Advancements in Composite Materials and Their Expanding Role in Biomedical Applications
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Synthesis of Nickel-Doped Zn(OH)2 Composite
2.3. Synthesis of CS/Ni-Doped ZnO Nanocomposite
2.4. Fabrication of CS/Ni-Doped ZnO Nanocomposite Modified GCE
2.5. Characterization
2.6. Antimicrobial Evaluations
2.7. Cytotoxicity Studies
3. Results and Discussion
3.1. XRD Analysis
3.2. FTIR Analysis
3.3. UV-Vis-NIR Analysis
3.4. Morphological Analysis
3.5. BET Analysis
3.6. Electrochemical Impedance Spectroscopy
3.7. Cyclic Voltammetry Studies
3.8. Antibacterial Activity Mechanism
3.9. In Vitro Cytotoxicity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheshala, R.; Madheswaran, T.; Panneerselvam, J.; Vora, L.; Thakur, R.R.S. Stimuli-responsive nanomaterials in infectious diseases. In Nanotheranostics for Treatment and Diagnosis of Infectious Diseases; Academic Press: Cambridge, MA, USA, 2022; pp. 151–198. [Google Scholar]
- Anagha, B.; George, D.; Maheswari, P.U.; Begum, K.M.M.S. Biomass Derived Antimicrobial Hybrid Cellulose Hydrogel with Green ZnO Nanoparticles for Curcumin Delivery and Its Kinetic Modelling. J. Polym. Environ. 2019, 27, 2054–2067. [Google Scholar] [CrossRef]
- Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial Activity of Zinc Oxide Nanoparticles. Langmuir 2011, 27, 4020–4028. [Google Scholar] [CrossRef] [PubMed]
- Bonetta, S.; Bonetta, S.; Motta, F.; Strini, A.; Carraro, E. Photocatalytic Bacterial Inactivation by TiO2-Coated Surfaces. AMB Express 2013, 3, 59. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Chang, C.-H. In Vitro Inhibition of Enterovirus 71 Infection with a Nickel Ion/Chitosan Microcomposite. Virus Res. 2014, 190, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M. A Review of Chitin and Chitosan Applications. React. Funct. Polym. 2000, 46, 1–27. [Google Scholar] [CrossRef]
- Sahariah, P.; Másson, M. Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure–Activity Relationship. Biomacromolecules 2017, 18, 3846–3868. [Google Scholar] [CrossRef]
- Shahidi, F.; Arachchi, J.K.V.; Jeon, Y.-J. Food Applications of Chitin and Chitosans. Trends Food Sci. Technol. 1999, 10, 37–51. [Google Scholar] [CrossRef]
- Cheah, W.Y.; Show, P.-L.; Ng, I.-S.; Lin, G.-Y.; Chiu, C.-Y.; Chang, Y.-K. Antibacterial Activity of Quaternized Chitosan Modified Nanofiber Membrane. Int. J. Biol. Macromol. 2019, 126, 569–577. [Google Scholar] [CrossRef]
- Pellá, M.C.G.; Lima-Tenório, M.K.; Tenório-Neto, E.T.; Guilherme, M.R.; Muniz, E.C.; Rubira, A.F. Chitosan-Based Hydrogels: From Preparation to Biomedical Applications. Carbohydr. Polym. 2018, 196, 233–245. [Google Scholar] [CrossRef]
- Malakootian, M.; Nasiri, A.; Mahdizadeh, H. Preparation of CoFe2O4/Activated Carbon@chitosan as a New Magnetic Nanobiocomposite for Adsorption of Ciprofloxacin in Aqueous Solutions. Water Sci. Technol. 2018, 78, 2158–2170. [Google Scholar] [CrossRef]
