Design Optimization of a Hybrid-Driven Soft Surgical Robot with Biomimetic Constraints
Abstract
:1. Introduction
2. Materials and Methods
2.1. Optimization Model
2.1.1. Design Objectives
2.1.2. Design Variables
2.1.3. Design Constraints
Technical Requirements
Clinical Requirements
2.2. Material Modeling
2.3. Design Optimization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RAMIS | Robot-Assisted Minimally Invasive Surgery |
FEA | Finite Element Analysis |
MIS | Minimally Invasive Surgery |
RSO | Response Surface Optimization |
EAP | Electroactive Polymer |
FOV | Field of View |
DOF | Degrees of Freedom |
UTM | Universal Testing Machine |
2D | Two-Dimensional |
PCC | Piecewise Constant Curvature |
ISO | International Organization for Standardization |
CPU | Central Processing Unit |
RAM | Random-Access Memory |
GA | Genetic Algorithm |
References
- Majidi, C. Soft-matter engineering for soft robotics. Adv. Mater. Technol. 2019, 4, 1800477. [Google Scholar] [CrossRef]
- Zhong, J.; Huang, W.; Zhou, H. Multifunctionality in Nature: Structure–Function Relationships in Biological Materials. Biomimetics 2023, 8, 284. [Google Scholar] [CrossRef] [PubMed]
- Kwok, K.W.; Wurdemann, H.; Arezzo, A.; Menciassi, A.; Althoefer, K. Soft Robot-Assisted Minimally Invasive Surgery and Interventions: Advances and Outlook. Proc. IEEE 2022, 110, 871–892. [Google Scholar] [CrossRef]
- Majidi, C. Soft robotics: A perspective—Current trends and prospects for the future. Soft Robot. 2014, 1, 5–11. [Google Scholar] [CrossRef]
- Rus, D.; Tolley, M.T. Design, fabrication and control of soft robots. Nature 2015, 521, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Runciman, M.; Darzi, A.; Mylonas, G.P. Soft robotics in minimally invasive surgery. Soft Robot. 2019, 6, 423–443. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Nguyen, R.H.; Forbrigger, C.; Drake, J.; Looi, T.; Diller, E. A hybrid steerable robot with magnetic wrist for minimally invasive epilepsy surgery. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 6830–6836. [Google Scholar]
- Polygerinos, P.; Correll, N.; Morin, S.A.; Mosadegh, B.; Onal, C.D.; Petersen, K.; Cianchetti, M.; Tolley, M.T.; Shepherd, R.F. Soft robotics: Review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction. Adv. Eng. Mater. 2017, 19, 1700016. [Google Scholar] [CrossRef]
- Cianchetti, M.; Laschi, C.; Menciassi, A.; Dario, P. Biomedical applications of soft robotics. Nat. Rev. Mater. 2018, 3, 143–153. [Google Scholar] [CrossRef]
- Hooshiar, A.; Najarian, S.; Dargahi, J. Haptic telerobotic cardiovascular intervention: A review of approaches, methods, and future perspectives. IEEE Rev. Biomed. Eng. 2019, 13, 32–50. [Google Scholar] [CrossRef]
- Peters, B.S.; Armijo, P.R.; Krause, C.; Choudhury, S.A.; Oleynikov, D. Review of emerging surgical robotic technology. Surg. Endosc. 2018, 32, 1636–1655. [Google Scholar] [CrossRef]
- Lahcen, A.A.; Caprio, A.; Hsue, W.; Tschabrunn, C.; Liu, C.; Mosadegh, B.; Dunham, S. Creating Stretchable Electronics from Dual Layer Flex-PCB for Soft Robotic Cardiac Mapping Catheters. Micromachines 2023, 14, 884. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, V.; Caprio, A.; Doshi, T.; Jang, S.J.; Liu, C.F.; Mosadegh, B.; Dunham, S. Multilayer fabrication of durable catheter-deployable soft robotic sensor arrays for efficient left atrial mapping. Sci. Adv. 2020, 6, eabc6800. [Google Scholar] [CrossRef]
