Design and Realization of a Novel Robotic Manta Ray for Sea Cucumber Recognition, Location, and Approach
Abstract
:1. Introduction
- Designing a novel robotic manta ray with visual perception capabilities and a rigid-flexible coupled pectoral fin.
- Improving the YOLOv5s object detection and incorporating binocular stereo-matching algorithms to achieve accurate sea cucumber identification and localization.
- Designing a fuzzy PID controller to realize depth control, direction control, and target approach motion control for the robotic manta ray.
2. Overview of Robotic Manta Ray
2.1. Internal Layout of Robotic Manta Ray
2.2. Pectoral Fin Undulation Design
3. Recognition and Location Algorithms of Sea Cucumber Based on Improved YOLOv5s
3.1. YOLOv5s-ST Network
3.2. Sea Cucumber Positioning Method Based on Binocular Stereo Matching
4. Depth, Direction and Approach Control
5. Experiments
5.1. Experiment and Analysis of Sea Cucumber Recognition and Location Algorithms Based on Improved YOLOv5s
5.2. Experiment and Analysis of Binocular Positioning
5.3. Experiment and Analysis of Depth, Direction, and Approach Control
5.3.1. Experimental Scheme
5.3.2. Experimental Result
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SGBM | Semi-global block matching |
BCF | Body and/or Caudal Fin |
MPF | Median and/or Paired Fin |
DOFs | Degrees of freedoms |
IMU | Inertial Measurement Unit |
URPC | Underwater Robot Professional Contest |
RGHS | Relative global histogram stretching |
IoU | Intersection over Union |
References
- Wen, J.; Hu, C.; Fan, S. Chemical composition and nutritional quality of sea cucumbers. J. Sci. Food Agric. 2010, 90, 2469–2474. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Bao, J.; Zhang, H.; Zeng, L.; Li, D. Underwater image quality enhancement of sea cucumbers based on improved histogram equalization and wavelet transform. Inf. Process. Agric. 2017, 4, 206–213. [Google Scholar] [CrossRef]
- Shi, X.; Zhu, C.; Lu, P. Design and control of underwater robot system for sea cucumber fishing. Int. J. Adv. Robot. Syst. 2022, 19, 17298806221077625. [Google Scholar] [CrossRef]
- Takagi, M.; Mori, H.; Yimit, A.; Hagihara, Y.; Miyoshi, T. Development of a small size underwater robot for observing fisheries resources–underwater robot for assisting abalone fishing. J. Robot. Mechatron. 2016, 28, 397–403. [Google Scholar] [CrossRef]
- Guo, J.; Zhu, C.; Yang, X. Design of underwater robot system for sea cucumber fishing. In Proceedings of the 2nd International Conference on Mechanical, Electronics, and Electrical and Automation Control (METMS 2022), Guilin, China, 7–9 January 2022; Volume 12244, pp. 14–24. [Google Scholar]
- Ji, Y.; Wei, Y.; Liu, J.; An, D. Design and Realization of a Novel Hybrid-Drive Robotic Fish for Aquaculture Water Quality Monitoring. J. Bionic Eng. 2023, 20, 543–557. [Google Scholar] [CrossRef]
- Meng, Y.; Wu, Z.; Dong, H.; Wang, J.; Yu, J. Toward a novel robotic manta with unique pectoral fins. IEEE Trans. Syst. Man. Cybern. Syst. 2020, 52, 1663–1673. [Google Scholar] [CrossRef]
- Webb, P.W. Body form, locomotion and foraging in aquatic vertebrates. Am. Zool. 1984, 24, 107–120. [Google Scholar] [CrossRef]
- Sfakiotakis, M.; Lane, D.M.; Davies, J.B.C. Review of fish swimming modes for aquatic locomotion. IEEE J. Ocean. Eng. 1999, 24, 237–252. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, Y.; Li, J.; Hang, G. A micro biomimetic manta ray robot fish actuated by SMA. In Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guilin, China, 19–23 December 2009; pp. 1809–1813. [Google Scholar]
- Davis, H. Mechanization of Rajiform Swimming Motion: The Making of Robo-Ray; University of British Columbia Engineering Physics Project Laboratory: Vancouver, BC, Canada, 2002; Available online: https://cir.nii.ac.jp/crid/1573668924982108160 (accessed on 30 July 2023).
