A Subtraction-Average-Based Optimizer for Solving Engineering Problems with Applications on TCSC Allocation in Power Systems
Abstract
:1. Introduction
- A novel ISAOA is presented.
- The proposed ISAOA establishes great superiority over the standard SAOA after considering testing on different standard mathematical benchmark functions.
- Compared to existing studies, the placement and sizing of TCSC devices are handled to minimize power losses.
- In this context, considering the standard IEEE 30 bus power system, the proposed ISAOA outperforms various SAOA and other recent approaches of GWO, AEO, PSO, and AQA.
- Considering different numbers of TCSC devices, the suggested ISAOA’s precision and quality of solution are demonstrated compared to the others.
2. Novel ISAOA Version: Mathematical Model
2.1. Standard SAOA Version
2.2. Novel ISAOA Version Incorporating a Cooperative Learning Strategy
3. Experimental Validation of Standard Benchmarking Functions
4. TCSC Allocation-Based Loss Minimization in Electrical Power Grids
5. Simulation Results for Optimal TCSC Allocations in Power Systems
- Case 1: One TCSC to be allocated.
- Case 2: Two TCSCs to be allocated.
- Case 3: Three TCSCs to be allocated.
5.1. Application for Case 1
5.2. Application for Case 2
5.3. Application for Case 3
5.4. Analysis of Increasing the Maximum Compensation Level to 70%
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trojovský, P.; Dehghani, M. Subtraction-Average-Based Optimizer: A New Swarm-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics 2023, 8, 149. [Google Scholar] [CrossRef]
- Jakšić, Z.; Devi, S.; Jakšić, O.; Guha, K. A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics. Biomimetics 2023, 8, 278. [Google Scholar] [CrossRef]
- Trojovská, E.; Dehghani, M.; Leiva, V. Drawer Algorithm: A New Metaheuristic Approach for Solving Optimization Problems in Engineering. Biomimetics 2023, 8, 239. [Google Scholar] [CrossRef]
- Ben Aribia, H.; El-Rifaie, A.M.; Tolba, M.A.; Shaheen, A.; Moustafa, G.; Elsayed, F.; Elshahed, M. Growth Optimizer for Parameter Identification of Solar Photovoltaic Cells and Modules. Sustainability 2023, 15, 7896. [Google Scholar] [CrossRef]
- Moustafa, G.; Ginidi, A.R.; Elshahed, M.; Shaheen, A.M. Economic environmental operation in bulk AC/DC hybrid interconnected systems via enhanced artificial hummingbird optimizer. Electr. Power Syst. Res. 2023, 222, 109503. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, J.; Chen, Y.; Xue, X.; Sun, S. Binary Restructuring Particle Swarm Optimization and Its Application. Biomimetics 2023, 8, 266. [Google Scholar] [CrossRef]
- Hashim, F.A.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W.; Mirjalili, S. Henry gas solubility optimization: A novel physics-based algorithm. Future Gener. Comput. Syst. 2019, 101, 646–667. [Google Scholar] [CrossRef]
- Dehghani, M.; Hubalovsky, S.; Trojovsky, P. Tasmanian Devil Optimization: A New Bio-Inspired Optimization Algorithm for Solving Optimization Algorithm. IEEE Access 2022, 10, 19599–19620. [Google Scholar] [CrossRef]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning, 1989th ed.; Addison-Wesley Publishing Company, Inc.: Redwood City, CA, USA, 1989. [Google Scholar]
- Holland, J. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021, 51, 1531–1551. [Google Scholar] [CrossRef]