- Mahvi, A.; Malakootian, M.; Fatehizadeh, A.; Ehrampoush, M. Nitrate Removal from Aqueous Solutions by Nanofiltration. Desalin. Water Treat. 2011, 29, 326–330. [Google Scholar] [CrossRef]
- Height, M.; Pratsinis, S.; Mekasuwandumrong, O.; Praserthdam, P. Ag–ZnO Catalysts for UV-Photodegradation of Methylene Blue. Appl. Catal. B Environ. 2006, 63, 305–312. [Google Scholar] [CrossRef]
- Bhuvaneshwari, M.; Iswarya, V.; Archanaa, S.; Madhu, G.M.; Kumar, G.K.S.; Nagarajan, R.; Chandrasekaran, N.; Mukherjee, A. Cytotoxicity of ZnO NPs towards Fresh Water Algae Scenedesmus Obliquus at Low Exposure Concentrations in UV-C, Visible and Dark Conditions. Aquat. Toxicol. 2015, 162, 29–38. [Google Scholar] [CrossRef]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nanomicro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Begildayeva, T.; Jung, H.J.; Koutavarapu, R.; Yu, Y.; Choi, M.; Choi, M.Y. Plasmonic ZnO/Au/g-C3N4 Nanocomposites as Solar Light Active Photocatalysts for Degradation of Organic Contaminants in Wastewater. Chemosphere 2021, 263, 128262. [Google Scholar] [CrossRef] [PubMed]
- Malakootian, M.; Nasiri, A.; Asadipour, A.; Kargar, E. Facile and Green Synthesis of ZnFe2O4@CMC as a New Magnetic Nanophotocatalyst for Ciprofloxacin Degradation from Aqueous Media. Process Saf. Environ. Prot. 2019, 129, 138–151. [Google Scholar] [CrossRef]
- Gordon, T.; Perlstein, B.; Houbara, O.; Felner, I.; Banin, E.; Margel, S. Synthesis and Characterization of Zinc/Iron Oxide Composite Nanoparticles and Their Antibacterial Properties. Colloids Surf. A Physicochem. Eng. Asp. 2011, 374, 1–8. [Google Scholar] [CrossRef]
- Marcous, A.; Rasouli, S.; Ardestani, F. Low-Density Polyethylene Films Loaded by Titanium Dioxide and Zinc Oxide Nanoparticles as a New Active Packaging System against Escherichia coli O157:H7 in Fresh Calf Minced Meat: Active Packaging against Escherichia coli in Fresh Calf Minced Meat. Packag. Technol. Sci. 2017, 30, 2312. [Google Scholar] [CrossRef]
- Sathiya, S.M.; Okram, G.; Dhivya, S.; Manivannan, G.; Jothi Rajan, M. Interaction of Chitosan/Zinc Oxide Nanocomposites and Their Antibacterial Activities with Escherichia Coli. Mater. Today Proc. 2016, 3, 3855–3860. [Google Scholar] [CrossRef]
- Johar, M.; Afzal, R.A.; Alazba, P.; Manzoor, U. Photocatalysis and Bandgap Engineering Using ZnO Nanocomposites. Adv. Mater. Sci. Eng. 2015, 2015, 934587. [Google Scholar] [CrossRef]
- Bhuyan, T.; Mishra, K.; Khanuja, M.; Prasad, R.; Varma, A. Biosynthesis of Zinc Oxide Nanoparticles from Azadirachta Indica for Antibacterial and Photocatalytic Applications. Mater. Sci. Semicond. Process. 2015, 32, 55–61. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, L.; Yan, X.; Yang, Y.; Lei, Y.; Zhou, J.; Huang, Y.; Yousong, G.; Zhang, Y. Structure and Photocatalytic Activity of Ni-Doped ZnO Nanorods. Mater. Res. Bull. 2011, 46, 1207–1210. [Google Scholar] [CrossRef]
- Chang, C.-J.; Lin, C.-Y.; Hsu, M.-H. Enhanced Photocatalytic Activity of Ce-Doped ZnO Nanorods under UV and Visible Light. J. Taiwan Inst. Chem. Eng. 2014, 45, 1954–1963. [Google Scholar] [CrossRef]
