Design and Experiment of a Biomimetic Duckbill-like Vibration Chain for Physical Weed Control during the Rice Tillering Stage
Abstract
:1. Introduction
2. Evaluation of Weed Seedling Growth
2.1. Weed Seed Cultivation Experiment
2.2. Observation of Barnyard Grass Root System
3. Duckbill Weed Removal and Its Mathematical Model
3.1. High-Speed Photography Observation of Ducks Weeding
3.2. Duck Beak Feature Model
4. Design and Analysis of a Biomimetic Duckbill Chain-Type Weeding Device
4.1. Design of a Biomimetic Weeding Mechanism
4.2. Dynamics Analysis of the Weed Removal Chain
5. Experimental Study on Parameters and Operational Performance
5.1. Design of a Biomimetic Weeding Mechanism
5.2. Experimental Design
5.2.1. Experimental Factors
5.2.2. Evaluation indices of weeding
5.3. Testing Results and Analysis
5.3.1. Central Composite Text Plan Design
5.3.2. Regression Model Establishment and Significance Test
5.3.3. Influence of Interaction Factors on Performance Indicators
6. Parameter Optimization and Test
6.1. Parameter Optimization
6.2. Test
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shrivastava, A.; Verma, A. Implementation of Taguchi methodology in optimization of developed jigs and fixtures for production of paddy weeder. Paddy Water Environ. 2017, 15, 1–9. [Google Scholar] [CrossRef]
- Zhu, W.D. Influence of barnyardgrass, Echinochloa crusgalli, on the growth and yield of paddy rice and its economic threshold. J. Plant Prot. 2005, 32, 81–86. [Google Scholar]
- Gealy, D.; Moldenhauer, K.; Duke, S. Root Distribution and Potential Interactions Between Allelopathic Rice, Sprangletop (Leptochloa spp.), and Barnyardgrass (Echinochloa crusgalli) based on 13C Isotope Discrimination Analysis. J. Chem. Ecol. 2013, 39, 186–203. [Google Scholar] [CrossRef]
- Webster, E.; Teló, G.; Rustom, S.; McKnight, B.; Blouin, D. Quizalofop-p-ethyl application in water-seeded coenzyme A carboxylase–inhibiting herbicide-resistant rice with different flood systems. Weed Technol. 2020, 34, 188–192. [Google Scholar] [CrossRef]
- Johnson, J.M.; Rodenburg, J.; Tanaka, A.; Senthilkumar, K.; Ahouanton, K.; Dieng, I.; Klotoe, A.; Akakpo, C.; Segda, Z.; Yameogo, L.P.; et al. Farmers’ perceptions on mechanical weeders for rice production in Sub-Saharan Africa. Exp. Agric. 2019, 55, 117–131. [Google Scholar] [CrossRef]
- Tian, L.; Cao, C.; Qin, K.; Ge, J.; Fang, L. Design and experiment of self-propelled system for paddy field weeder based on the interaction mechanism of wheel-soil. Eng. Agrícola 2022, 42, e20210095. [Google Scholar] [CrossRef]
- Zhou, W.; Luo, J.; Li, B.; Tang, L.; Li, Y. Effects of monochoria vaginalis density on yield losses, economic thresholds, and gross returns in paddy rice (Oryza sativa L.). Crop Sci. 2021, 61, 3610–3622. [Google Scholar] [CrossRef]