- Kaveh, A.; Dadras, A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw. 2017, 110, 69–84. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowl.-Based Syst. 2020, 191, 105190. [Google Scholar] [CrossRef]
- El-Ela, A.A.A.; Allam, S.M.; Shaheen, A.M.; Nagem, N.A. Optimal allocation of biomass distributed generation in distribution systems using equilibrium algorithm. Int. Trans. Electr. Energy Syst. 2020, 31, e12727. [Google Scholar] [CrossRef]
- Askari, Q.; Saeed, M.; Younas, I. Heap-based optimizer inspired by corporate rank hierarchy for global optimization. Expert Syst. Appl. 2020, 161, 113702. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine predators algorithm: A nature-inspired Metaheuristic. Expert Syst. Appl. 2020, 152, 113377. [Google Scholar]
- Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper Optimisation Algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47. [Google Scholar] [CrossRef] [Green Version]
- Chou, J.-S.; Truong, D.-N. A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Appl. Math. Comput. 2021, 389, 125535. [Google Scholar] [CrossRef]
- Kennedy, J. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995. [Google Scholar]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Babes, B.; Boutaghane, A.; Hamouda, N. A novel nature-inspired maximum power point tracking (MPPT) controller based on ACO-ANN algorithm for photovoltaic (PV) system fed arc welding machines. Neural Comput. Appl. 2022, 34, 299–317. [Google Scholar] [CrossRef]
- Kahla, S.; Bechouat, M.; Amieur, T.; Sedraoui, M.; Babes, B.; Hamouda, N. Maximum power extraction framework using robust fractional-order feedback linearization control and GM-CPSO for PMSG-based WECS. Wind Eng. 2021, 45, 1040–1054. [Google Scholar] [CrossRef]
- Hamouda, N.; Babes, B.; Hamouda, C.; Kahla, S.; Ellinger, T.; Petzoldt, J. Optimal tuning of fractional order proportional-integral-derivative controller for wire feeder system using ant colony optimization. J. Eur. Syst. Autom. 2020, 53, 157–166. [Google Scholar] [CrossRef]
- Hamouda, N.; Babes, B.; Boutaghane, A.; Kahla, S.; Mezaache, M. Optimal tuning of PIλDμ controller for PMDC motor speed control using ant colony optimization algorithm for enhancing robustness of WFSs. In Proceedings of the CCSSP 2020—1st International Conference on Communications, Control Systems and Signal Processing, El Oued, Algeria, 16–17 May 2020. [Google Scholar] [CrossRef]
- Hamouda, N.; Babes, B.; Kahla, S.; Boutaghane, A.; Beddar, A.; Aissa, O. ANFIS Controller Design Using PSO Algorithm for MPPT of Solar PV System Powered Brushless DC Motor Based Wire Feeder Unit. In Proceedings of the 2020 International Conference on Electrical Engineering, ICEE 2020, Istanbul, Turkey, 25–27 September 2020. [Google Scholar] [CrossRef]
- Mahdy, A.; Shaheen, A.; El-Sehiemy, R.; Ginidi, A. Artificial ecosystem optimization by means of fitness distance balance model for engineering design optimization. J. Supercomput. 2023. [Google Scholar] [CrossRef]
- El-Sehiemy, R.; Elsayed, A.; Shaheen, A.; Elattar, E.; Ginidi, A. Scheduling of Generation Stations, OLTC Substation Transformers and VAR Sources for Sustainable Power System Operation Using SNS Optimizer. Sustainability 2021, 13, 11947. [Google Scholar] [CrossRef]
- Shokouhandeh, H.; Latif, S.; Irshad, S.; Kamarposhti, M.A.; Colak, I.; Eguchi, K. Optimal Management of Reactive Power Considering Voltage and Location of Control Devices Using Artificial Bee Algorithm. Appl. Sci. 2021, 12, 27. [Google Scholar] [CrossRef]