- Fifere, N.; Airinei, A.; Timpu, D.; Rotaru, A.; Sacarescu, L.; Ursu, L. New Insights into Structural and Magnetic Properties of Ce Doped ZnO Nanoparticles. J. Alloys Compd. 2018, 757, 60–69. [Google Scholar] [CrossRef]
- Raja, K.; Ramesh, P.S.; Geetha, D. Structural, FTIR and Photoluminescence Studies of Fe Doped ZnO Nanopowder by Co-Precipitation Method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 131, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Wu, Y.; Sun, Z.; Sui, X.; Hu, Y.; Liu, X. Reactivation of the spent Ni/ZnO-based adsorbent with enhanced initial activity for gasoline desulfurization. Fuel 2023, 333, 126315. [Google Scholar] [CrossRef]
- Irwin, M.D.; Buchholz, D.B.; Hains, A.W.; Chang, R.P.H.; Marks, T.J. P-Type Semiconducting Nickel Oxide as an Efficiency-Enhancing Anode Interfacial Layer in Polymer Bulk-Heterojunction Solar Cells. Proc. Natl. Acad. Sci. USA 2008, 105, 2783–2787. [Google Scholar] [CrossRef]
- Koutavarapu, R.; Tamtam, M.R.; Myla, C.R.; Cho, M.; Shim, J. Enhanced Solar-Light-Driven Photocatalytic Properties of Novel Z-Scheme Binary BiPO4 Nanorods Anchored onto NiFe2O4 Nanoplates: Efficient Removal of Toxic Organic Pollutants. J. Environ. Sci. 2021, 102, 326–340. [Google Scholar] [CrossRef]
- Reddy, C.V.; Koutavarapu, R.; Reddy, K.R.; Shetti, N.P.; Aminabhavi, T.M.; Shim, J. Z-Scheme Binary 1D ZnWO4 Nanorods Decorated 2D NiFe2O4 Nanoplates as Photocatalysts for High Efficiency Photocatalytic Degradation of Toxic Organic Pollutants from Wastewater. J. Environ. Manag. 2020, 268, 110677. [Google Scholar] [CrossRef]
- Kant, S. A Comparative Analysis of Structural, Optical And Photocatalytic Properties Of ZnO And Ni Doped ZnO Nanospheres Prepared by Sol Gel Method. Adv. Mater. Lett. 2012, 3, 350–354. [Google Scholar] [CrossRef]
- Saad, A.M.; Abukhadra, M.R.; Abdel-Kader Ahmed, S.; Elzanaty, A.M.; Mady, A.H.; Betiha, M.A.; Shim, J.-J.; Rabie, A.M. Photocatalytic Degradation of Malachite Green Dye Using Chitosan Supported ZnO and Ce–ZnO Nano-Flowers under Visible Light. J. Environ. Manag. 2020, 258, 110043. [Google Scholar] [CrossRef] [PubMed]
- Matai, I.; Sachdev, A.; Dubey, P.; Kumar, S.U.; Bhushan, B.; Gopinath, P. Antibacterial Activity and Mechanism of Ag-ZnO Nanocomposite on S. Aureus and GFP-Expressing Antibiotic Resistant E. coli. Colloids Surf. B Biointerfaces 2014, 115, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Gholami, M.; Shirzad-Siboni, M.; Yang, J.-K. Application of Ni-Doped ZnO Rods for the Degradation of an Azo Dye from Aqueous Solutions. Korean J. Chem. Eng. 2016, 33, 812–822. [Google Scholar] [CrossRef]
- Nguyen, D.M.; Bach, L.G.; Bui, Q.B. Hierarchical Nanosheets Based on Zinc-Doped Nickel Hydroxide Attached 3D Framework as Free-Standing Nonenzymatic Sensor for Sensitive Glucose Detection. J. Electroanal. Chem. 2019, 837, 86–94. [Google Scholar] [CrossRef]
