Data-Driven Sparse Sensor Placement Optimization on Wings for Flight-By-Feel: Bioinspired Approach and Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wing Model
2.2. Finding and Testing the Design Point
3. Results
3.1. Design Points and Predictive Performance
3.2. SSPOP Versus Conventional Optimization
3.2.1. Greedy Search
3.2.2. Other Conventional Optimization Approaches
4. Discussion
4.1. SSPOP and Flight-By-Feel
4.2. SSPOP and Aircraft Design
4.3. Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Usherwood, J.R.; Cheney, J.A.; Song, J.; Windsor, S.P.; Stevenson, J.P.; Dierksheide, U.; Nila, A.; Bomphrey, R.J. High aerodynamic lift from the tail reduces drag in gliding raptors. J. Exp. Biol. 2020, 223, jeb214809. [Google Scholar] [CrossRef]
- Harvey, C.; Baliga, V.B.; Wong, J.C.; Altshuler, D.L.; Inman, D.J. Birds can transition between stable and unstable states via wing morphing. Nature 2022, 603, 648–653. [Google Scholar] [CrossRef]
- Taylor, G.K.; Thomas, A.L.R. Evolutionary Biomechanics: Selection, Phylogeny, and Constraint; Oxford Series in Ecology and Evolution; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Tuthill, J. Begrudging the bat. J. Exp. Biol. 2015, 218, 2318–2319. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; He, G.; Liu, T. Lift enhancement by bats’ dynamically changing wingspan. J. R. Soc. Interface 2015, 12, 20150821. [Google Scholar] [CrossRef]
- Ruland, O.; Mkhoyan, T.; De Breuker, R.; Wang, X. Black-box Online Aerodynamic Performance Optimization for a Seamless Wing with Distributed Morphing. In Proceedings of the AIAA SciTech Forum, San Diego, CA, USA, 3–7 January 2022. [Google Scholar] [CrossRef]
- Burgess, S. Universal optimal design in the vertebrate limb pattern and lessons for bioinspired design. Bioinspiration Biomim. 2024, 19, 051004. [Google Scholar] [CrossRef]
- Lentink, D. Coevolving advances in animal flight and aerial robotics. Interface Focus 2017, 7, 20160119. [Google Scholar] [CrossRef]
- Martin-Silverstone, E.; Habib, M.B.; Hone, D.W. Volant Fossil Vertebrates: Potential for Bioinspired Flight Technology. Trends Ecol. Evol. 2020, 35, 618–629. [Google Scholar] [CrossRef]
- Salowitz, N.; Guo, Z.; Li, Y.H.; Kim, K.; Lanzara, G.; Chang, F.K. Bio-inspired stretchable network-based intelligent composites. J. Compos. Mater. 2013, 47, 97–105. [Google Scholar] [CrossRef]
- Chahl, J.; Chitsaz, N.; McIvor, B.; Ogunwa, T.; Kok, J.M.; McIntyre, T.; Abdullah, E. Biomimetic drones inspired by dragonflies will require a systems based approach and insights from biology. Drones 2021, 5, 24. [Google Scholar] [CrossRef]
- Naigle, S.C.; Hiltner, S.D.; Walker, M.M. Numerical Optimization of a Vortex Generating Jet on a Non-Slender Delta Wing. In Proceedings of the AIAA SciTech Forum, San Diego, CA, USA, 3–7 January 2022. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Zhou, C.; Wu, J. Aerodynamic mechanisms in bio-inspired micro air vehicles: A review in the light of novel compound layouts. IET Cyber-Syst. Robot. 2019, 1, 2–12. [Google Scholar] [CrossRef]