- Lin, W.-M.; Yang, C.-Y.; Tsai, M.-T.; Wang, Y.-H. Unit Commitment with Ancillary Services in a Day-Ahead Power Market. Appl. Sci. 2021, 11, 5454. [Google Scholar] [CrossRef]
- Behzadpoor, S.; Davoudkhani, I.F.; Abdelaziz, A.Y.; Geem, Z.W.; Hong, J. Power System Stability Enhancement Using Robust FACTS-Based Stabilizer Designed by a Hybrid Optimization Algorithm. Energies 2022, 15, 8754. [Google Scholar] [CrossRef]
- Montoya, O.D. A convex OPF approximation for selecting the best candidate nodes for optimal location of power sources on DC resistive networks. Eng. Sci. Technol. Int. J. 2020, 23, 527–533. [Google Scholar] [CrossRef]
- Shaheen, A.M.; El-Sehiemy, R.; Farrag, S.M. Optimal reactive power dispatch using backtracking search algorithm. Aust. J. Electr. Electron. Eng. 2016, 13, 200–210. [Google Scholar] [CrossRef]
- Rahli, M.; Pirotte, P. Optimal load flow using sequential unconstrained minimization technique (SUMT) method under power transmission losses minimization. Electr. Power Syst. Res. 1999, 52, 61–64. [Google Scholar] [CrossRef]
- Yan, X.; Quintana, V. Improving an interior-point-based off by dynamic adjustments of step sizes and tolerances. IEEE Trans. Power Syst. 1999, 14, 709–717. [Google Scholar] [CrossRef]
- Sun, D.I.; Ashley, B.; Brewer, B.; Hughes, A.; Tinney, W.F. Optimal power flow by Newton approach. IEEE Trans. Power Appar. Syst. 1984, PAS-103, 2864–2880. [Google Scholar] [CrossRef]
- Bouchekara, H.R.E.-H.; Abido, M.A.; Chaib, A.E. Optimal Power Flow Using an Improved Electromagnetism-like Mechanism Method. Electr. Power Compon. Syst. 2016, 44, 434–449. [Google Scholar] [CrossRef]
- Ziane, I.; Benhamida, F.; Graa, A. Simulated annealing algorithm for combined economic and emission power dispatch using max/max price penalty factor. Neural Comput. Appl. 2017, 28, 197–205. [Google Scholar] [CrossRef]
- Basu, M. Modified particle swarm optimization for nonconvex economic dispatch problems. Int. J. Electr. Power Energy Syst. 2015, 69, 304–312. [Google Scholar] [CrossRef]
- Moustafa, G.; Elshahed, M.; Ginidi, A.R.; Shaheen, A.M.; Mansour, H.S.E. A Gradient-Based Optimizer with a Crossover Operator for Distribution Static VAR Compensator (D-SVC) Sizing and Placement in Electrical Systems. Mathematics 2023, 11, 1077. [Google Scholar] [CrossRef]
- Dabba, A.; Tari, A.; Meftali, S. Hybridization of Moth flame optimization algorithm and quantum computing for gene selection in microarray data. J. Ambient. Intell. Humaniz. Comput. 2020, 12, 2731–2750. [Google Scholar] [CrossRef]
- Bouaraki, M.; Recioui, A. Optimal placement of power factor correction capacitors in power systems using Teaching Learning Based Optimization. Alger. J. Signals Syst. 2017, 2, 102–109. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Poullikkas, A. Evolutionary Priority-Based Dynamic Programming for the Adaptive Integration of Intermittent Distributed Energy Resources in Low-Inertia Power Systems. Eng 2021, 2, 643–660. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Poullikkas, A. Co-optimization of active power curtailment, load shedding and spinning reserve deficits through hybrid approach: Comparison of electrochemical storage technologies. IET Renew. Power Gener. 2022, 16, 92–104. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Chatzis, S. Gaussian process-based Bayesian optimization for data-driven unit commitment. Int. J. Electr. Power Energy Syst. 2021, 130, 106930. [Google Scholar] [CrossRef]