- Boura-Theodoridou, O.; Giannakas, A.; Katapodis, P.; Stamatis, H.; Ladavos, A.; Barkoula, N.-M. Performance of ZnO/Chitosan Nanocomposite Films for Antimicrobial Packaging Applications as a Function of NaOH Treatment and Glycerol/PVOH Blending. Food Packag. Shelf Life 2020, 23, 100456. [Google Scholar] [CrossRef]
- Javadian, H.; Ruiz, M.; Saleh, T.A.; Sastre, A.M. Ca-Alginate/Carboxymethyl Chitosan/Ni0.2Zn0.2Fe2.6O4 Magnetic Bionanocomposite: Synthesis, Characterization and Application for Single Adsorption of Nd+3, Tb+3, and Dy+3 Rare Earth Elements from Aqueous Media. J. Mol. Liq. 2020, 306, 112760. [Google Scholar] [CrossRef]
- Khan, Z. Chitosan Capped Au@Pd@Ag Trimetallic Nanoparticles: Synthesis, Stability, Capping Action and Adsorbing Activities. Int. J. Biol. Macromol. 2020, 153, 545–560. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, X.; Tan, L.; Cui, Z.; Liang, Y.; Li, Z.; Kwok Yeung, K.W.; Wu, S. Photo-Responsive Chitosan/Ag/MoS2 for Rapid Bacteria-Killing. J. Hazard. Mater. 2020, 383, 121122. [Google Scholar] [CrossRef]
- Kongarapu, R.J.; Mahamallik, P.; Pal, A. Surfactant Modification of Chitosan Hydrogel Beads for Ni@NiO Core-Shell Nanoparticles Formation and Its Catalysis to 4-Nitrophenol Reduction. J. Environ. Chem. Eng. 2017, 5, 1321–1329. [Google Scholar] [CrossRef]
- Ai, H.; Huang, X.; Zhu, Z.; Liu, J.; Chi, Q.; Li, Y.; Li, Z.; Ji, X. A Novel Glucose Sensor Based on Monodispersed Ni/Al Layered Double Hydroxide and Chitosan. Biosens. Bioelectron. 2008, 24, 1048–1052. [Google Scholar] [CrossRef]
- Pradeev Raj, K.; Sadaiyandi, K.; Kennedy, A.; Sagadevan, S.; Chowdhury, Z.Z.; Johan, M.R.B.; Aziz, F.A.; Rafique, R.F.; Thamiz Selvi, R.; Rathina Bala, R. Influence of Mg Doping on ZnO Nanoparticles for Enhanced Photocatalytic Evaluation and Antibacterial Analysis. Nanoscale Res. Lett. 2018, 13, 229. [Google Scholar] [CrossRef] [PubMed]
- Taghavi Fardood, S.; Ramazani, A.; Moradi, S. A Novel Green Synthesis of Nickel Oxide Nanoparticles Using Arabic Gum. Chem. J. Mold. 2017, 12, 383. [Google Scholar] [CrossRef]
- Bokare, A.; Pai, M.; Athawale, A.A. Surface Modified Nd Doped TiO2 Nanoparticles as Photocatalysts in UV and Solar Light Irradiation. Sol. Energy 2013, 91, 111–119. [Google Scholar] [CrossRef]
- Liao, W.; Gu, A.; Liang, G.; Yuan, L. New High Performance Transparent UV-Curable Poly(Methyl Methacrylate) Grafted ZnO/Silicone-Acrylate Resin Composites with Simultaneously Improved Integrated Performance. Colloids Surf. A Physicochem. Eng. Asp. 2012, 396, 74–82. [Google Scholar] [CrossRef]
- Dutta, P.; Dutta, J.; Tripathi, V. Chitin and Chitosan: Chemistry, Properties and Applications. J. Sci. Indus. Res. 2003, 63, 20–31. [Google Scholar]
- George, D.; Maheswari, P.U.; Begum, K.M.M.S. Chitosan-Cellulose Hydrogel Conjugated with L-Histidine and Zinc Oxide Nanoparticles for Sustained Drug Delivery: Kinetics and in-Vitro Biological Studies. Carbohydr. Polym. 2020, 236, 116101. [Google Scholar] [CrossRef]
- Liu, X.; Hu, Q.; Fang, Z.; Zhang, X.; Zhang, B. Magnetic Chitosan Nanocomposites: A Useful Recyclable Tool for Heavy Metal Ion Removal. Langmuir 2009, 25, 3–8. [Google Scholar] [CrossRef]