- Torkaman, T.; Roshanfar, M.; Dargahi, J.; Hooshiar, A. Accurate Embedded Force Sensor for Soft Robots with Rate-dependent Deep Neural Calibration. In Proceedings of the 2022 IEEE International Symposium on Robotic and Sensors Environments (ROSE), Abu Dhabi, United Arab Emirates, 14–15 November 2022; pp. 1–7. [Google Scholar]
- Torkaman, T.; Roshanfar, M.; Dargahi, J.; Hooshiar, A. Embedded Six-DoF Force—Torque Sensor for Soft Robots With Learning-Based Calibration. IEEE Sensors J. 2023, 23, 4204–4215. [Google Scholar] [CrossRef]
- Torkaman, T.; Roshanfar, M.; Dargahi, J.; Hooshiar, A. Analytical Modeling and Experimental Validation of a Gelatin-based Shape Sensor for Soft Robots. In Proceedings of the 2022 International Symposium on Medical Robotics (ISMR), Atlanta, GA, USA, 13–15 April 2022; pp. 1–7. [Google Scholar]
- Kumar, N.; Wirekoh, J.; Saba, S.; Riviere, C.N.; Park, Y.L. Soft miniaturized actuation and sensing units for dynamic force control of cardiac ablation catheters. Soft Robot. 2021, 8, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Gopesh, T.; Wen, J.H.; Santiago-Dieppa, D.; Yan, B.; Pannell, J.S.; Khalessi, A.; Norbash, A.; Friend, J. Soft robotic steerable microcatheter for the endovascular treatment of cerebral disorders. Sci. Robot. 2021, 6, eabf0601. [Google Scholar] [CrossRef] [PubMed]
- Polygerinos, P.; Lyne, S.; Wang, Z.; Nicolini, L.F.; Mosadegh, B.; Whitesides, G.M.; Walsh, C.J. Towards a soft pneumatic glove for hand rehabilitation. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 1512–1517. [Google Scholar]
- Rieger, C.; Desai, J. A Preliminary Study to Design and Evaluate Pneumatically Controlled Soft Robotic Actuators for a Repetitive Hand Rehabilitation Task. Biomimetics 2022, 7, 139. [Google Scholar] [CrossRef] [PubMed]
- Yasa, O.; Toshimitsu, Y.; Michelis, M.Y.; Jones, L.S.; Filippi, M.; Buchner, T.; Katzschmann, R.K. An Overview of Soft Robotics. Annu. Rev. Control Robot. Auton. Syst. 2022, 6, 1–29. [Google Scholar] [CrossRef]
- Bartlett, N.W.; Tolley, M.T.; Overvelde, J.T.; Weaver, J.C.; Mosadegh, B.; Bertoldi, K.; Whitesides, G.M.; Wood, R.J. A 3D-printed, functionally graded soft robot powered by combustion. Science 2015, 349, 161–165. [Google Scholar] [CrossRef]
- Rajappan, A.; Jumet, B.; Preston, D.J. Pneumatic soft robots take a step toward autonomy. Sci. Robot. 2021, 6, eabg6994. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Huang, Y.; Cao, L.; Liu, J. A review of soft manipulator research, applications, and opportunities. J. Field Robot. 2022, 39, 281–311. [Google Scholar] [CrossRef]
- Huang, W.; Xiao, J.; Xu, Z. A variable structure pneumatic soft robot. Sci. Rep. 2020, 10, 18778. [Google Scholar] [CrossRef] [PubMed]
- Haga, Y.; Muyari, Y.; Mineta, T.; Matsunaga, T.; Akahori, H.; Esashi, M. Small diameter hydraulic active bending catheter using laser processed super elastic alloy and silicone rubber tube. In Proceedings of the 2005 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology, Oahu, HI, USA, 12–15 May 2005; pp. 245–248. [Google Scholar]
- El-Atab, N.; Mishra, R.B.; Al-Modaf, F.; Joharji, L.; Alsharif, A.A.; Alamoudi, H.; Diaz, M.; Qaiser, N.; Hussain, M.M. Soft actuators for soft robotic applications: A review. Adv. Intell. Syst. 2020, 2, 2000128. [Google Scholar] [CrossRef]
- Ba, W.; Chang, J.C.; Liu, J.; Wang, X.; Dong, X.; Axinte, D. An analytical differential kinematics-based method for controlling tendon-driven continuum robots. Robot. Auton. Syst. 2024, 171, 104562. [Google Scholar] [CrossRef]
- Stevens-Wright, D.; Russo, M.; Nielsen, P.; Bertram, P. Actuator for Use with Steerable Catheter. US Patent 5,462,527, 31 October 1995. [Google Scholar]