- Shaheen, A.; Ginidi, A.; El-Sehiemy, R.; Elsayed, A.; Elattar, E.; Dorrah, H.T. Developed Gorilla Troops Technique for Optimal Power Flow Problem in Electrical Power Systems. Mathematics 2022, 10, 1636. [Google Scholar] [CrossRef]
- Ginidi, A.; Elattar, E.; Shaheen, A.; Elsayed, A.; El-Sehiemy, R.; Dorrah, H. Optimal Power Flow Incorporating Thyristor-Controlled Series Capacitors Using the Gorilla Troops Algorithm. Int. Trans. Electr. Energy Syst. 2022, 2022, 9448199. [Google Scholar] [CrossRef]
- Shaheen, A.M.; El-Sehiemy, R.A.; Elattar, E.E.; Abd-Elrazek, A.S. A Modified Crow Search Optimizer for Solving Non-Linear OPF Problem with Emissions. IEEE Access 2021, 9, 43107–43120. [Google Scholar] [CrossRef]
- Shaheen, A.M.; El-Sehiemy, R.A.; Elsayed, A.M.; Elattar, E.E. Multi-objective manta ray foraging algorithm for efficient operation of hybrid AC/DC power grids with emission minimisation. IET Gener. Transm. Distrib. 2021, 15, 1314–1336. [Google Scholar] [CrossRef]
- Shen, Y.; Liang, Z.; Kang, H.; Sun, X.; Chen, Q. A modified jso algorithm for solving constrained engineering problems. Symmetry 2021, 13, 63. [Google Scholar] [CrossRef]
- Gupta, C. Book Review: FACTS: Modelling and Simulation in Power Networks. Int. J. Electr. Eng. Educ. 2005, 42, 209–210. [Google Scholar] [CrossRef]
- Sen, K.K.; Sen, M.L. Introduction to FACTS Controllers: Theory, Modeling, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Sakr, W.S.; El-Sehiemy, R.A.; Azmy, A.M. Optimal allocation of TCSCs by adaptive DE algorithm. IET Gener. Transm. Distrib. 2016, 10, 3844–3854. [Google Scholar] [CrossRef]
- Shafik, M.B.; Chen, H.; Rashed, G.I.; El-Sehiemy, R.A. Adaptive multi objective parallel seeker optimization algorithm for incorporating TCSC devices into optimal power flow framework. IEEE Access 2019, 7, 36934–36947. [Google Scholar] [CrossRef]
- Sarhana, S.; Shaheen, A.; El-Sehiemy, R.; Gafar, M. Optimal Multi-dimension Operation in Power Systems by an Improved Artificial Hummingbird Optimizer. Hum.-Centric Comput. Inf. Sci. 2023, 13, 13. [Google Scholar] [CrossRef]
- Sarhan, S.; Shaheen, A.M.; El-Sehiemy, R.A.; Gafar, M. Enhanced Teaching Learning-Based Algorithm for Fuel Costs and Losses Minimization in AC-DC Systems. Mathematics 2022, 10, 2337. [Google Scholar] [CrossRef]
- Sarhan, S.; Shaheen, A.M.; El-Sehiemy, R.A.; Gafar, M. An Enhanced Slime Mould Optimizer That Uses Chaotic Behavior and an Elitist Group for Solving Engineering Problems. Mathematics 2022, 10, 1991. [Google Scholar] [CrossRef]
- Shaheen, A.M.; Elsayed, A.M.; El-Sehiemy, R.A.; Ghoneim, S.S.M.; Alharthi, M.M.; Ginidi, A.R. Multi-dimensional energy management based on an optimal power flow model using an improved quasi-reflection jellyfish optimization algorithm. Eng. Optim. 2022, 55, 907–929. [Google Scholar] [CrossRef]
- Ghasemi, M.; Taghizadeh, M.; Ghavidel, S.; Aghaei, J.; Abbasian, A. Solving optimal reactive power dispatch problem using a novel teaching-learning-based optimization algorithm. Eng. Appl. Artif. Intell. 2015, 39, 100–108. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Zhang, Z. Artificial ecosystem-based optimization: A novel nature-inspired meta-heuristic algorithm. Neural Comput. Appl. 2020, 32, 9383–9425. [Google Scholar] [CrossRef]