- Aljawf, R.N.; Rahman, F.; Kumar, S. Defects/Vacancies Engineering and Ferromagnetic Behavior in Pure ZnO and ZnO Doped with Co Nanoparticles. Mater. Res. Bull. 2016, 83, 108–115. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Aazam, E.S. Preparation and Characterization of Core–Shell Polyaniline/Mesoporous Cu2O Nanocomposites for the Photocatalytic Oxidation of Thiophene. Appl. Catal. A Gen. 2014, 480, 100–107. [Google Scholar] [CrossRef]
- Karthik, R.; Thambidurai, S. Synthesis of Cobalt Doped ZnO/Reduced Graphene Oxide Nanorods as Active Material for Heavy Metal Ions Sensor and Antibacterial Activity. J. Alloys Compd. 2017, 715, 254–265. [Google Scholar] [CrossRef]
- Eshaghi, A.; Hakimi, M.J.; Zali, A. Fabrication of Titanium Zinc Oxide (TZO) Sol–Gel Derived Nanostructured Thin Film and Investigation of Its Optical and Electrical Properties. Optik 2015, 126, 5610–5613. [Google Scholar] [CrossRef]
- Hu, D.; Liu, X.; Deng, S.; Liu, Y.; Feng, Z.; Han, B.; Wang, Y.; Wang, Y. Structural and Optical Properties of Mn-Doped ZnO Nanocrystalline Thin Films with the Different Dopant Concentrations. Phys. E Low-Dimens. Syst. Nanostruct. 2014, 61, 14–22. [Google Scholar] [CrossRef]
- Rasoulzadehzali, M.; Namazi, H. Facile Preparation of Antibacterial Chitosan/Graphene Oxide-Ag Bio-Nanocomposite Hydrogel Beads for Controlled Release of Doxorubicin. Int. J. Biol. Macromol. 2018, 116, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Adekunle, A.; Oyekunle, J.; Oluwafemi, O.; Joshua, A.; Makinde, O.; Ogunfowokan, A.; Eleruja, M.; Ebenso, E. Comparative Catalytic Properties of Ni(OH)2 and NiO Nanoparticles Towards the Degradation of Nitrite (NO2−) and Nitric Oxide (NO). Int. J. Electrochem. Sci. 2014, 9, 3008–3021. [Google Scholar] [CrossRef]
- Prabakar, C.; Muthukumaran, S.; Raja, V. Structural, Magnetic and Photoluminescence Behavior of Ni/Fe Doped ZnO Nanostructures Prepared by Co-Precipitation Method. Optik 2020, 202, 163714. [Google Scholar] [CrossRef]
- Khan, K.; Tareen, A.K.; Li, J.; Khan, U.; Nairan, A.; Yuan, Y.; Xuyang, Z.; Yang, M.; Ouyang, Z. Facile Synthesis of Tin Doped Mayenite Electride Composite as a Non-Noble Metal, Durable Electrocatalysts for Oxygen Reduction Reaction (ORR). Dalton Trans. 2018, 47, 13498–13506. [Google Scholar] [CrossRef]
- Sheela, J.; Lakshmanan, S.; Manikandan, D.; Arul Antony, S. Structural, Morphological and Optical Properties of ZnO, ZnO:Ni2+ and ZnO:Co2+ Nanostructures by Hydrothermal Process and Their Photocatalytic Activity. J. Inorg. Organomet. Polym. Mater. 2018, 28, 2388–2398. [Google Scholar] [CrossRef]
- Luo, J.; Jiang, S.; Zhang, H.; Jiang, J.; Liu, X. A Novel Non-Enzymatic Glucose Sensor Based on Cu Nanoparticle Modified Graphene Sheets Electrode. Anal. Chim. Acta 2012, 709, 47–53. [Google Scholar] [CrossRef]
- Umeshbabu, E.; Rajeshkhanna, G.; Justin, P.; Rao, G.R. NiCo2O4/RGO Hybrid Nanostructures for Efficient Electrocatalytic Oxygen Evolution. J. Solid State Electrochem. 2016, 20, 2725–2736. [Google Scholar] [CrossRef]