- Magnoli, K.; Carranza, C.S.; Aluffi, M.E.; Magnoli, C.E.; Bar-beris, C.L. Herbicides based on 2,4-D: Its behavior in agricul-tural environments and microbial biodegradation aspects: A review. Environ. Sci. Pollut. Res. 2020, 27, 38501–38512. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Devos, Y.; Beckie, H.J.; Owen, M.D.K.; Tillie, P.; Messéan, A.; Kudsk, P. Integrated weed management systems with herbicide-tolerant crops in the European Union: Lessons learnt from home and abroad. Crit. Rev. Biotechnol. 2017, 37, 459–475. [Google Scholar] [CrossRef]
- Wang, H.Z.; Zhang, X.L.; Wang, L.P.; Zhu, B.L.; Guo, W.L.; Liu, W.T.; Wang, J.X. Biochemical responses and DNA damage induced by herbicide QYR301 in earthworm (Eisenia fetida). Chemosphere 2020, 244, 125512. [Google Scholar] [CrossRef]
- Centner, T.J.; Russell, L.; Mays, M. Viewing evidence of harm accompanying uses of glyphosate-based herbicides under US legal requirements. Sci. Total Environ. 2019, 648, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Bou-Mitri, C.; Mekanna, A.N.; Dagher, S.; Moukarzel, S.; Farhat, A. Occurrence and exposure to glyphosate present in bread and flour products in lebanon. Food Control 2022, 136, 108894. [Google Scholar] [CrossRef]
- Zheng, T.; Jia, R.; Cao, L.; Du, J.; Gu, Z.; He, Q.; Xu, P.; Yin, G. Effects of chronic glyphosate exposure on antioxdative status, metabolism and immune response in tilapia (gift, Oreochromis niloticus). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 239, 108878. [Google Scholar] [CrossRef] [PubMed]
- Karthikraj, R.; Kannan, K. Widespread occurrence of glyphosate in urine from pet dogs and cats in new york state, usa. Sci. Total Environ. 2019, 659, 790–795. [Google Scholar] [CrossRef] [PubMed]
- Movaghati, S.; Delphi, L.; Disfani, F.; Moosavi-Movahedi, A.A. The role of surface activity on the amyloid fibrillation pathway of bovine serum albumin upon interaction with glyphosate. Int. J. Biol. Macromol. 2023, 226, 1166–1177. [Google Scholar] [CrossRef] [PubMed]
- Gunatilake, S.; Seneff, S.; Orlando, L. Glyphosate’s Synergistic Toxicity in Combination with Other Factors as a Cause of Chronic Kidney Disease of Unknown Origin. Int. J. Environ. Res. Public Health 2019, 16, 2734. [Google Scholar] [CrossRef]
- Mohamed, M.; Aliyat, F.Z.; Ben, M.B.; Simone, C.; Marina, M.; Filippo, G.; Jamal, I. Effects of pesticides use (glyphosate & paraquat) on biological nitrogen fixation. Water Air Soil Pollut. 2021, 232, 419. [Google Scholar] [CrossRef]
- Maimunah, M.A.; Kautsar, V.; Bimantara, P.O.; Kimani, S.M.; Torita, R.; Tawaraya, K.; Murayama, H.; Utami, S.N.H.; Purwanto, B.H.; Cheng, W. Weeding Frequencies Decreased Rice–Weed Competition and Increased Rice N Uptake in Organic Paddy Field. Agronomy 2021, 11, 1904. [Google Scholar] [CrossRef]