- Zhong, Y.; Zhang, D.; Zhou, C.; Chong, C.W.; Hu, T.; Shen, L.; Low, K.H. Better endurance and load capacity: An underwater vehicle inspired by manta ray. In Proceedings of the The Fourth International Symposium on Aero Aqua Bio-Mechanisms (ISABMEC2009), Shanghai, China, 29 August–3 September 2009. [Google Scholar]
- Gao, J.; Bi, S.; Xu, Y.; Liu, C. Development and design of a robotic manta ray featuring flexible pectoral fins. In Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO), Sanya, China, 15–18 December 2007; pp. 519–523. [Google Scholar]
- Gao, J.; Bi, S.; Li, J.; Liu, C. Design and experiments of robot fish propelled by pectoral fins. In Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guilin, China, 19–23 December 2009; pp. 445–450. [Google Scholar]
- Cai, Y.; Bi, S.; Zhang, L.; Gao, J. Design of a robotic fish propelled by oscillating flexible pectoral foils. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 11–15 October 2009; pp. 2138–2142. [Google Scholar]
- Cai, Y.; Bi, S.; Zheng, L. Design and experiments of a robotic fish imitating cow-nosed ray. J. Bionic Eng. 2010, 7, 120–126. [Google Scholar] [CrossRef]
- Hasegawa, E.; Hammadi, M.; Choley, J.Y.; Ming, A. Soft Underwater Robots Imitating Manta Actuated by Dielectric-Elastomer Minimum-Energy Structures. In Proceedings of the Design and Modeling of Mechanical Systems-IV: Proceedings of the 8th Conference on Design and Modeling of Mechanical Systems, CMSM’2019, Hammamet, Tunisia, 18–20 March 2019; pp. 882–891. [Google Scholar]
- He, J.; Cao, Y.; Huang, Q.; Cao, Y.; Tu, C.; Pan, G. A new type of bionic manta ray robot. In Proceedings of the Global Oceans 2020: Singapore–US Gulf Coast, Online, 5–14 October 2020; pp. 1–6. [Google Scholar]
- Meng, Y.; Wu, Z.; Zhang, P.; Wang, J.; Yu, J. Real-Time Digital Video Stabilization of Bioinspired Robotic Fish Using Estimation-and-Prediction Framework. IEEE/ASME Trans. Mechatron. 2022, 27, 4281–4292. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, L.; Zhu, Y.; Liu, L.; Huang, Q.; Cao, Y.; Pan, G. Real-Time Relative Positioning Study of an Underwater Bionic Manta Ray Vehicle Based on Improved YOLOx. J. Mar. Sci. Eng. 2023, 11, 314. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6154–6162. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Fu, C.Y.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. Dssd: Deconvolutional single shot detector. arXiv 2017, arXiv:1701.06659. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30. Available online: https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html (accessed on 30 July 2023).
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- Hirschmuller, H. Accurate and efficient stereo processing by semi-global matching and mutual information. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 2, pp. 807–814. [Google Scholar]
- Hirschmuller, H. Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 30, 328–341. [Google Scholar] [CrossRef]
- Salazar, R.; Fuentes, V.; Abdelkefi, A. Classification of biological and bioinspired aquatic systems: A review. Ocean Eng. 2018, 148, 75–114. [Google Scholar] [CrossRef]
- Qin, L.; Lu, S.; Liu, J.; Wu, Y.; Ma, Z.; Mawignon, F.J.; Dong, G. Bionic non-smooth epoxy resin coating with corrosion inhibitor for drag-reduction and durability. Prog. Org. Coatings 2022, 173, 107176. [Google Scholar] [CrossRef]
- Dizon, J.R.C.; Gache, C.C.L.; Cascolan, H.M.S.; Cancino, L.T.; Advincula, R.C. Post-processing of 3D-printed polymers. Technologies 2021, 9, 61. [Google Scholar] [CrossRef]
- Thorrold, S.R.; Afonso, P.; Fontes, J.; Braun, C.D.; Santos, R.S.; Skomal, G.B.; Berumen, M.L. Extreme diving behaviour in devil rays links surface waters and the deep ocean. Nat. Commun. 2014, 5, 4274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Deng, Y.; Osen, O.L.; Bi, S.; Zhang, H. A bio-inspired swimming robot for marine aquaculture applications: From concept-design to simulation. In Proceedings of the OCEANS 2016-Shanghai, Shanghai, China, 10–13 April 2016; pp. 1–7. [Google Scholar]
- Meng, C.; Wang, Z.; Shi, L.; Gao, Y.; Tao, Y.; Wei, L. SDRC-YOLO: A Novel Foreign Object Intrusion Detection Algorithm in Railway Scenarios. Electronics 2023, 12, 1256. [Google Scholar] [CrossRef]
- Guo, J.; Han, K.; Wu, H.; Tang, Y.; Chen, X.; Wang, Y.; Xu, C. Cmt: Convolutional neural networks meet vision transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 12175–12185. [Google Scholar]
- Sabri, N.; Aljunid, S.A.; Salim, M.S.; Badlishah, R.B.; Kamaruddin, R.; Malek, M.A. Fuzzy inference system: Short review and design. Int. Rev. Autom. Control. 2013, 6, 441–449. [Google Scholar]
- Guo, L.; Hung, J.Y.; Nelms, R.M. Evaluation of DSP-based PID and fuzzy controllers for DC–DC converters. IEEE Trans. Ind. Electron. 2009, 56, 2237–2248. [Google Scholar]
- Fu, C.; Fan, X.; Xiao, J.; Yuan, W.; Liu, R.; Luo, Z. Learning Heavily-Degraded Prior for Underwater Object Detection. IEEE Trans. Circuits Syst. Video Technol. 2023. Early Access. Available online: https://ieeexplore.ieee.org/abstract/document/10113328 (accessed on 30 July 2023).