- Abualigah, L.; Yousri, D.; Elaziz, M.A.; Ewees, A.A.; Al-Qaness, M.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-heuristic optimization Algorithm. Comput. Ind. Eng. 2021, 157, 107250. [Google Scholar] [CrossRef]
- El-Ela, A.A.A.; El-Sehiemy, R.A.; Shaheen, A.M.; Shalaby, A.S. Aquila Optimization Algorithm for Wind Energy Potential Assessment Relying on Weibull Parameters Estimation. Wind 2022, 2, 617–635. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Mahdy, A.; Shaheen, A.; El-Sehiemy, R.; Ginidi, A.; Al-Gahtani, S.F. Single- and Multi-Objective Optimization Frameworks of Shape Design of Tubular Linear Synchronous Motor. Energies 2023, 16, 2409. [Google Scholar] [CrossRef]
- Sarhan, S.; Shaheen, A.; El-Sehiemy, R.; Gafar, M. An Augmented Social Network Search Algorithm for Optimal Reactive Power Dispatch Problem. Mathematics 2023, 11, 1236. [Google Scholar] [CrossRef]
Function No. | Function | Dim | Max. | Min. | Optimal |
---|---|---|---|---|---|
F1 | Shifted and Rotated Zakharov Function | 30 | 100 | −100 | 300 |
F2 | Shifted and Rotated Expanded Scaffer’s F6 Function | 30 | 100 | −100 | 600 |
F3 | Hybrid Function 1 (N = 3) | 30 | 100 | −100 | 1100 |
F4 | Hybrid Function 6 (N = 4) | 30 | 100 | −100 | 1600 |
F5 | Hybrid Function 6 (N = 5) | 30 | 100 | −100 | 1700 |
F6 | Hybrid Function 6 (N = 5) | 30 | 100 | −100 | 1900 |
F7 | Composition Function 1 (N = 3) | 30 | 100 | −100 | 2100 |
F8 | Composition Function 4 (N = 4) | 30 | 100 | −100 | 2400 |
F9 | Composition Function 5 (N = 5) | 30 | 100 | −100 | 2500 |
F10 | Composition Function 7 (N = 6) | 30 | 100 | −100 | 2700 |
Function | Index | Algorithms | Proposed ISAOA vs. Standard SAOA | Improvement Percentage (%) | Decline Percentage (%) | |
---|---|---|---|---|---|---|
Standard SAOA | Proposed ISAOA | |||||
F1 | Best | 623.6 | 300.0 | √ | 51.9% | - |
Mean | 2872.2 | 300.0 | √ | 89.6% | - | |
Worst | 8350.7 | 300.3 | √ | 96.4% | - | |
STD | 1682.4 | 0.0 | √ | 100.0% | - | |
F2 | Best | 606.0 | 603.8 | √ | 0.4% | - |
Mean | 620.6 | 617.5 | √ | 0.5% | - | |
Worst | 649.2 | 647.2 | √ | 0.3% | - | |
STD | 10.3 | 9.4 | √ | 8.4% | - | |
F3 | Best | 1166.7 | 1103.3 | √ | 5.4% | - |
Mean | 1493.4 | 1158.7 | √ | 22.4% | - | |
Worst | 2561.0 | 1273.3 | √ | 50.3% | - | |
STD | 372.1 | 43.4 | √ | 88.3% | - | |
F4 | Best | 1694.8 | 1601.7 | √ | 5.5% | - |
Mean | 2077.5 | 1817.6 | √ | 12.5% | - | |
Worst | 2315.7 | 2135.6 | √ | 7.8% | - | |
STD | 119.4 | 142.0 | x | - | 15.9% | |
F5 | Best | 1783.3 | 1724.0 | √ | 3.3% | - |
Mean | 1888.6 | 1784.0 | √ | 5.5% | - | |
Worst | 2094.9 | 1925.6 | √ | 8.1% | - | |
STD | 80.5 | 53.5 | √ | 33.5% | - | |
F6 | Best | 2022.8 | 2025.1 | x | - | 0.1% |
Mean | 9198.0 | 11852.1 | x | - | 22.4% | |
Worst | 32007.5 | 208941.3 | x | - | 84.7% | |
STD | 6583.5 | 28897.4 | x | - | 77.2% | |
F7 | Best | 2316.5 | 2200.0 | √ | 5.0% | - |
Mean | 2347.7 | 2311.1 | √ | 1.6% | - | |
Worst | 2385.1 | 2379.0 | √ | 0.3% | - | |
STD | 13.0 | 53.6 | x | - | 75.8% | |
F8 | Best | 2663.2 | 2500.0 | √ | 6.1% | - |
Mean | 2777.7 | 2776.8 | √ | 0.0% | - | |
Worst | 2859.1 | 2881.8 | x | - | 0.8% | |
STD | 28.1 | 48.7 | x | - | 42.1% | |
F9 | Best | 2918.9 | 2897.9 | √ | 0.7% | - |
Mean | 2959.3 | 2927.0 | √ | 1.1% | - | |
Worst | 3038.8 | 2978.5 | √ | 2.0% | - | |
STD | 23.8 | 25.6 | x | - | 7.1% | |
F10 | Best | 3098.5 | 3093.2 | √ | 0.2% | - |
Mean | 3116.2 | 3129.6 | x | - | 0.4% | |