- Nakamura, T.K.; Ohtsuka, H. Development of Weeding Turtle Robot for Paddy Fields. In Proceedings of the 2021 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 8–11 August 2021; pp. 675–680. [Google Scholar] [CrossRef]
- Tang, H.; Xu, C.; Wang, Q.; Zhou, W.; Wang, J.; Xu, Y.; Wang, J. Analysis of the Mechanism and Performance Optimization of Burying Weeding with a Self-Propelled Inter Row Weeder for Paddy Field Environments. Appl. Sci. 2021, 11, 9798. [Google Scholar] [CrossRef]
- Jiao, J.K.; Wang, Z.M.; Luo, H.W.; Chen, G.L.; Liu, H.L.; Guan, J.J.; Hu, L.; Zang, Y. Development of a mechanical weeder and experiment on the growth, yield and quality of rice. Int. J. Agric. Biol. Eng. 2022, 15, 92–99. [Google Scholar] [CrossRef]
- Natuhara, Y. Ecosystem services by paddy fields as substitutes of natural wetlands in Japan. Ecol. Eng. 2013, 56, 97–106. [Google Scholar] [CrossRef]
- Iwai, N.; Koyama, N.; Tsuji, S.; Maruyama, A. Functions of indigenous animals in paddy fields: An in situ experiment on their effects on water quality, phytoplankton, weeds, soil structure, and rice growth. Paddy Water Environ. 2018, 16, 89–98. [Google Scholar] [CrossRef]
- Anastacio, P.M.; Correia, A.M.; Menino, J.P.; Silva, L.M. Are rice seedlings affected by changes in water quality caused by cray fish? Int. J. Limnol. 2005, 41, 1–6. [Google Scholar] [CrossRef]
- Wan, N.F.; Li, S.X.; Li, T.; Andrea, C.; Jacob, W.; Zheng, X.Q.; Ji, X.Y.; Zhang, J.Q.; Zhang, H.L.; Zhang, H.; et al. Ecological intensification of rice production through rice-fish co-culture. J. Clean. Prod. 2019, 234, 1002–1012. [Google Scholar] [CrossRef]
- Li, M.; Li, R.; Zhang, J.; Liu, S.; Hei, Z.; Qiu, S. A combination of rice cultivar mixed-cropping and duck co-culture suppressed weeds and pests in paddy fields. Basic Appl. Ecol. 2019, 40, 67–77. [Google Scholar] [CrossRef]
- Wei, H.; Bai, W.; Zhang, J.; Chen, R.; Xiang, H.; Quan, G. Integrated Rice-Duck Farming Decreases Soil Seed Bank and Weed Density in a Paddy Field. Agronomy 2019, 9, 259. [Google Scholar] [CrossRef]
- Wang, J.W.; Tao, G.X.; Liu, Y.J.; Pan, Z.W.; Zhang, C.F. Field experimental study on pullout forces of rice seedlings and barnyard grasses for mechanical weed control in paddy field. Int. J. Agric. Biol. Eng. 2014, 7, 1–7. [Google Scholar] [CrossRef]
- Jia, H.; Guo, M.; Zhao, J.; Huang, D.; Zhuang, J.; Qi, J. Design and test of bionic wide-ridge soybean tilling-sowing machine. Int. J. Agric. Biol. Eng. 2019, 12, 42–51. [Google Scholar] [CrossRef]
- Perricone, V.; Santulli, C.; Rendina, F.; Langella, C. Organismal Design and Biomimetics: A Problem of Scale. Biomimetics 2021, 6, 56. [Google Scholar] [CrossRef]
