STDP-Driven Rewiring in Spiking Neural Networks under Stimulus-Induced and Spontaneous Activity
Abstract
:1. Introduction
2. SNN Model
2.1. Spiking Neuron
2.2. Synaptic Model and Network Connectivity
3. The Model of Synaptic Plasticity with Rewiring
4. Vector Fields for Visualizing Functional and Structural Rearrangements in an SNN
5. Results
5.1. Network Rewiring under Stimulus-Induced Activity
5.2. Rewiring and Stability of Neural Network during Spontaneous Activity
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Haykin, S. Neural Networks. A Comprehensive Foundation, 2nd ed.; Hall, P., Ed.; Prentice Hall PTR: Hoboken, NJ, USA, 1998. [Google Scholar]
- Hebb, D.O. The Organization of Behavior: A Neuropsychological Theory; Wiley: New York, NY, USA, 1949. [Google Scholar]
- Kohonen, T. Self-Organized Formation of Topologically Correct Feature Maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
- Markram, H.; Gerstner, W.; Sjöström, P.J. A History of Spike-Timing-Dependent Plasticity. Front. Synaptic Neurosci. 2011, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Turrigiano, G.G. The Dialectic of Hebb and Homeostasis. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160258. [Google Scholar] [CrossRef] [Green Version]
- Chklovskii, D.B.; Mel, B.W.; Svoboda, K. Cortical Rewiring and Information Storage. Nature 2004, 431, 782–788. [Google Scholar] [CrossRef]
- Yin, J.; Yuan, Q. Structural Homeostasis in the Nervous System: A Balancing Act for Wiring Plasticity and Stability. Front. Cell. Neurosci. 2015, 8, 439. [Google Scholar] [CrossRef] [Green Version]
- Lazarevich, I.; Stasenko, S.; Rozhnova, M.; Pankratova, E.; Dityatev, A.; Kazantsev, V. Activity-Dependent Switches between Dynamic Regimes of Extracellular Matrix Expression. PLoS ONE 2020, 15, e0227917. [Google Scholar] [CrossRef] [Green Version]
- Tsybina, Y.; Kastalskiy, I.; Krivonosov, M.; Zaikin, A.; Kazantsev, V.; Gorban, A.N.; Gordleeva, S. Astrocytes Mediate Analogous Memory in a Multi-Layer Neuron–Astrocyte Network. Neural Comput. Appl. 2022, 34, 9147–9160. [Google Scholar] [CrossRef]
- Makovkin, S.; Kozinov, E.; Ivanchenko, M.; Gordleeva, S. Controlling Synchronization of Gamma Oscillations by Astrocytic Modulation in a Model Hippocampal Neural Network. Sci. Rep. 2022, 12, 6970. [Google Scholar] [CrossRef]
- Abrego, L.; Gordleeva, S.; Kanakov, O.; Krivonosov, M.; Zaikin, A. Estimating Integrated Information in Bidirectional Neuron-Astrocyte Communication. Phys. Rev. E 2021, 103, 22410. [Google Scholar] [CrossRef]
- Grutzendler, J.; Kasthuri, N.; Gan, W.-B. Long-Term Dendritic Spine Stability in the Adult Cortex. Nature 2002, 420, 812–816. [Google Scholar] [CrossRef]
- Poirazi, P.; Mel, B.W. Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue. Neuron 2001, 29, 779–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poirazi, P.; Mel, B.W. Choice and Value Flexibility Jointly Contribute to the Capacity of a Subsampled Quadratic Classifier. Neural Comput. 2000, 12, 1189–1205. [Google Scholar] [CrossRef]
- MacKay, D.J.C.; Mac Kay, D.J.C. ; others Information Theory, Inference and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Kolb, B.; Whishaw, I.Q. Brain Plasticity and Behavior. Annu. Rev. Psychol. 1998, 49, 43–64. [Google Scholar] [CrossRef] [Green Version]
- Turner, A.M.; Greenough, W.T. Differential Rearing Effects on Rat Visual Cortex Synapses. I. Synaptic and Neuronal Density and Synapses per Neuron. Brain Res. 1985, 329, 195–203. [Google Scholar] [CrossRef]
- Trachtenberg, J.T.; Chen, B.E.; Knott, G.W.; Feng, G.; Sanes, J.R.; Welker, E.; Svoboda, K. Long-Term in Vivo Imaging of Experience-Dependent Synaptic Plasticity in Adult Cortex. Nature 2002, 420, 788–794. [Google Scholar] [CrossRef]
- Knott, G.W.; Quairiaux, C.; Genoud, C.; Welker, E. Formation of Dendritic Spines with GABAergic Synapses Induced by Whisker Stimulation in Adult Mice. Neuron 2002, 34, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Faherty, C.J.; Kerley, D.; Smeyne, R.J. A Golgi-Cox Morphological Analysis of Neuronal Changes Induced by Environmental Enrichment. Dev. Brain Res. 2003, 141, 55–61. [Google Scholar] [CrossRef]