- Huang, D.; Wang, Y.; Song, W.; Sequeira, J.; Mavromatis, S. Shallow-water image enhancement using relative global histogram stretching based on adaptive parameter acquisition. In Proceedings of the MultiMedia Modeling: 24th International Conference, MMM 2018, Bangkok, Thailand, 5–7 February 2018; pp. 453–465. [Google Scholar]
- Zhang, L.; Niu, C.; Bi, S.; Cai, Y. Kinematic model analysis and design optimization of a bionic pectoral fins. In Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, 12–14 December 2013; pp. 2219–2224. [Google Scholar]
Technical Parameters | Values |
---|---|
Size | 560 mm × 1300 mm × 120 mm |
Weight | 12.25 kg |
Body shell | Black resin |
Pectoral fin | Spring steel, rubber mold (1 mm) |
Caudal fin | Rubber (Shore hardness 40) |
Main controller | STM32F407 |
Power supply | DC 7.4 V/14.8 V |
Working hours | 3 h |
Sensor | Depth sensor, IMU, power metering sensor |
Inching switch | YJ-GQ22AF |
Charging port | M12 |
Parameters | Values |
---|---|
Input image | 640 × 640 |
Class number | 1 |
Batch size | 16 |
Learning rate | 0.001 |
Momentum factor | 0.95 |
Weight decay coefficient | 0.001 |
Iterations | 200 |
Precision | Recall | F1-Score | [email protected] | |
---|---|---|---|---|
YOLOv4 | 0.576 | 0.867 | 0.692 | 0.855 |
YOLOv5s | 0.881 | 0.778 | 0.826 | 0.862 |
YOLOv7 | 0.877 | 0.809 | 0.842 | 0.858 |
YOLOv5s-ST | 0.879 | 0.798 | 0.837 | 0.881 |
YOLOv5s-ST-RGHS | 0.882 | 0.801 | 0.840 | 0.884 |
Precision | Recall | F1-Score | [email protected] | |
---|---|---|---|---|
YOLOv4 | 0.665 | 0.950 | 0.782 | 0.937 |
YOLOv5s | 0.912 | 0.877 | 0.894 | 0.935 |
YOLOv7 | 0.868 | 0.892 | 0.880 | 0.939 |
YOLOv5s-ST | 0.925 | 0.871 | 0.897 | 0.943 |
YOLOv5s-ST-RGHS | 0.907 | 0.891 | 0.899 | 0.945 |
Experimental Distance (cm) | 3D Coordinates (cm) | Measured Distance (cm) | Error (%) |
---|---|---|---|
40 | (2.4, −2.2, 39.8) | 39.9 | 0.25 |
80 | (3.1, −2.3, 78.5) | 78.6 | 1.75 |
120 | (3.3, −2.0, 122.1) | 122.2 | 1.83 |
160 | (3.9, −2.2, 158.4) | 158.5 | 0.94 |
200 | (4.2, −2.1, 208.7) | 208.8 | 2.85 |
240 | (3.8, −2.3, 250.1) | 250.1 | 4.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liu, Z.; Yang, H.; Liu, Z.; Liu, J. Design and Realization of a Novel Robotic Manta Ray for Sea Cucumber Recognition, Location, and Approach. Biomimetics 2023, 8, 345. https://doi.org/10.3390/biomimetics8040345
Liu Y, Liu Z, Yang H, Liu Z, Liu J. Design and Realization of a Novel Robotic Manta Ray for Sea Cucumber Recognition, Location, and Approach. Biomimetics. 2023; 8(4):345. https://doi.org/10.3390/biomimetics8040345
Chicago/Turabian StyleLiu, Yang, Zhenna Liu, Heming Yang, Zheng Liu, and Jincun Liu. 2023. "Design and Realization of a Novel Robotic Manta Ray for Sea Cucumber Recognition, Location, and Approach" Biomimetics 8, no. 4: 345. https://doi.org/10.3390/biomimetics8040345
APA StyleLiu, Y., Liu, Z., Yang, H., Liu, Z., & Liu, J. (2023). Design and Realization of a Novel Robotic Manta Ray for Sea Cucumber Recognition, Location, and Approach. Biomimetics, 8(4), 345. https://doi.org/10.3390/biomimetics8040345