- Sihite, E.N.; Lessieur, A.; Dangol, P.; Singhal, A.; Ramezani, A. Orientation stabilization in a bioinspired bat-robot using integrated mechanical intelligence and control. In Proceedings of the SPIE Defense & Commercial Sensing, Virtual Event, 17 March 2021; Volume 11758, pp. 12–20. [Google Scholar] [CrossRef]
- Iida, F.; Nurzaman, S.G. Adaptation of sensor morphology: An integrative view of perception from biologically inspired robotics perspective. Interface Focus 2016, 6, 20160016. [Google Scholar] [CrossRef]
- Khot, N.S.; Veley, D.E.; Grandhi, R.V. Effect of number of actuators on optimum actively controlled structures. Eng. Optim. 1992, 19, 51–63. [Google Scholar] [CrossRef]
- Peres, F.; Castelli, M. Combinatorial Optimization Problems and Metaheuristics: Review, Challenges, Design, and Development. Appl. Sci. 2021, 11, 6449. [Google Scholar] [CrossRef]
- Liu, Q.; Li, X.; Liu, H.; Guo, Z. Multi-objective metaheuristics for discrete optimization problems: A review of the state-of-the-art. Appl. Soft Comput. 2020, 93, 106382. [Google Scholar] [CrossRef]
- Hollenbeck, A.C.; Grandhi, R.; Hansen, J.H.; Pankonien, A.M. Bioinspired Artificial Hair Sensors for Flight-by-Feel of Unmanned Aerial Vehicles: A Review. AIAA J. 2023, 61, 5206–5231. [Google Scholar] [CrossRef]
- Hollenbeck, A.; Grandhi, R.V.; Hansen, J.; Pankonien, A.M. Sparse Sensor Placement Optimization for Prediction of Angle of Attack with Artificial Hair-Cell Airflow Microsensors. In Proceedings of the AIAA SciTech Forum, Orlando, FL, USA, 8–12 January 2024. [Google Scholar] [CrossRef]
- Hollenbeck, A.C.; Grandhi, R.V.; Hansen, J.H.; Pankonien, A.M. Sparse Flow Sensor Placement Optimization for Flight-by-Feel Control of 2D Airfoils. AIAA J. 2024, 10, 3803–3812. [Google Scholar] [CrossRef]
- Brunton, B.W.; Brunton, S.L.; Proctor, J.L.; Kutz, J.N. Sparse Sensor Placement Optimization for Classification. SIAM J. Appl. Math. 2016, 76, 2099–2122. [Google Scholar] [CrossRef]
- Mohren, T.L.; Daniel, T.L.; Brunton, S.L.; Brunton, B.W. Neural-inspired sensors enable sparse, efficient classification of spatiotemporal data. Proc. Natl. Acad. Sci. USA 2018, 115, 10564–10569. [Google Scholar] [CrossRef]
- Manohar, K.; Brunton, B.W.; Kutz, J.N.; Brunton, S.L. Data-Driven Sparse Sensor Placement for Reconstruction: Demonstrating the Benefits of Exploiting Known Patterns. IEEE Control Syst. 2018, 38, 63–86. [Google Scholar] [CrossRef]
- Callaham, J.; Maeda, K.; Brunton, S.L. Robust flow field reconstruction from limited measurements via sparse representation. Physical Review Fluids 2019, 4, 103907. [Google Scholar] [CrossRef]
- Brunton, B.W.; Botvinick, M.M.; Brody, C.D. Rats and Humans Can Optimally Accumulate Evidence for Decision-Making. Science 2013, 340, 95–98. [Google Scholar] [CrossRef]
- Bright, I.; Lin, G.; Kutz, J.N. Compressive sensing based machine learning strategy for characterizing the flow around a cylinder with limited pressure measurements. Phys. Fluids 2013, 25, 127102. [Google Scholar] [CrossRef]