- Spurrier, S.; Allen, T.; Grant, R.A. Investigating Foot Morphology in Rock Climbing Mammals: Inspiration for Biomimetic Climbing Shoes. Biomimetics 2023, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Hiroaki, U.; Tomotaka, F. Development of a remote control type weeding machine with stirring chains for a paddy field. In Proceedings of the Clawar 2019: 22nd International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, Kuala Lumpur, Malaysia, 26–28 August 2019. [Google Scholar] [CrossRef]
- Verbin, Y. Boundary Conditions and Modes of the Vertically Hanging Chain. Eur. J. Phys. 2014, 36, 015005. [Google Scholar] [CrossRef]
- Flosi, J.C.; Lamarque, A.; Ture, S. Different dynamics of a periodic mass-in-mass nonlinear chain during a single mode excitation. Meccanica 2023, 58, 67–95. [Google Scholar] [CrossRef]
- Bapat, C.N. An approximate approach to study the free vibration of a string with an arbitrary variation in mass density and tension, with attached concentrated masses, and its application to hanging chain and rotating cord. J. Sound Vib. 2006, 290, 529–537. [Google Scholar] [CrossRef]
Function | Coefficient | Value | 95% Confidence Bounds |
---|---|---|---|
y11 | b10 | 240.9 | (239.4, 242.5) |
b11 | −0.3296 | (−0.5538, −0.1055) | |
b12 | 1.654 × 10−3 | (8.533 × 10−3, 1.184 × 10−2) | |
b13 | −7.152 × 10−6 | (2.176 × 10−4, 2.033 × 10−4) | |
b14 | 5.408 × 10−8 | (−2.286 × 10−6, 2.394 × 10−6) | |
b15 | −7.647 × 10−10 | (−1.595 × 10−8, −1.442 × 10−8) | |
b16 | 6.235 × 10−12 | (−5.298 × 10−11, 6.545 × 10−11) | |
b17 | −2.535 × 10−14 | (−1.62 × 10−13, 1.113 × 10−13) | |
b18 | 4.983 × 10−17 | (−1.219 × 10−16, 2.216 × 10−16) | |
b19 | −3.795 × 10−20 | (−1.286 × 10−19, 5.266 × 10−20) | |
y12 | b20 | −0.3475 | (−2.457, 1.762) |
b21 | 0.2094 | (−0.1077, 0.5264) | |
b22 | −6.737 × 10−3 | (−2.106 × 10−2, 7.585 × 10−3) | |
b23 | 1.591 × 10−5 | (−1.312 × 10−4, −4.495 × 10−4) | |
b24 | −2.012 × 10−6 | (−5.176 × 10−6, 1.152 × 10−6) | |
b25 | 1.502 × 10−8 | (−5.133 × 10−9, 3.517 × 10−8) | |
b26 | −6.723 × 10−11 | (−1.445 × 10−10, 1.009 × 10−11) | |
b27 | 1.767 × 10−13 | (8.537 × 10−16, 3.525 × 10−13) | |
b28 | −2.506 × 10−16 | (−4.688 × 10−16, −3.239 × 10−17) | |
b29 | 1.477 × 10−19 | (3.395 × 10−20, 2.615 × 10−19) |
Function | Coefficient | Value | 95% Confidence Bounds |
---|---|---|---|
y21 | d10 | 299.7 | (299, 300.3) |
d11 | 0.06227 | (0.04834, 0.07619) | |
d12 | −4.45 × 10−4 | (−5.216 × 10−4, 3.684 × 10−4) | |
d13 | 6.147 × 10−7 | (4.988 × 10−7, 7.305 × 10−7) | |
y22 | d20 | 2.737 × 109 | (1.426 × 109, 4.048 × 109) |
d21 | −4.762 × 107 | (−7.009 × 107, −2.516 × 107) | |
d22 | 3.676 × 105 | (1.968 × 105, 5.384 × 105) | |
d23 | −1652 | (−2409, −896.1) | |
d24 | 4.766 | (2.617, 6.915) | |