Worst | 3203.9 | 3209.5 | x | - | 0.2% | |
STD | 23.1 | 36.4 | x | - | 36.5% |
Initial Case | ISAOA | SAOA | AEO | GWO | AQA | PSO | |
---|---|---|---|---|---|---|---|
VG 1 | 1.0500 | 1.1 | 1.1 | 1.099351 | 1.099568 | 1.1 | 1.075 |
VG 2 | 1.0400 | 1.09755 | 1.1 | 1.094747 | 1.095818 | 1.1 | 1.07809 |
VG 5 | 1.0100 | 1.079716 | 1.1 | 1.074308 | 1.08001 | 1.09728 | 1.065148 |
VG 8 | 1.0100 | 1.08684 | 1.1 | 1.083873 | 1.085785 | 1.09288 | 1.063441 |
VG 11 | 1.0500 | 1.1 | 1.1 | 1.099959 | 1.078706 | 1.1 | 1.022355 |
VG 13 | 1.0500 | 1.1 | 1.1 | 1.099709 | 1.081997 | 1.1 | 1.038084 |
Ta 6-9 | 1.0780 | 1.067173 | 1.1 | 1.028284 | 1.025412 | 1.1 | 1.057744 |
Ta 6-10 | 1.0690 | 0.9 | 1.002677 | 0.925326 | 0.961107 | 0.910477 | 0.986684 |
Ta 4-12 | 1.0320 | 0.986297 | 1.010226 | 0.999935 | 1.008998 | 1.009181 | 1.002048 |
Ta 28-27 | 1.0680 | 0.973996 | 0.978184 | 0.98665 | 1.00225 | 1.034419 | 0.999681 |
Qr 10 | 0 | 5 | 5 | 4.152465 | 2.13309 | 5 | 2.240947 |
Qr 12 | 0 | 5 | 2.979705 | 4.930084 | 3.124115 | 3.962959 | 1.838463 |
Qr 15 | 0 | 4.999997 | 4.851496 | 4.952519 | 0.258411 | 5 | 0.558184 |
Qr 17 | 0 | 4.999982 | 4.624229 | 4.912524 | 3.793636 | 5 | 2.661792 |
Qr 20 | 0 | 4.081398 | 3.910989 | 1.71465 | 2.796705 | 5 | 3.442288 |
Qr 21 | 0 | 4.968112 | 5 | 4.899575 | 4.209032 | 5 | 3.753513 |
Qr 23 | 0 | 2.58453 | 2.684319 | 0.885251 | 3.763496 | 4.881004 | 3.735606 |
Qr 24 | 0 | 5 | 4.291999 | 3.534451 | 3.481095 | 5 | 3.049624 |
Qr 29 | 0 | 2.275642 | 2.726024 | 2.708482 | 2.864193 | 3.107001 | 1.325189 |
PG 1 | 99.2400 | 51.21077 | 51.5016 | 51.4936 | 62.3303 | 51.3952 | 54.40648 |
PG 2 | 80 | 80 | 80 | 79.78346 | 79.61742 | 80 | 80 |
PG 5 | 50 | 50 | 49.89148 | 49.86303 | 49.8189 | 50 | 48.99943 |
PG 8 | 20 | 35 | 35 | 34.99899 | 33.99505 | 35 | 34.5 |
PG 11 | 20 | 30 | 30 | 29.55887 | 29.7921 | 30 | 28.86584 |
PG 13 | 20 | 40 | 40 | 39.98309 | 37.77225 | 40 | 40 |
TCSC installed Lines | - | 28-27 | 23-24 | 28-27 | 4-6 | 6-28 | 26 |
TCSC Compensation Percentage | - | −49.998% | +4.665% | −49.490% | −35.028% | −42.017% | −22.85% |
Losses (MW) | 5.832400 | 2.8217 | 3.061 | 2.844 | 3.035 | 2.990 | 3.37174 |
Initial Case | ISAOA | SAOA | AEO | GWO | AQA | PSO | |
---|---|---|---|---|---|---|---|
VG 1 | 1.0500 | 1.1 | 1.1 | 1.099352 | 1.095119 | 1.1 | 1.075 |
VG 2 | 1.0400 | 1.097584 | 1.1 | 1.096829 | 1.089415 | 1.1 | 1.075013 |
VG 5 | 1.0100 | 1.079817 | 1.1 | 1.078726 | 1.071614 | 1.1 | 1.042909 |
VG 8 | 1.0100 | 1.087006 | 1.1 | 1.086607 | 1.078618 | 1.094221 | 1.067203 |
VG 11 | 1.0500 | 1.1 | 1.1 | 1.099927 | 1.084584 | 1.1 | 1.075 |
VG 13 | 1.0500 | 1.1 | 1.047568 | 1.099558 | 1.074647 | 1.1 | 1.071508 |
Ta 6-9 | 1.0780 | 1.064807 | 1.042502 | 0.976591 | 1.049704 | 1.044803 | 1.02662 |
Ta 6-10 | 1.0690 | 0.900035 | 1.1 | 1.016372 | 1.032416 | 0.929538 | 0.959426 |
Ta 4-12 | 1.0320 | 0.980145 | 1.066829 | 1.00762 | 1.063337 | 1.011769 | 1.003132 |
Ta 28-27 | 1.0680 | 0.980535 | 1.066162 | 0.994596 | 1.002449 | 1.023534 | 1.010488 |
Qr 10 | 0 | 5 | 5 | 4.482774 | 3.497458 | 5 | 2.03322 |
Qr 12 | 0 | 5 | 5 | 3.665279 | 0.832066 | 5 | 3.70069 |
Qr 15 | 0 | 0 | 5 | 3.945993 | 4.166941 | 4.987603 | 1.505697 |
Qr 17 | 0 | 5 | 5 | 4.659533 | 3.173012 | 5 | 3.098415 |
Qr 20 | 0 | 5 | 5 | 4.934657 | 0.851722 | 4.879124 | 2.663595 |
Qr 21 | 0 | 4.999997 | 5 | 2.590238 | 3.394242 | 5 | 1.928459 |
Qr 23 | 0 | 4.274824 | 4.567337 | 2.648497 | 1.978594 | 5 | 3.428343 |