- Avitall, B. Catheter Deflection Control. US Patent 5,441,483, 15 August 1995. [Google Scholar]
- Xing, Z.; Zhang, J.; McCoul, D.; Cui, Y.; Sun, L.; Zhao, J. A super-lightweight and soft manipulator driven by dielectric elastomers. Soft Robot. 2020, 7, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yu, C.Y.; Abrego Serrano, P.A.; Ahn, S.H. Shape memory alloy-based soft finger with changeable bending length using targeted variable stiffness. Soft Robot. 2020, 7, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Zhang, J.; Salehizadeh, M.; Onaizah, O.; Diller, E. Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions. Sci. Robot. 2019, 4, eaav4494. [Google Scholar] [CrossRef]
- Huang, H.W.; Sakar, M.S.; Petruska, A.J.; Pané, S.; Nelson, B.J. Soft micromachines with programmable motility and morphology. Nat. Commun. 2016, 7, 12263. [Google Scholar] [CrossRef]
- Zhu, Y.; Antao, D.S.; Xiao, R.; Wang, E.N. Real-time manipulation with magnetically tunable structures. Adv. Mater. 2014, 26, 6442–6446. [Google Scholar] [CrossRef]
- Kang, R.; Guo, Y.; Chen, L.; Branson, D.T.; Dai, J.S. Design of a pneumatic muscle based continuum robot with embedded tendons. IEEE/ASME Trans. Mechatron. 2016, 22, 751–761. [Google Scholar] [CrossRef]
- Tang, Y.; Chi, Y.; Sun, J.; Huang, T.H.; Maghsoudi, O.H.; Spence, A.; Zhao, J.; Su, H.; Yin, J. Leveraging elastic instabilities for amplified performance: Spine-inspired high-speed and high-force soft robots. Sci. Adv. 2020, 6, eaaz6912. [Google Scholar] [CrossRef]
- Shahid, Z.; Glatman, A.L.; Ryu, S.C. Design of a soft composite finger with adjustable joint stiffness. Soft Robot. 2019, 6, 722–732. [Google Scholar] [CrossRef] [PubMed]
- Roshanfar, M.; Dargahi, J.; Hooshiar, A. Toward Semi-Autonomous Stiffness Adaptation of Pneumatic Soft Robots: Modeling and Validation. In Proceedings of the 2021 IEEE International Conference on Autonomous Systems (ICAS), Montreal, QC, Canada, 11–13 August 2021; pp. 1–5. [Google Scholar]
- Roshanfar, M.; Sayadi, A.; Dargahi, J.; Hooshiar, A. Stiffness Adaptation of a Hybrid Soft Surgical Robot for Improved Safety in Interventional Surgery. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 4853–4859. [Google Scholar]
- Roshanfar, M.; Taki, S.; Sayadi, A.; Cecere, R.; Dargahi, J.; Hooshiar, A. Hyperelastic Modeling and Validation of Hybrid-Actuated Soft Robot with Pressure-Stiffening. Micromachines 2023, 14, 900. [Google Scholar] [CrossRef] [PubMed]
- Roshanfar, M.; Dargahi, J.; Hooshiar, A. Cosserat Rod-Based Dynamic Modeling of a Hybrid-Actuated Soft Robot for Robot-Assisted Cardiac Ablation. Actuators 2024, 13, 8. [Google Scholar] [CrossRef]
- Stella, F.; Hughes, J. The science of soft robot design: A review of motivations, methods and enabling technologies. Front. Robot. AI 2023, 9, 1059026. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.C.; Thai, M.T.; Hoang, T.T.; Davies, J.; Phan, P.T.; Zhu, K.; Wu, L.; Brodie, M.A.; Tsai, D.; Ha, Q.P.; et al. Development of a soft robotic catheter for vascular intervention surgery. Sens. Actuators A Phys. 2023, 357, 114380. [Google Scholar] [CrossRef]
- Hu, X.; Chen, A.; Luo, Y.; Zhang, C.; Zhang, E. Steerable catheters for minimally invasive surgery: A review and future directions. Comput. Assist. Surg. 2018, 23, 21–41. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, R.; Chen, W.; Wang, X.; Pfeifer, R. A cable-driven soft robot surgical system for cardiothoracic endoscopic surgery: Preclinical tests in animals. Surg. Endosc. 2017, 31, 3152–3158. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, Y.; Lekakou, C.; Ranzani, T.; Cianchetti, M.; Morino, M.; Arezzo, A.; Menciassi, A.; Geng, T.; Saaj, C.M. Crimped braided sleeves for soft, actuating arm in robotic abdominal surgery. Minim. Invasive Ther. Allied Technol. 2015, 24, 204–210. [Google Scholar] [CrossRef]