d25 | −9.148 × 10−3 | (−1.321 × 10−2, −5.085 × 10−3) | |
d26 | 1.168 × 10−5 | (6.572 × 10−6, 1.68 × 10−5) | |
d27 | −9.577 × 10−9 | (−1.371 × 10−8, −5.449 × 10−9) | |
d28 | 4.571 × 10−12 | (2.629 × 10−12, 6.512 × 10−12) | |
d29 | −9.678 × 10−16 | (−1.373 × 10−15, −5.627 × 10−16) | |
y23 | d30 | 9.546 × 108 | (−8.684 × 108, 2.778 × 109) |
d31 | −1.655 × 107 | (−4.781 × 107, −1.471 × 107) | |
d32 | 1.273 × 105 | (−1.105 × 105, 3.651 × 105) | |
d33 | −570.1 | (−1624, 483.5) | |
d34 | 1.638 | (−1.357, 4.633) | |
d35 | −3.132 × 10−3 | (−8.798 × 10−3, −2.533 × 10−3) | |
d36 | 3.986 × 10−6 | (−3.147 × 10−6, 1.112 × 10−5) | |
d37 | −3.254 × 10−9 | (−9.017 × 10−9, −2.508 × 10−9) | |
d38 | 1.547 × 10−12 | (−1.164 × 10−12, 4.258 × 10−12) | |
d39 | −3.263 × 10−16 | (−8.92 × 10−16, 2.395 × 10−16) | |
y24 | d40 | 20.45 | (20, 20.9) |
d41 | −0.1277 | (−0.1368, −0.1185) | |
d42 | 3.841 × 10−4 | (3.352 × 10−4, 4.329 × 10−4) | |
d43 | −4.62 × 10−7 | (−5.355 × 10−7, −3.884 × 10−7) |
xj (zj) | Vibration Amplitude (z1)/mm | Length of Chains (z2)/mm | Number of Chains Per Row (z3) | Vibration Frequency (z4)/Hz | Working Velocity (z5)/m·s−1 |
---|---|---|---|---|---|
r(z′2j) | 120 | 140 | 5 | 7.5 | 1.2 |
1(z2j) | 98.5 | 120 | 4 | 10 | 1.025 |
0(z0) | 77 | 100 | 3 | 12.5 | 0.85 |
−1(z1j) | 55.5 | 80 | 2 | 15 | 0.675 |
−r(z′1j) | 34 | 60 | 1 | 17.5 | 0.5 |
No | x1 | x2 | x3 | x4 | x5 | y1 | y2 | y3 |
---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | −1 | 50.7614 | 54.7718 | 1 |
2 | 1 | 1 | 1 | −1 | 1 | 56.3452 | 49.3776 | 0 |
3 | 1 | 1 | −1 | 1 | 1 | 75.1269 | 68.4647 | 0 |
4 | 1 | 1 | −1 | −1 | −1 | 56.3452 | 61.8257 | 0 |
5 | 1 | −1 | 1 | 1 | 1 | 91.3706 | 85.0622 | 0 |
6 | 1 | −1 | −1 | −1 | 1 | 20.8122 | 19.917 | 0 |
7 | 1 | −1 | 1 | −1 | −1 | 88.3249 | 84.2324 | 0 |
8 | 1 | −1 | −1 | 1 | −1 | 70.0508 | 65.1452 | 0 |
9 | −1 | −1 | −1 | −1 | −1 | 67.0051 | 68.8797 | 0 |
10 | −1 | −1 | −1 | 1 | 1 | 51.269 | 51.8672 | 1 |
11 | −1 | −1 | 1 | −1 | 1 | 39.5939 | 39.0041 | 3 |
12 | −1 | −1 | 1 | 1 | −1 | 69.0355 | 62.2407 | 0 |
13 | −1 | 1 | −1 | −1 | 1 | −10.1523 | −15.7676 | 1 |
14 | −1 | 1 | −1 | 1 | −1 | 60.9137 | 64.3154 | 0 |
15 | −1 | 1 | 1 | −1 | −1 | 80.203 | 76.7635 | 0 |
16 | −1 | 1 | 1 | 1 | 1 | 61.4213 | 63.0705 | 1 |
17 | −2(−r) | 0 | 0 | 0 | 0 | 68.0203 | 67.6349 | 0 |
18 | 2(r) | 0 | 0 | 0 | 0 | 86.2944 | 81.7427 | 0 |
19 | 0 | 2(r) | 0 | 0 | 0 | 63.9594 | 65.5602 | 0 |
20 | 0 | −2(−r) | 0 | 0 | 0 | 80.203 | 75.9336 | 0 |
21 | 0 | 0 | 2(r) | 0 | 0 | 71.5736 | 72.6141 | 2 |
22 | 0 | 0 | −2(−r) | 0 | 0 | 5.07614 | 7.05394 | 1 |
23 | 0 | 0 | 0 | 2(r) | 0 | 75.6345 | 67.2199 | 0 |
24 | 0 | 0 | 0 | −2(−r) | 0 | 40.1015 | 46.888 | 0 |
25 | 0 | 0 | 0 | 0 | −2(−r) | 80.7107 | 82.1577 | 0 |