- Aiello, B.R.; Stanchak, K.E.; Weber, A.I.; Deora, T.; Sponberg, S.; Brunton, B.W. Spatial distribution of campaniform sensilla mechanosensors on wings: Form, function, and phylogeny. Curr. Opin. Insect Sci. 2021, 48, 8–17. [Google Scholar] [CrossRef]
- Hinson, B.T.; Morgansen, K.A. Gyroscopic sensing in the wings of the hawkmoth Manduca sexta: The role of sensor location and directional sensitivity. Bioinspiration Biomim. 2015, 10, 056013. [Google Scholar] [CrossRef]
- Sterbing-D’Angelo, S.J.; Liu, H.; Yu, M.; Moss, C.F. Morphology and deflection properties of bat wing sensory hairs: Scanning electron microscopy, laser scanning vibrometry, and mechanics model. Bioinspiration Biomim. 2016, 11, 056008. [Google Scholar] [CrossRef]
- Slinker, K.A.; Kondash, C.; Dickinson, B.T.; Baur, J.W. CNT-Based Artificial Hair Sensors for Predictable Boundary Layer Air Flow Sensing. Adv. Mater. Technol. 2016, 1, 1600176. [Google Scholar] [CrossRef]
- Izquierdo, J.J.; Hollenbeck, A.; Demott, R.; Bramlette, R.; Cervantes, G.; Vallejo, C.; Kudva, J. Improving synthesis and testing conditions for bio-inspired carbon nanotube artificial hair sensors: Design, construction, reproduction, and calibration. In Proceedings of the AIAA Scitech 2024 Forum, Orlando, FL, USA, 8–12 January 2024. [Google Scholar] [CrossRef]
- Dickinson, B.T.; Singler, J.R.; Batten, B.A. The Detection of Unsteady Flow Separation with Bioinspired Hair-Cell Sensors. In Proceedings of the 26th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Seattle, WA, USA, 23–26 June 2008. [Google Scholar] [CrossRef]
- Dickinson, B.T. Hair receptor sensitivity to changes in laminar boundary layer shape. Bioinspiration Biomim. 2010, 5, 016002. [Google Scholar] [CrossRef]
- Court, A.; Bruecker, C. Fly by Feel: Flow Event Detection via Bioinspired Wind-Hairs. Fluids 2024, 9, 74. [Google Scholar] [CrossRef]
- Ellington, C.P.; van den Berg, C.; Willmott, A.P.; Thomas, A.L.R. Leading-edge vortices in insect flight. Nature 1996, 384, 626–630. [Google Scholar] [CrossRef]
- Warrick, D.R.; Tobalske, B.W.; Powers, D.R. Lift production in the hovering hummingbird. Proc. R. Soc. B Biol. Sci. 2009, 276, 3747–3752. [Google Scholar] [CrossRef]
- Linehan, T.; Mohseni, K. Scaling trends of bird’s alular feathers in connection to leading-edge vortex flow over hand-wing. Sci. Rep. 2020, 10, 7905. [Google Scholar] [CrossRef]
- Muijres, F.T.; Johansson, L.C.; Barfield, R.; Wolf, M.; Spedding, G.R.; Hedenström, A. Leading-Edge Vortex Improves Lift in Slow-Flying Bats. Science 2008, 319, 1250–1253. [Google Scholar] [CrossRef]
- Lentink, D.; Dickson, W.B.; Van Leeuwen, J.L.; Dickinson, M.H. Leading-Edge Vortices Elevate Lift of Autorotating Plant Seeds. Science 2009, 324, 1438–1440. [Google Scholar] [CrossRef]
- Bomphrey, R.J. Insects in flight: Direct visualization and flow measurements. Bioinspiration Biomim. 2006, 1, S1. [Google Scholar] [CrossRef]
- KleinHeerenbrink, M.; Christoffer Johansson, L.; Hedenström, A. Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight. J. R. Soc. Interface 2017, 14, 20170099. [Google Scholar] [CrossRef]