- Merzenich, M.M.; Nelson, R.J.; Stryker, M.P.; Cynader, M.S.; Schoppmann, A.; Zook, J.M. Somatosensory Cortical Map Changes Following Digit Amputation in Adult Monkeys. J. Comp. Neurol. 1984, 224, 591–605. [Google Scholar] [CrossRef]
- Pons, T.P.; Garraghty, P.E.; Ommaya, A.K.; Kaas, J.H.; Taub, E.; Mishkin, M. Massive Cortical Reorganization After Sensory Deafferentation in Adult Macaques. Science 1991, 252, 1857–1860. [Google Scholar] [CrossRef] [Green Version]
- Darian-Smith, C.; Gilbert, C.D. Axonal Sprouting Accompanies Functional Reorganization in Adult Cat Striate Cortex. Nature 1994, 368, 737–740. [Google Scholar] [CrossRef]
- Gilbert, C.D. Adult Cortical Dynamics. Physiol. Rev. 1998, 78, 467–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinen, S.J.; Skavenski, A.A. Recovery of Visual Responses in Foveal V1 Neurons Following Bilateral Foveal Lesions in Adult Monkey. Exp. Brain Res. 1991, 83, 670–674. [Google Scholar] [CrossRef] [PubMed]
- Gallinaro, J.V.; Gašparović, N.; Rotter, S. Homeostatic Control of Synaptic Rewiring in Recurrent Networks Induces the Formation of Stable Memory Engrams. PLoS Comput. Biol. 2022, 18, e1009836. [Google Scholar] [CrossRef]
- Butz, M.; van Ooyen, A. A Simple Rule for Dendritic Spine and Axonal Bouton Formation Can Account for Cortical Reorganization after Focal Retinal Lesions. PLoS Comput. Biol. 2013, 9, e1003259. [Google Scholar] [CrossRef]
- Diaz-Pier, S.; Naveau, M.; Butz-Ostendorf, M.; Morrison, A. Automatic Generation of Connectivity for Large-Scale Neuronal Network Models through Structural Plasticity. Front. Neuroanat. 2016, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, J.; Villa, A.E.P. Effect of Stimulus-Driven Pruning on the Detection of Spatiotemporal Patterns of Activity in Large Neural Networks. Biosystems 2007, 89, 287–293. [Google Scholar] [CrossRef]
- Deger, M.; Seeholzer, A.; Gerstner, W. Multicontact Co-Operativity in Spike-Timing–Dependent Structural Plasticity Stabilizes Networks. Cereb. Cortex 2018, 28, 1396–1415. [Google Scholar] [CrossRef] [Green Version]
- Limbacher, T.; Legenstein, R. Emergence of Stable Synaptic Clusters on Dendrites Through Synaptic Rewiring. Front. Comput. Neurosci. 2020, 14, 57. [Google Scholar] [CrossRef] [PubMed]
- Calvo Tapia, C.; Makarov, V.A.; van Leeuwen, C. Basic Principles Drive Self-Organization of Brain-like Connectivity Structure. Commun. Nonlinear Sci. Numer. Simul. 2020, 82, 105065. [Google Scholar] [CrossRef]
- Miner, D.; Triesch, J. Plasticity-Driven Self-Organization under Topological Constraints Accounts for Non-Random Features of Cortical Synaptic Wiring. PLoS Comput. Biol. 2016, 12, e1004759. [Google Scholar] [CrossRef] [Green Version]
- Spiess, R.; George, R.; Cook, M.; Diehl, P.U. Structural Plasticity Denoises Responses and Improves Learning Speed. Front. Comput. Neurosci. 2016, 10, 93. [Google Scholar] [CrossRef] [Green Version]
- Rentzeperis, I.; van Leeuwen, C. Adaptive Rewiring in Weighted Networks Shows Specificity, Robustness, and Flexibility. Front. Syst. Neurosci. 2021, 15, 580569. [Google Scholar] [CrossRef]
- Shi, Y.; Nguyen, L.; Oh, S.; Liu, X.; Kuzum, D. A Soft-Pruning Method Applied During Training of Spiking Neural Networks for In-Memory Computing Applications. Front. Neurosci. 2019, 13, 405. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yu, Z.; Fang, W.; Huang, T.; Tian, Y. Pruning of Deep Spiking Neural Networks through Gradient Rewiring. IJCAI Int. Jt. Conf. Artif. Intell. 2021, 1713–1721. [Google Scholar] [CrossRef]
- Rathi, N.; Panda, P.; Roy, K. STDP-Based Pruning of Connections and Weight Quantization in Spiking Neural Networks for Energy-Efficient Recognition. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2019, 38, 668–677. [Google Scholar] [CrossRef] [Green Version]
- Lobov, S.A.; Mikhaylov, A.N.; Berdnikova, E.S.; Makarov, V.A.; Kazantsev, V.B. Spatial Computing in Modular Spiking Neural Networks with a Robotic Embodiment. Mathematics 2023, 11, 234. [Google Scholar] [CrossRef]