Qr 24 | 0 | 5 | 4.920762 | 4.935695 | 1.815333 | 5 | 4.035329 |
Qr 29 | 0 | 2.352175 | 3.409656 | 2.42653 | 0.977867 | 5 | 1.656887 |
PG 1 | 99.2400 | 51.18843 | 51.50164 | 51.49365 | 62.3303 | 51.39525 | 63.56449 |
PG 2 | 80 | 80 | 80 | 79.80634 | 72.62864 | 80 | 75.34649 |
PG 5 | 50 | 49.99428 | 50 | 49.99955 | 49.966 | 50 | 50 |
PG 8 | 20 | 35 | 35 | 34.98885 | 32.48052 | 35 | 31.89516 |
PG 11 | 20 | 30 | 30 | 29.99324 | 29.75128 | 30 | 29 |
PG 13 | 20 | 40 | 40 | 39.98501 | 39.47006 | 40 | 40 |
First TCSC installed Lines | - | 28.27 | 6-28 | 6-9 | 6-8 | 10-17 | 26 |
First TCSC Compensation | - | −50.00% | 3.72% | 16.10% | 24.83% | −13.64% | −50% |
Second TCSC installed Lines | - | 6-28 | 23-24 | 4-12 | 16-17 | 6-28 | 15 |
Second TCSC Compensation | - | −50.00% | 16.57% | 49.90% | −2.74% | −44.06% | 6.417% |
Losses (MW) | 5.832400 | 2.820 | 3.102 | 2.867 | 3.227 | 2.995 | 3.360665 |
Initial Case | ISAOA | SAOA | AEO | GWO | AQA | PSO | |
---|---|---|---|---|---|---|---|
VG 1 | 1.0500 | 1.1 | 1.093023 | 1.099981 | 1.086747 | 1.097922 | 1.075036 |
VG 2 | 1.0400 | 1.1 | 1.091724 | 1.095393 | 1.082197 | 1.097226 | 1.076742 |
VG 5 | 1.0100 | 1.082327 | 1.071226 | 1.076605 | 1.061782 | 1.082092 | 1.047007 |
VG 8 | 1.0100 | 1.08939 | 1.088734 | 1.083436 | 1.068615 | 1.091701 | 1.054737 |
VG 11 | 1.0500 | 1.1 | 1.059316 | 1.088431 | 1.081636 | 1.095909 | 1.082164 |
VG 13 | 1.0500 | 1.1 | 1.049747 | 1.099988 | 1.070184 | 1.088444 | 1.074414 |
Ta 6-9 | 1.0780 | 1.1 | 1.056802 | 0.996884 | 0.993708 | 1.01364 | 0.973067 |
Ta 6-10 | 1.0690 | 0.9 | 0.992325 | 0.949036 | 1.042592 | 1.045173 | 0.993484 |
Ta 4-12 | 1.0320 | 0.990567 | 1.066913 | 1.031631 | 1.018614 | 1.063428 | 1.058055 |
Ta 28-27 | 1.0680 | 0.989463 | 1.048915 | 0.976953 | 0.991104 | 1.020301 | 0.971079 |
Qr 10 | 0 | 5 | 5 | 4.374692 | 2.966956 | 5 | 2.932858 |
Qr 12 | 0 | 1.5 × 10−6 | 4.893785 | 4.366721 | 0.713832 | 3.430701 | 4.286213 |
Qr 15 | 0 | 5 | 4.830902 | 4.974559 | 1.657207 | 1.754133 | 1.763583 |
Qr 17 | 0 | 5 | 4.93972 | 0.865704 | 1.784874 | 4.858897 | 3.538395 |
Qr 20 | 0 | 4.40039 | 4.97807 | 2.802873 | 2.792935 | 5 | 2.196743 |
Qr 21 | 0 | 5 | 4.983362 | 4.07292 | 1.804884 | 5 | 0.760047 |
Qr 23 | 0 | 2.71585 | 5 | 1.849487 | 1.079345 | 5 | 1.500662 |
Qr 24 | 0 | 5 | 4.999963 | 4.716259 | 3.888447 | 5 | 2.947927 |
Qr 29 | 0 | 2.271475 | 4.99007 | 2.050629 | 2.454247 | 5 | 2.648181 |
PG 1 | 99.2400 | 51.18571 | 51.37345 | 51.43609 | 56.25298 | 51.36892 | 58.62718 |
PG 2 | 80 | 80 | 80 | 79.97287 | 78.58037 | 80 | 76 |
PG 5 | 50 | 50 | 50 | 49.99684 | 49.96991 | 50 | 50 |
PG 8 | 20 | 35 | 35 | 34.99919 | 33.73529 | 35 | 35 |
PG 11 | 20 | 30 | 30 | 29.97878 | 28.5719 | 30 | 30 |
PG 13 | 20 | 40 | 40 | 39.89602 | 39.47651 | 40 | 37.10127 |
First TCSC installed Lines | - | 6-28 | 6-28 | 28-27 | 9-11 | 10-17 | 9-10 |
First TCSC Compensation | - | −36.96% | 2.06% | −44.65% | −0.62% | −39.76% | −8.80% |
Second TCSC installed Lines | - | 10-20 | - | 6-7 | 12-13 | 6-28 | 12-14 |
Second TCSC Compensation | - | −50.00% | - | −5.97% | −7.28% | 6.83% | 5.01% |
Third TCSC installed Lines | - | 28-27 | - | 10-20 | - | 25-26 | 4-12 |
Third TCSC Compensation | - | −50.00% | - | −49.50% | - | −50.00% | −24.71% |
Losses (MW) | 5.832400 | 2.821 | 3.036 | 2.880 | 3.187 | 2.969 | 3.3284477 |
Control Variables | Initial Case | Maximum Compensation of 50% | Maximum Compensation of 70% | ||||