- Malicki, L.; Malecha, Z.; Tomczuk, K. Leading-Edge Vortex Controller (LEVCON) Influence on the Aerodynamic Characteristics of a Modern Fighter Jet. Energies 2023, 16, 7590. [Google Scholar] [CrossRef]
- Zhang, S.; Jaworski, A.J.; McParlin, S.C.; Turner, J.T. Experimental investigation of the flow structures over a 40∘ swept wing. Aeronaut. J. 2019, 123, 39–55. [Google Scholar] [CrossRef]
- Thomas, A.L.; Taylor, G.K.; Srygley, R.B.; Nudds, R.L.; Bomphrey, R.J. Dragonfly flight: Free-flight and tethered flow visualizations reveal a diverse array of unsteady lift generating mechanisms, controlled primarily via angle of attack. J. Exp. Biol. 2004, 207, 4299–4323. [Google Scholar] [CrossRef]
- Sutrisno, S.; Deendarlianto, D.; Rohmat, T.A.; Wibowo, S.B.; Iswahyudi, S. Vortex Dynamics Analysis of Straight-Body-Type-Fuselage Fighter Using CFD Simulation. J. Aerosp. Technol. Manag. 2020, 12, e1020. [Google Scholar] [CrossRef]
- Demoret, A.C. The Effect of Passive and Active Boundary-layer Fences on Delta Wing Performance at Low Reynolds Number. Master’s Thesis, Air Force Institute of Technology, Wright Patterson Air Force Base, Dayton, OH, USA, 2020. Volume 3213. [Google Scholar]
- Colvert, B.; Chen, K.K.; Kanso, E. Bioinspired Sensory Systems for Shear Flow Detection. J. Nonlinear Sci. 2017, 27, 1183–1192. [Google Scholar] [CrossRef]
- Slinker, K.; Kondash, C.; Dickinson, B.; Baur, J. High-Bandwidth and Sensitive Air Flow Sensing Based on Resonance Properties of CNT-on-Fiber Hairs. J. Carbon Res. 2017, 3, 6. [Google Scholar] [CrossRef]
- Jin, B.; Xu, H.; Peng, J.; Lu, K.; Lu, Y. Derivative-Free Observability Analysis for Sensor Placement Optimization of Bioinspired Flexible Flapping Wing System. Biomimetics 2022, 7, 178. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Li, L.; Wang, X.; He, S. Modeling and Analysis of Bio-Inspired, Reconfigurable, Piezo-Driven Vibration Isolator for Spacecraft. Biomimetics 2024, 9, 29. [Google Scholar] [CrossRef]
- Moshizi, S.A.; Pastras, C.J.; Peng, S.; Wu, S.; Asadnia, M. Artificial Hair Cell Sensor Based on Nanofiber-Reinforced Thin Metal Films. Biomimetics 2024, 9, 18. [Google Scholar] [CrossRef]
- Su, W.; Reich, G.W. Geometric scaling of artificial hair sensors for flow measurement under different conditions. Smart Materials and Structures 2017, 26, 037002. [Google Scholar] [CrossRef]
- Hollenbeck, A.C. SSPOP (Sparse Sensor Placement Optimization for Prediction) Code and Figure Supplement, 2024. Online Data Repository (GitHub). Available online: https://github.com/AlexHbeck/SSPOP (accessed on 12 October 2024).
SSPOP | SSPOP + Search | Best Possible | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q | DP | RMSE (deg) | Rank (%) | DP | RMSE (deg) | Rank (%) | DP | RMSE (deg) | ||||||||||
5 cm | 1 | 227 | 7.517 | 2.521 | 13 | 7.105 | ||||||||||||
2 | 216 | 227 | 0.271 | 0.177 | 183 | 211 | 0.142 | 0.004 | 183 | 211 | 0.142 | |||||||
3 | 43 | 227 | 228 | 0.170 | 0.231 | 188 | 193 | 225 | 0.137 | 0.008 | 130 | 198 | 207 | 0.095 | ||||