- McCandless, M.; Perry, A.; DiFilippo, N.; Carroll, A.; Billatos, E.; Russo, S. A Soft Robot for Peripheral Lung Cancer Diagnosis and Therapy. Soft Robot. 2021, 9, 754–966. [Google Scholar] [CrossRef]
- Burgner-Kahrs, J.; Rucker, D.C.; Choset, H. Continuum robots for medical applications: A survey. IEEE Trans. Robot. 2015, 31, 1261–1280. [Google Scholar] [CrossRef]
- Webster, R.J., III; Jones, B.A. Design and kinematic modeling of constant curvature continuum robots: A review. Int. J. Robot. Res. 2010, 29, 1661–1683. [Google Scholar] [CrossRef]
- Till, J.; Aloi, V.; Rucker, C. Real-time dynamics of soft and continuum robots based on Cosserat rod models. Int. J. Robot. Res. 2019, 38, 723–746. [Google Scholar] [CrossRef]
- Wang, J.; Chortos, A. Control Strategies for Soft Robot Systems. Adv. Intell. Syst. 2022, 4, 2100165. [Google Scholar] [CrossRef]
- Chen, F.; Wang, M.Y. Design optimization of soft robots: A review of the state of the art. IEEE Robot. Autom. Mag. 2020, 27, 27–43. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, T.; Wang, J.; Wang, M.Y.; Li, B.; Zhang, J.X.; Hong, J. Geometric confined pneumatic soft–rigid hybrid actuators. Soft Robot. 2020, 7, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Polygerinos, P.; Wang, Z.; Overvelde, J.T.; Galloway, K.C.; Wood, R.J.; Bertoldi, K.; Walsh, C.J. Modeling of soft fiber-reinforced bending actuators. IEEE Trans. Robot. 2015, 31, 778–789. [Google Scholar] [CrossRef]
- Konstantinova, J.; Wurdemann, H.; Shafti, A. Soft and Stiffness-Controllable Robotics Solutions for Minimally Invasive Surgery: The STIFF-FLOP Approach; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Elsayed, Y.; Vincensi, A.; Lekakou, C.; Geng, T.; Saaj, C.; Ranzani, T.; Cianchetti, M.; Menciassi, A. Finite element analysis and design optimization of a pneumatically actuating silicone module for robotic surgery applications. Soft Robot. 2014, 1, 255–262. [Google Scholar] [CrossRef]
- Liu, Q.; Kobayashi, Y.; Zhang, B.; Noguchi, T.; Takahashi, Y.; Nishio, Y.; Cao, Y.; Ieiri, S.; Toyoda, K.; Uemura, M.; et al. Development of a smart surgical robot with bended forceps for infant congenital esophageal atresia surgery. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 2430–2435. [Google Scholar]
- Zhu, J.; Lyu, L.; Xu, Y.; Liang, H.; Zhang, X.; Ding, H.; Wu, Z. Intelligent Soft Surgical Robots for Next-Generation Minimally Invasive Surgery. Adv. Intell. Syst. 2021, 3, 2100011. [Google Scholar] [CrossRef]
- Xavier, M.S.; Fleming, A.J.; Yong, Y.K. Design and control of pneumatic systems for soft robotics: A simulation approach. IEEE Robot. Autom. Lett. 2021, 6, 5800–5807. [Google Scholar] [CrossRef]
- Marechal, L.; Balland, P.; Lindenroth, L.; Petrou, F.; Kontovounisios, C.; Bello, F. Toward a common framework and database of materials for soft robotics. Soft Robot. 2021, 8, 284–297. [Google Scholar] [CrossRef]
- Lai, W.M.; Rubin, D.H.; Rubin, D.; Krempl, E. Introduction to Continuum Mechanics; Butterworth-Heinemann: Oxford, UK, 2009. [Google Scholar]
- ISO 7743; 2011: Rubber, Vulcanized Or Thermoplastic. Determination of Compression Stress-Strain Properties. ISO: Geneva, Switzerland, 2011.