---|---|---|---|---|---|---|---|
Case 1 | Case 2 | Case 3 | Case 1 | Case 2 | Case 3 | ||
VG 1 | 1.0500 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.099999 |
VG 2 | 1.0400 | 1.09755 | 1.097584 | 1.1 | 1.097319 | 1.097956 | 1.097605 |
VG 5 | 1.0100 | 1.079716 | 1.079817 | 1.082327 | 1.078955 | 1.080331 | 1.07971 |
VG 8 | 1.0100 | 1.08684 | 1.087006 | 1.08939 | 1.086296 | 1.087668 | 1.087057 |
VG 11 | 1.0500 | 1.1 | 1.1 | 1.1 | 1.1 | 1.098732 | 1.1 |
VG 13 | 1.0500 | 1.1 | 1.1 | 1.1 | 1.1 | 1.099938 | 1.1 |
Ta 6-9 | 1.0780 | 1.067173 | 1.064807 | 1.1 | 1.063184 | 1.070089 | 1.067166 |
Ta 6-10 | 1.0690 | 0.9 | 0.900035 | 0.9 | 0.90001 | 0.9 | 0.956462 |
Ta 4-12 | 1.0320 | 0.986297 | 0.980145 | 0.990567 | 0.990751 | 0.98751 | 0.986089 |
Ta 28-27 | 1.0680 | 0.973996 | 0.980535 | 0.989463 | 0.988098 | 0.984445 | 0.983499 |
Qr 10 | 0 | 5 | 5 | 5 | 4.274806 | 5 | 0.108196 |
Qr 12 | 0 | 5 | 5 | 1.5 × 10−6 | 4.99999 | 4.956941 | 5 |
Qr 15 | 0 | 4.999997 | 0 | 5 | 5 | 4.709263 | 5 |
Qr 17 | 0 | 4.999982 | 5 | 5 | 5 | 4.996445 | 4.999989 |
Qr 20 | 0 | 4.081398 | 5 | 4.40039 | 3.702088 | 4.802683 | 4.877439 |
Qr 21 | 0 | 4.968112 | 4.999997 | 5 | 5 | 5 | 5 |
Qr 23 | 0 | 2.58453 | 4.274824 | 2.71585 | 5 | 2.494547 | 0 |
Qr 24 | 0 | 5 | 5 | 5 | 5 | 5 | 4.994352 |
Qr 29 | 0 | 2.275642 | 2.352175 | 2.271475 | 5 | 2.309083 | 2.443029 |
PG 1 | 99.2400 | 51.21077 | 51.18843 | 51.18571 | 51.22007902 | 51.22321 | 51.17528 |
PG 2 | 80 | 80 | 80 | 80 | 80 | 79.98913 | 80 |
PG 5 | 50 | 50 | 49.99428 | 50 | 50 | 50 | 50 |
PG 8 | 20 | 35 | 35 | 35 | 34.99961 | 35 | 35 |
PG 11 | 20 | 30 | 30 | 30 | 30 | 29.99852 | 30 |
PG 13 | 20 | 40 | 40 | 40 | 40 | 39.99559 | 39.99992 |
First TCSC installed Lines | - | 28-27 | 28-27 | 6-28 | 28-27 | 6-28 | 28.27 |
First TCSC Compensation | - | −49.998% | −50.00% | −36.96% | −70.0% | −70.0% | −70.0% |
Second TCSC installed Lines | - | - | 6-28 | 10-20 | - | 28.27 | 8-28 |
Second TCSC Compensation | - | - | −50.00% | −50.00% | - | −57.6% | 6.2% |
Third TCSC installed Lines | - | - | - | 28-27 | - | - | 6-10 |
Third TCSC Compensation | - | - | - | −50.00% | - | - | −70.0% |
Losses (MW) | 5.832400 | 2.8217 | 2.820 | 2.821 | 2.82731 | 2.80645 | 2.775199 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moustafa, G.; Tolba, M.A.; El-Rifaie, A.M.; Ginidi, A.; Shaheen, A.M.; Abid, S. A Subtraction-Average-Based Optimizer for Solving Engineering Problems with Applications on TCSC Allocation in Power Systems. Biomimetics 2023, 8, 332. https://doi.org/10.3390/biomimetics8040332
Moustafa G, Tolba MA, El-Rifaie AM, Ginidi A, Shaheen AM, Abid S. A Subtraction-Average-Based Optimizer for Solving Engineering Problems with Applications on TCSC Allocation in Power Systems. Biomimetics. 2023; 8(4):332. https://doi.org/10.3390/biomimetics8040332
Chicago/Turabian StyleMoustafa, Ghareeb, Mohamed A. Tolba, Ali M. El-Rifaie, Ahmed Ginidi, Abdullah M. Shaheen, and Slim Abid. 2023. "A Subtraction-Average-Based Optimizer for Solving Engineering Problems with Applications on TCSC Allocation in Power Systems" Biomimetics 8, no. 4: 332. https://doi.org/10.3390/biomimetics8040332
APA StyleMoustafa, G., Tolba, M. A., El-Rifaie, A. M., Ginidi, A., Shaheen, A. M., & Abid, S. (2023). A Subtraction-Average-Based Optimizer for Solving Engineering Problems with Applications on TCSC Allocation in Power Systems. Biomimetics, 8(4), 332. https://doi.org/10.3390/biomimetics8040332