4 | 197 | 199 | 216 | 227 | 0.131 | 0.105 | 130 | 142 | 158 | 232 | 0.125 | 0.055 | 15 | 36 | 130 | 218 | 0.045 | |
1 cm | 1 | 227 | 7.756 | 1.261 | 227 | 7.493 | ||||||||||||
2 | 215 | 227 | 0.426 | 3.865 | 21 | 224 | 0.125 | 0.004 | 210 | 224 | 0.125 | |||||||
3 | 153 | 213 | 232 | 0.106 | 0.048 | 156 | 161 | 223 | 0.060 | 0.000 | 145 | 167 | 208 | 0.043 | ||||
4 | 165 | 194 | 213 | 221 | 0.092 | 0.057 | 86 | 93 | 210 | 223 | 0.075 | 0.012 | 32 | 156 | 207 | 223 | 0.036 | |
2 cm | 1 | 227 | 8.009 | 0.420 | 227 | 8.009 | ||||||||||||
2 | 133 | 199 | 0.254 | 0.450 | 145 | 230 | 0.161 | 0.004 | 145 | 230 | 0.161 | |||||||
3 | 141 | 180 | 214 | 0.129 | 0.091 | 155 | 200 | 220 | 0.064 | 0.000 | 33 | 96 | 188 | 0.056 | ||||
4 | 143 | 165 | 225 | 232 | 0.100 | 0.111 | 112 | 157 | 189 | 218 | 0.088 | 0.042 | 33 | 133 | 140 | 178 | 0.038 | |
Var. | 1 | 227 | 7.517 | 0.980 | 13 | 7.105 | ||||||||||||
2 | 64 | 215 | 0.331 | 1.288 | 156 | 223 | 0.080 | 0.000 | 156 | 223 | 0.080 | |||||||
3 | 146 | 205 | 213 | 0.121 | 0.061 | 206 | 210 | 234 | 0.097 | 0.012 | 145 | 161 | 204 | 0.039 |
Method | RMSE deg | DP Nodes | Method | RMSE deg | DP Nodes | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 mm | BF Search | 0.045 | 15 | 36 | 130 | 218 | 2 cm | BF Search | 0.038 | 33 | 133 | 140 | 178 |
BFGS (bot) | 0.099 | 22 | 109 | 168 | 210 | SSPOP | 0.100 | 143 | 165 | 225 | 232 | ||
SSPOP | 0.131 | 197 | 199 | 216 | 227 | BFGS (top) | 0.143 | 1 | 7 | 23 | 226 | ||
BFGS (top) | 0.145 | 1 | 9 | 137 | 235 | BFGS (bot) | 0.150 | 57 | 93 | 125 | 217 | ||
1 cm | BF Search | 0.036 | 32 | 156 | 207 | 223 | Var. | BF Search | 0.039 | 145 | 161 | 204 | |
SSPOP | 0.092 | 165 | 194 | 213 | 221 | SSPOP | 0.121 | 146 | 205 | 213 | |||
BFGS (bot) | 0.141 | 40 | 41 | 140 | 190 | BFGS (bot) | 0.123 | 19 | 98 | 207 | |||
BFGS (top) | 0.514 | 1 | 23 | 115 | 175 | BFGS (top) | 0.966 | 1 | 23 | 131 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hollenbeck, A.C.; Beachy, A.J.; Grandhi, R.V.; Pankonien, A.M. Data-Driven Sparse Sensor Placement Optimization on Wings for Flight-By-Feel: Bioinspired Approach and Application. Biomimetics 2024, 9, 631. https://doi.org/10.3390/biomimetics9100631
Hollenbeck AC, Beachy AJ, Grandhi RV, Pankonien AM. Data-Driven Sparse Sensor Placement Optimization on Wings for Flight-By-Feel: Bioinspired Approach and Application. Biomimetics. 2024; 9(10):631. https://doi.org/10.3390/biomimetics9100631
Chicago/Turabian StyleHollenbeck, Alex C., Atticus J. Beachy, Ramana V. Grandhi, and Alexander M. Pankonien. 2024. "Data-Driven Sparse Sensor Placement Optimization on Wings for Flight-By-Feel: Bioinspired Approach and Application" Biomimetics 9, no. 10: 631. https://doi.org/10.3390/biomimetics9100631
APA StyleHollenbeck, A. C., Beachy, A. J., Grandhi, R. V., & Pankonien, A. M. (2024). Data-Driven Sparse Sensor Placement Optimization on Wings for Flight-By-Feel: Bioinspired Approach and Application. Biomimetics, 9(10), 631. https://doi.org/10.3390/biomimetics9100631