- Ravichandran, K.; Nithiyadevi, K.; Sakthivel, B.; Arun, T.; Sindhuja, E.; Muruganandam, G. Synthesis of ZnO:Co/RGO Nanocomposites for Enhanced Photocatalytic and Antibacterial Activities. Ceram. Int. 2016, 42, 17539–17550. [Google Scholar] [CrossRef]
- Naqvi QU, A.; Kanwal, A.; Qaseem, S.; Naeem, M.; Ali, S.R.; Shaffique, M.; Maqbool, M. Size-dependent inhibition of bacterial growth by chemically engineered spherical ZnO nanoparticles. J. Biol. Phys. 2019, 45, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, K.; Snega, S.; Jabena Begum, N.; Swaminathan, K.; Sakthivel, B.; Rene Christena, L.; Chandramohan, G.; Ochiai, S. Enhancement in the Antibacterial Efficiency of ZnO Nanopowders by Tuning the Shape of the Nanograins through Fluorine Doping. Superlattices Microstruct. 2014, 69, 17–28. [Google Scholar] [CrossRef]
- Dutta, R.K.; Nenavathu, B.P.; Gangishetty, M.K.; Reddy, A.V.R. Studies on Antibacterial Activity of ZnO Nanoparticles by ROS Induced Lipid Peroxidation. Colloids Surf. B Biointerfaces 2012, 94, 143–150. [Google Scholar] [CrossRef]
- Goy, R.; Britto, D.; Assis, O. A Review of the Antimicrobial Activity of Chitosan. Polim. Cienc. E Tecnol. 2009, 19, 241–247. [Google Scholar] [CrossRef]
Sample Name | Surface Area (m2g−1) | Pore Volume (cm3g−1) | Pore Size (nm) |
---|---|---|---|
ZnO | 32.2599 m2/g | 0.064018 cm3/g | 6.17461 nm |
CS/ZnO | 45.8004 m2/g | 0.163342 cm3/g | 8.60041 nm |
NiO | 17.5387 m2/g | 0.013045 cm3/g | 3.52548 nm |
Ni-doped ZnO | 75.7213 m2/g | 0.316305 cm3/g | 11.67246 nm |
CS/Ni-doped ZnO | 323.9476 m2/g | 1.473482 cm3/g | 18.19407 nm |
Sample Name | Rct (Ω) |
---|---|
ZnO | 56.64 |
CS/ZnO | 41.14 |
NiO | 57.56 |
Ni-doped ZnO | 29.24 |
CS/Ni-doped ZnO | 18.26 |
CS/Ni Doped ZnO | Zone of Inhibition | |||||
---|---|---|---|---|---|---|
Samples | S. aureus | L. monocytogens | B. subtilis | E. coli | P. vulgaris | V. parahemolyticus |
25 µl | 16 mm | 16 mm | 17 mm | 16 mm | 17 mm | 12 mm |
50 µl | 15 mm | 17 mm | 16 mm | 17 mm | 16 mm | 14 mm |
75 µl | 15 mm | 17 mm | 17 mm | 17 mm | 19 mm | 16 mm |
100 µl | 16 mm | 18 mm | 18 mm | 18 mm | 19 mm | 17 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeyachandran, S.; Chellapandian, H.; Ali, N. Advancements in Composite Materials and Their Expanding Role in Biomedical Applications. Biomimetics 2023, 8, 518. https://doi.org/10.3390/biomimetics8070518
Jeyachandran S, Chellapandian H, Ali N. Advancements in Composite Materials and Their Expanding Role in Biomedical Applications. Biomimetics. 2023; 8(7):518. https://doi.org/10.3390/biomimetics8070518
Chicago/Turabian StyleJeyachandran, Sivakamavalli, Hethesh Chellapandian, and Nemat Ali. 2023. "Advancements in Composite Materials and Their Expanding Role in Biomedical Applications" Biomimetics 8, no. 7: 518. https://doi.org/10.3390/biomimetics8070518
APA StyleJeyachandran, S., Chellapandian, H., & Ali, N. (2023). Advancements in Composite Materials and Their Expanding Role in Biomedical Applications. Biomimetics, 8(7), 518. https://doi.org/10.3390/biomimetics8070518