- Lobov, S.A.; Zharinov, A.I.; Makarov, V.A.; Kazantsev, V.B. Spatial Memory in a Spiking Neural Network with Robot Embodiment. Sensors 2021, 21, 2678. [Google Scholar] [CrossRef] [PubMed]
- Izhikevich, E.M. Simple Model of Spiking Neurons. IEEE Trans. Neural Netw. 2003, 14, 1569–1572. [Google Scholar] [CrossRef] [Green Version]
- Izhikevich, E.M. Which Model to Use for Cortical Spiking Neurons? IEEE Trans. Neural Netw. 2004, 15, 1063–1070. [Google Scholar] [CrossRef]
- Tsodyks, M.; Pawelzik, K.; Markram, H. Neural Networks with Dynamic Synapses. Neural Comput. 1998, 10, 821–835. [Google Scholar] [CrossRef]
- Wagenaar, D.A.; Pine, J.; Potter, S.M. An Extremely Rich Repertoire of Bursting Patterns during the Development of Cortical Cultures. BMC Neurosci. 2006, 7, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Gritsun, T.A.; le Feber, J.; Rutten, W.L.C. Growth Dynamics Explain the Development of Spatiotemporal Burst Activity of Young Cultured Neuronal Networks in Detail. PLoS ONE 2012, 7, e43352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pimashkin, A.; Kastalskiy, I.; Simonov, A.; Koryagina, E.; Mukhina, I.; Kazantsev, V. Spiking Signatures of Spontaneous Activity Bursts in Hippocampal Cultures. Front. Comput. Neurosci. 2011, 5, 46. [Google Scholar] [CrossRef] [Green Version]
- Morrison, A.; Diesmann, M.; Gerstner, W. Phenomenological Models of Synaptic Plasticity Based on Spike Timing. Biol. Cybern. 2008, 98, 459–478. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Miller, K.D.; Abbott, L.F. Competitive Hebbian Learning through Spike-Timing-Dependent Synaptic Plasticity. Nat. Neurosci. 2000, 3, 919. [Google Scholar] [CrossRef]
- Lobov, S.; Simonov, A.; Kastalskiy, I.; Kazantsev, V. Network Response Synchronization Enhanced by Synaptic Plasticity. Eur. Phys. J. Spec. Top. 2016, 225, 29–39. [Google Scholar] [CrossRef]
- Spiking Neurosimulator NeuroNet with a User-Friendly Graphical Interface. Available online: http://spneuro.net (accessed on 29 December 2022).
- Makarov, V.A.; Lobov, S.A.; Shchanikov, S.; Mikhaylov, A.; Kazantsev, V.B. Toward Reflective Spiking Neural Networks Exploiting Memristive Devices. Front. Comput. Neurosci. 2022, 16, 859874. [Google Scholar] [CrossRef]
- Raichman, N.; Ben-Jacob, E. Identifying Repeating Motifs in the Activation of Synchronized Bursts in Cultured Neuronal Networks. J. Neurosci. Methods 2008, 170, 96–110. [Google Scholar] [CrossRef]
- Ikegaya, Y.; Matsumoto, W.; Chiou, H.-Y.; Yuste, R.; Aaron, G. Statistical Significance of Precisely Repeated Intracellular Synaptic Patterns. PLoS ONE 2008, 3, e3983. [Google Scholar] [CrossRef]
- Kazantsev, V.; Gordleeva, S.; Stasenko, S.; Dityatev, A. A Homeostatic Model of Neuronal Firing Governed by Feedback Signals from the Extracellular Matrix. PLoS ONE 2012, 7, e41646. [Google Scholar] [CrossRef]
- Llinás, R.R. I of the Vortex: From Neurons to Self; MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Dityatev, A.; Rusakov, D.A. Molecular Signals of Plasticity at the Tetrapartite Synapse. Curr. Opin. Neurobiol. 2011, 21, 353–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobov, S.A.; Berdnikova, E.S.; Zharinov, A.I.; Kurganov, D.P.; Kazantsev, V.B. STDP-Driven Rewiring in Spiking Neural Networks under Stimulus-Induced and Spontaneous Activity. Biomimetics 2023, 8, 320. https://doi.org/10.3390/biomimetics8030320
Lobov SA, Berdnikova ES, Zharinov AI, Kurganov DP, Kazantsev VB. STDP-Driven Rewiring in Spiking Neural Networks under Stimulus-Induced and Spontaneous Activity. Biomimetics. 2023; 8(3):320. https://doi.org/10.3390/biomimetics8030320
Chicago/Turabian StyleLobov, Sergey A., Ekaterina S. Berdnikova, Alexey I. Zharinov, Dmitry P. Kurganov, and Victor B. Kazantsev. 2023. "STDP-Driven Rewiring in Spiking Neural Networks under Stimulus-Induced and Spontaneous Activity" Biomimetics 8, no. 3: 320. https://doi.org/10.3390/biomimetics8030320
APA StyleLobov, S. A., Berdnikova, E. S., Zharinov, A. I., Kurganov, D. P., & Kazantsev, V. B. (2023). STDP-Driven Rewiring in Spiking Neural Networks under Stimulus-Induced and Spontaneous Activity. Biomimetics, 8(3), 320. https://doi.org/10.3390/biomimetics8030320