhesive can be effectively improved.
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Figure 18. Gecko grippers. (a) Shear force gripper holding a regulation-size basketball (reprinted with
permission from Ref. [120]. Copyright 2015, IEEE). (b) An electrostatic/gecko-inspired adhesives
soft robotic gripper (reprinted with permission from Ref. [124]. Copyright 2020, IEEE). (c) Gripper
with three hybrid electrostatic/gecko adhesive (reprinted with permission from Ref. [125]. Copyright
2016, IEEE). (d) Mechanically flexible surface structures with embedded conductive electrodes
grabbing oranges (reprinted with permission from Ref. [126]. Copyright 2023, Dong Geun KIM et al).
(e) FarmHand demonstrates its gentle, hyperextended pinch on a raw egg, a high-force power grasp
on a pumpkin (reprinted with permission from Ref. [127]. Copyright 2021, Wilson Ruotolo et al).
(f) A cross-section of 3D assembly of the system from side and from bottom of the system. 1: silicone
tubing, 2: vinylsiloxane, 3: outer case, 4: rubber ring, 5: soft chamber, 6: spacer between the chamber
and the FAM, 7: FAM, and 8: mushroom-shaped PDMS microfiber [128]. (Ref. [128] was adapted
through open access permission).

In addition to these independently designed grippers based on gecko-inspired con-
trollable adhesives, gecko-inspired controllable adhesives can also be used to enhance the
gripping capabilities of existing grippers. Ruotolo et al. combined an adhesive surface
with a multi-finger gripper to provide the gripper with simultaneous flexibility, stiffness,
and high adhesion (as shown in Figure 18e). The backing layer of the adhesive surface is
made of flexural ribs, which can undergo bending deformation in order to distribute the
shear load equally and improve flexibility for the gripper [127]. The adhesion-based soft
gripping system consists of an adhesion membrane and a pressure-controlled deformable
gripper support (as shown in Figure 18f), which controls the adhesion strength by varying
the internal pressure and the mechanics of equal load sharing at the interface. This soft-
system architecture addresses the fundamental challenge of having high surface compliance
while maintaining high fracture strength, thus allowing the handling of complex 3D and
deformable objects [128].

As shown above, the gripping gecko gripper can grip objects with large curvature
and regular shapes, but it is difficult to adapt to objects with irregular surface shapes. The
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soft gripper has the characteristic of adapting to complex shapes, while a composite of the
gecko-inspired adhesive and soft body can improve the load capacity of the soft gripper.
The combination of suction cups and adhesive surfaces can be used to grip objects with
deformable surfaces.

6. Conclusions and Outlook

Since the discovery of the fact that the gecko’s excellent wall-climbing ability comes
from the van der Waals forces generated by the microscopic setae of the paws in intimate
contact with the wall surface, people have been devoted to the study of gecko-inspired
dry adhesives. In this review, the microstructure of the gecko’s feet was introduced, a
hierarchical composite adhesive structure consisting of thin plates, setae, and spatulas
that can be adapted to the microscopic morphology of the wall surface and generate
strong van der Waals forces by making intimate contact with the wall surface. Next, the
controlled adhesion properties of the gecko were introduced in relation to the gecko’s
macroscopic regulation of the toe muscles and the shear motion of the setae. Then, the
design and preparation of gecko-inspired controllable adhesives were highlighted. Finally,
we presented several important applications of gecko-inspired controllable adhesives.

As shown in Figure 19, for the structural design of gecko-inspired controllable ad-
hesives, the design of anisotropic microstructures (such as wedges) is a direct means to
achieve controllable adhesion. Adding tip features such as spatulas and mushrooms to
the microstructures can improve the adhesion force. In addition, adding magnetizable
particles in polymers, shape memory polymers as materials, other methods of preparing
gecko-inspired controllable adhesives that can be in the magnetic field, temperature, and
other active control methods to make the adhesive micro-geometry deformation or backing
layer stiffness change, thus realizing the gecko-inspired adhesive state of active switching.
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Figure 19. Typical design of gecko-inspired controllable adhesive microstructures.

Gecko-inspired controllable adhesives have been developed for more than a decade,
and their adhesion and controllable performance have been greatly improved, but there
are still many challenges to fully reproduce the gecko’s strong wall-climbing ability. First,
the current design for the microscopic geometry of gecko-inspired controllable adhesives is
mostly determined by experience and intuition, and lacks a scientifically optimized struc-
tural design scheme to optimize the adhesion performance of the adhesion surface. There-
fore, by combining machine learning and the design of adhesion surface microstructures,
people can study the optimal design of an adhesive with more types of microstructures in
the future. Second, the preparation efficiency of the existing gecko-inspired controllable
adhesives is low, so how to realize the efficient preparation of large areas is an issue that
should be considered in the future. Finally, the adhesion system of geckos is complex.
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Therefore, how to integrate all the adhesion mechanisms of the gecko into one product will
be the future research direction of gecko-inspired controllable adhesives.

Gecko-inspired controllable adhesives have a wide range of applications in the field
of climbing robots and robotic gripping tasks. However, existing gecko-inspired climbing
robots are large compared to geckos in terms of their structural size and weight, and can
only climb on smooth wall surfaces. The gripper’s grasping objects also have more than
just smooth surfaces. Therefore, improving the self-cleaning, durability, and adaptability to
rough wall surfaces of gecko-inspired controllable adhesives will be a long-term challenge.
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