- Roshanfar, M.; Fekri, P.; Dargahi, J. Toward autonomous cardiac catheterization through a parametric finite element simulation with experimental validation. ICAS 2023 2023, 13, 23. [Google Scholar]
- Terrile, S.; López, A.; Barrientos, A. Use of Finite Elements in the Training of a Neural Network for the Modeling of a Soft Robot. Biomimetics 2023, 8, 56. [Google Scholar] [CrossRef] [PubMed]
Model Parameters | (MPa) | (MPa) | (MPa) |
---|---|---|---|
With Compression | |||
Without Compression [61] |
Number | Goal Function | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
(mm) | (mm) | (mm) | (mm) | (mN) | (kPa) | (Degree) | ||||
1 | 3.605 | 4.273 | 4.816 | 68.165 | 55.780 | 15.156 | 114.742 | 0.274 | 0.331 | 0.387 |
2 | 3.900 | 4.100 | 5.250 | 72.500 | 50.000 | 14.000 | 108.421 | 0.211 | 0.267 | 0.323 |
3 | 3.605 | 3.927 | 5.684 | 68.165 | 55.780 | 15.156 | 107.886 | 0.183 | 0.283 | 0.382 |
4 | 3.605 | 4.273 | 4.816 | 76.835 | 44.220 | 15.156 | 105.432 | 0.223 | 0.279 | 0.336 |
5 | 3.605 | 4.273 | 5.684 | 76.835 | 55.780 | 15.156 | 104.453 | 0.151 | 0.266 | 0.381 |
6 | 3.605 | 3.927 | 4.816 | 76.835 | 55.780 | 15.156 | 99.472 | 0.102 | 0.240 | 0.378 |
7 | 3.605 | 3.927 | 5.684 | 76.835 | 44.220 | 15.156 | 98.431 | 0.157 | 0.245 | 0.332 |
8 | 3.200 | 4.100 | 5.250 | 72.500 | 50.000 | 16.000 | 89.935 | 0.103 | 0.242 | 0.380 |
9 | 3.605 | 4.273 | 5.684 | 68.165 | 44.220 | 15.156 | 85.283 | 0.132 | 0.231 | 0.331 |
10 | 3.200 | 4.100 | 5.250 | 72.500 | 60.000 | 14.000 | 81.807 | 0.045 | 0.203 | 0.360 |
11 | 3.605 | 4.273 | 4.816 | 76.835 | 55.780 | 12.844 | 81.316 | 0.095 | 0.203 | 0.310 |
12 | 3.605 | 3.927 | 5.684 | 76.835 | 55.780 | 12.844 | 80.006 | 0.054 | 0.181 | 0.307 |
13 | 3.605 | 3.927 | 4.816 | 68.165 | 44.220 | 15.156 | 79.828 | 0.092 | 0.211 | 0.329 |
14 | 3.605 | 4.273 | 5.684 | 68.165 | 55.780 | 12.844 | 74.464 | 0.047 | 0.177 | 0.307 |
15 | 3.200 | 4.400 | 5.250 | 72.500 | 50.000 | 14.000 | 73.255 | 0.064 | 0.189 | 0.315 |
16 | 3.605 | 3.927 | 4.816 | 68.165 | 55.780 | 12.844 | 71.309 | 0.036 | 0.171 | 0.307 |
17 | 2.795 | 4.273 | 4.816 | 76.835 | 55.780 | 15.156 | 70.477 | 0.073 | 0.225 | 0.377 |
18 | 2.795 | 4.273 | 5.684 | 68.165 | 55.780 | 15.156 | 69.322 | 0.043 | 0.209 | 0.375 |
19 | 3.200 | 4.100 | 6.000 | 72.500 | 50.000 | 14.000 | 67.575 | 0.047 | 0.180 | 0.314 |
20 | 3.200 | 4.100 | 5.250 | 72.500 | 50.000 | 14.000 | 66.894 | 0.044 | 0.179 | 0.314 |
21 | 3.200 | 4.100 | 5.250 | 80.000 | 50.000 | 14.000 | 66.670 | 0.054 | 0.184 | 0.314 |
22 | 2.795 | 3.927 | 5.684 | 76.835 | 55.780 | 15.156 | 66.501 | 0.029 | 0.202 | 0.374 |
23 | 3.200 | 4.100 | 4.500 | 72.500 | 50.000 | 14.000 | 65.859 | 0.044 | 0.179 | 0.314 |
24 | 3.200 | 4.100 | 5.250 | 65.000 | 50.000 | 14.000 | 64.635 | 0.043 | 0.178 | 0.314 |
25 | 2.795 | 3.927 | 4.816 | 68.165 | 55.780 | 15.156 | 61.770 | 0.027 | 0.201 | 0.374 |