26 | 0 | 0 | 0 | 0 | 2(r) | 51.269 | 40.6639 | 0 |
27 | 0 | 0 | 0 | 0 | 0 | 91.8782 | 87.9668 | 0 |
28 | 0 | 0 | 0 | 0 | 0 | 86.2944 | 81.3278 | 0 |
29 | 0 | 0 | 0 | 0 | 0 | 70.5584 | 65.5602 | 0 |
30 | 0 | 0 | 0 | 0 | 0 | 84.264 | 80.9129 | 1 |
31 | 0 | 0 | 0 | 0 | 0 | 63.9594 | 59.751 | 0 |
32 | 0 | 0 | 0 | 0 | 0 | 78.1726 | 73.444 | 0 |
Evaluation Indicator | Source Variation | Sum of Squares | Degree Freedom | Mean Square | F Value | p Value |
---|---|---|---|---|---|---|
Weeding rate 1st day y1/% | Model | 16,709.07 | 20 | 835.45 | 10.37 | 0.0002 ** |
x1 | 665.66 | 1 | 665.66 | 8.26 | 0.0151 * | |
x2 | 408.25 | 1 | 408.25 | 5.07 | 0.0458 * | |
x3 | 3235.94 | 1 | 3235.94 | 40.16 | <0.0001 ** | |
x4 | 1709.24 | 1 | 1709.24 | 21.21 | 0.0008 ** | |
x5 | 1939.25 | 1 | 1939.25 | 24.07 | 0.0005 ** | |
x1 x2 | 0.4 | 1 | 0.4 | 5 × 10−3 | 0.9449 | |
x1 x3 | 17.54 | 1 | 17.54 | 0.22 | 0.6499 | |
x1 x4 | 0.016 | 1 | 0.016 | 2 × 10−4 | 0.989 | |
x1 x5 | 800.86 | 1 | 800.86 | 9.94 | 0.0092 ** | |
x2 x3 | 10.07 | 1 | 10.07 | 0.12 | 0.7304 | |
x2 x4 | 0.016 | 1 | 0.016 | 2 × 10−4 | 0.989 | |
x2 x5 | 41.89 | 1 | 41.89 | 0.52 | 0.4859 | |
x3 x4 | 829.85 | 1 | 829.85 | 10.3 | 0.0083 ** | |
x3 x5 | 376.99 | 1 | 376.99 | 4.68 | 0.0534 | |
x4 x5 | 2854.38 | 1 | 2854.38 | 35.42 | <0.0001 ** | |
x12 | 7.73 | 1 | 7.73 | 0.096 | 0.7625 | |
x22 | 93.19 | 1 | 93.19 | 1.16 | 0.3052 | |
x32 | 3064.72 | 1 | 3064.72 | 38.04 | <0.0001 ** | |
x42 | 835.12 | 1 | 835.12 | 10.36 | 0.0082 ** | |
x52 | 320.46 | 1 | 320.46 | 3.98 | 0.0715 | |
Residual error | 886.34 | 11 | 80.58 | |||
Lack of fit | 341.62 | 6 | 56.94 | 0.52 | 0.7738 | |
Pure error | 544.72 | 5 | 108.94 | |||
Cor total | 17,595.4 | 31 | ||||
Weeding rate 7th day y2/% | Model | 15,414.69 | 20 | 770.7344 | 8.451414 | 0.0004 ** |
x1 | 473.8282 | 1 | 473.8282 | 5.195718 | 0.0436 * | |
x2 | 229.8586 | 1 | 229.8586 | 2.520492 | 0.1407 | |
x3 | 2838.285 | 1 | 2838.285 | 31.12294 | 0.0002 ** | |
x4 | 1223.643 | 1 | 1223.643 | 13.41774 | 0.0037 ** | |
x5 | 2820.264 | 1 | 2820.264 | 30.92534 | 0.0002 ** | |
x1 x2 | 11.71855 | 1 | 11.71855 | 0.128499 | 0.7268 | |
x1 x3 | 11.71855 | 1 | 11.71855 | 0.128499 | 0.7268 | |
x1 x4 | 13.18202 | 1 | 13.18202 | 0.144546 | 0.7110 | |
x1 x5 | 516.1004 | 1 | 516.1004 | 5.659249 | 0.0366 * | |
x2 x3 | 0.010761 | 1 | 0.010761 | 0.000118 | 0.9915 | |
x2 x4 | 42.70975 | 1 | 42.70975 | 0.46833 | 0.5079 | |
x2 x5 | 3.884661 | 1 | 3.884661 | 0.042597 | 0.8403 | |
x3 x4 | 614.6696 | 1 | 614.6696 | 6.740101 | 0.0249 * | |
x3 x5 | 554.495 | 1 | 554.495 | 6.080262 | 0.0314 * | |
x4 x5 | 3057.035 | 1 | 3057.035 | 33.52162 | 0.0001 ** | |
x12 | 1.440647 | 1 | 1.440647 | 0.015797 | 0.9022 | |
x22 | 42.74073 | 1 | 42.74073 | 0.468669 | 0.5078 | |
x32 | 2341.965 | 1 | 2341.965 | 25.6806 | 0.0004 ** | |
x42 | 628.9049 | 1 | 628.9049 | 6.896197 | 0.0236 * | |
x52 | 367.8255 | 1 | 367.8255 | 4.033356 | 0.0698 | |
Residual error | 1003.155 | 11 | 91.1959 | |||
Lack of fit | 436.1307 | 6 | 72.68846 | 0.640964 | 0.6999 | |
Pure error | 567.0242 | 5 | 113.4048 | |||
Cor total | 16,417.84 | 31 | ||||
Number of damaged seedings y3 | Model | 13.23 | 20 | 0.66 | 3.67 | 0.0155 * |
x1 | 1.04 | 1 | 1.04 | 5.77 | 0.0351 * | |
x2 | 0.042 | 1 | 0.042 | 0.23 | 0.6403 | |
x3 | 1.04 | 1 | 1.04 | 5.77 | 0.0351 * | |
x4 | 0.042 | 1 | 0.042 | 0.23 | 0.6403 | |
x5 | 1.04 | 1 | 1.04 | 5.77 | 0.0351 * | |
x1 x2 | 0.56 | 1 | 0.56 | 3.12 | 0.1052 | |
x1 x3 | 0.063 | 1 | 0.063 | 0.35 | 0.5681 | |
x1 x4 | 0.56 | 1 | 0.56 | 3.12 | 0.1052 | |
x1 x5 | 3.06 | 1 | 3.06 | 16.97 | 0.0017 ** | |
x2 x3 | 0.062 | 1 | 0.062 | 0.35 | 0.5681 | |
x2 x4 | 0.56 | 1 | 0.56 | 3.12 | 0.1052 | |
x2 x5 | 0.56 | 1 | 0.56 | 3.12 | 0.1052 | |
x3 x4 | 0.063 | 1 | 0.063 | 0.35 | 0.5681 | |
x3 x5 | 0.062 | 1 | 0.062 | 0.35 | 0.5681 | |
x4 x5 | 0.56 | 1 | 0.56 | 3.12 | 0.1052 | |
x12 | 0.015 | 1 | 0.015 | 0.084 | 0.7774 | |
x22 | 0.015 | 1 | 0.015 | 0.084 | 0.7774 | |
x32 | 3.64 | 1 | 3.64 | 20.17 | 0.0009 ** | |
x42 | 0.015 | 1 | 0.015 | 0.084 | 0.7774 | |
x52 | 0.015 | 1 | 0.015 | 0.084 | 0.7774 | |
Residual error | 1.98 | 11 | 0.18 | |||
Lack of fit | 1.15 | 6 | 0.19 | 1.15 | 0.4481 | |
Pure error | 0.83 | 5 | 0.17 | |||
Cor total | 15.22 | 31 | ||||
Model | 16,709.07 | 20 | 835.45 | 10.37 | 0.0002 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, L.; Luo, X.; Wang, Z.; Yang, W.; Li, H.; Song, S.; Xie, H.; Hu, J.; Chen, W.; Liu, Q. Design and Experiment of a Biomimetic Duckbill-like Vibration Chain for Physical Weed Control during the Rice Tillering Stage. Biomimetics 2023, 8, 430. https://doi.org/10.3390/biomimetics8050430
Fang L, Luo X, Wang Z, Yang W, Li H, Song S, Xie H, Hu J, Chen W, Liu Q. Design and Experiment of a Biomimetic Duckbill-like Vibration Chain for Physical Weed Control during the Rice Tillering Stage. Biomimetics. 2023; 8(5):430. https://doi.org/10.3390/biomimetics8050430
Chicago/Turabian StyleFang, Longyu, Xiwen Luo, Zaiman Wang, Wenwu Yang, Hui Li, Shiyu Song, Haoyang Xie, Jianhao Hu, Weiman Chen, and Qinghai Liu. 2023. "Design and Experiment of a Biomimetic Duckbill-like Vibration Chain for Physical Weed Control during the Rice Tillering Stage" Biomimetics 8, no. 5: 430. https://doi.org/10.3390/biomimetics8050430
APA StyleFang, L., Luo, X., Wang, Z., Yang, W., Li, H., Song, S., Xie, H., Hu, J., Chen, W., & Liu, Q. (2023). Design and Experiment of a Biomimetic Duckbill-like Vibration Chain for Physical Weed Control during the Rice Tillering Stage. Biomimetics, 8(5), 430. https://doi.org/10.3390/biomimetics8050430