26 | 3.605 | 4.273 | 4.816 | 68.165 | 44.220 | 12.844 | 60.188 | 0.060 | 0.160 | 0.259 |
27 | 2.795 | 4.273 | 5.684 | 76.835 | 55.780 | 12.844 | 60.007 | 0.030 | 0.168 | 0.306 |
28 | 3.200 | 3.800 | 5.250 | 72.500 | 50.000 | 14.000 | 59.712 | 0.033 | 0.173 | 0.313 |
29 | 3.605 | 3.927 | 5.684 | 68.165 | 44.220 | 12.844 | 59.630 | 0.047 | 0.152 | 0.258 |
30 | 3.605 | 4.273 | 5.684 | 76.835 | 44.220 | 12.844 | 58.944 | 0.046 | 0.152 | 0.258 |
31 | 2.795 | 4.273 | 4.816 | 68.165 | 55.780 | 12.844 | 57.122 | 0.029 | 0.168 | 0.306 |
32 | 2.795 | 3.927 | 5.684 | 68.165 | 55.780 | 12.844 | 55.601 | 0.021 | 0.163 | 0.306 |
33 | 3.605 | 3.927 | 4.816 | 76.835 | 44.220 | 12.844 | 54.974 | 0.035 | 0.146 | 0.258 |
34 | 2.795 | 3.927 | 4.816 | 76.835 | 55.780 | 12.844 | 53.474 | 0.020 | 0.163 | 0.306 |
35 | 2.795 | 4.273 | 5.684 | 76.835 | 44.220 | 15.156 | 53.446 | 0.045 | 0.186 | 0.326 |
36 | 3.200 | 4.100 | 5.250 | 72.500 | 50.000 | 12.000 | 53.213 | 0.028 | 0.143 | 0.258 |
37 | 3.200 | 4.100 | 5.250 | 72.500 | 40.000 | 14.000 | 51.423 | 0.042 | 0.159 | 0.276 |
38 | 2.795 | 4.273 | 4.816 | 68.165 | 44.220 | 15.156 | 50.070 | 0.048 | 0.187 | 0.327 |
39 | 2.795 | 3.927 | 5.684 | 68.165 | 44.220 | 15.156 | 46.476 | 0.029 | 0.178 | 0.326 |
40 | 2.795 | 3.927 | 4.816 | 76.835 | 44.220 | 15.156 | 45.246 | 0.027 | 0.176 | 0.326 |
41 | 2.500 | 4.100 | 5.250 | 72.500 | 50.000 | 14.000 | 44.326 | 0.021 | 0.167 | 0.313 |
42 | 2.795 | 4.273 | 5.684 | 68.165 | 44.220 | 12.844 | 39.325 | 0.026 | 0.142 | 0.257 |
43 | 2.795 | 4.273 | 4.816 | 76.835 | 44.220 | 12.844 | 38.646 | 0.035 | 0.146 | 0.258 |
44 | 2.795 | 3.927 | 5.684 | 76.835 | 44.220 | 12.844 | 37.541 | 0.020 | 0.139 | 0.257 |
45 | 2.795 | 3.927 | 4.816 | 68.165 | 44.220 | 12.844 | 33.435 | 0.019 | 0.138 | 0.257 |
Parameters | Optimized Values (mm) | ||
---|---|---|---|
3.49 | 3.82 | 3.89 | |
72.96 | 74.45 | 77.33 | |
3.80 | 4.37 | 4.36 | |
4.57 | 5.85 | 5.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roshanfar, M.; Dargahi, J.; Hooshiar, A. Design Optimization of a Hybrid-Driven Soft Surgical Robot with Biomimetic Constraints. Biomimetics 2024, 9, 59. https://doi.org/10.3390/biomimetics9010059
Roshanfar M, Dargahi J, Hooshiar A. Design Optimization of a Hybrid-Driven Soft Surgical Robot with Biomimetic Constraints. Biomimetics. 2024; 9(1):59. https://doi.org/10.3390/biomimetics9010059
Chicago/Turabian StyleRoshanfar, Majid, Javad Dargahi, and Amir Hooshiar. 2024. "Design Optimization of a Hybrid-Driven Soft Surgical Robot with Biomimetic Constraints" Biomimetics 9, no. 1: 59. https://doi.org/10.3390/biomimetics9010059
APA StyleRoshanfar, M., Dargahi, J., & Hooshiar, A. (2024). Design Optimization of a Hybrid-Driven Soft Surgical Robot with Biomimetic Constraints. Biomimetics, 9(1), 59. https://doi.org/10.3390/biomimetics9010059