A Comparative Study of the Properties of Gelatin (Porcine and Bovine)-Based Edible Films Loaded with Spearmint Essential Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Edible Films (EFs) Preparation
2.3. Gas Chromatography Mass Spectrometry (GCMS) Analysis
2.4. X-ray Diffraction (XRD)
2.5. SEM (Scanning Electron Microscopy) Analysis
2.6. FTIR Spectra Analysis
2.7. Mechanical Properties
- F = maximum force
- A = cross-sectional area of the film
- Lf = final length at a break
- Li = initial length of the film
2.8. Film Thickness
2.9. Color Analysis
- ΔL = L standard − L sample; Δa = a standard − a sample;
- Δb = b standard − b sample.
2.10. Opacity
- A550 = absorbance at 550 nm; x = film thickness (mm).
2.11. Moisture Content (MC)
- W1 = initial weight; W2 = final weight.
2.12. Water Solubility (WS)
- W1 = initial weight; W2 = final weight.
2.13. Water Vapor Permeability (WVP)
- WVP = water-vapor permeability (g mm/(m2) (d)(kPa)); Δm/Δt = weight of moisture gain per unit of time (g/s); A = the area of film (m2); ΔP = water vapor pressure difference between the two sides of the film (kPa); d = film thickness (mm).
2.14. Antioxidant Assays
2.14.1. Determination of Scavenging Capacity against DPPH Radicals
- Ac represents the absorbance of the blank solution and At indicates the absorbance of the test solution.
2.14.2. Determination of Scavenging Capacity against ABTS Radicals
2.15. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Spearmint Essential Oil (SEO)
3.2. SEM
3.3. XRD Analysis
3.4. FTIR Spectroscopy
3.5. Mechanical Properties
3.6. Thickness
3.7. Color Analysis and Opacity
3.8. Moisture Content (MC)
3.9. Water Solubility (WS)
3.10. Water Vapor Permeability
3.11. Radical Scavenging Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jridi, M.; Souissi, N.; Mbarek, A.; Chadeyron, G.; Kammoun, M.; Nasri, M. Comparative study of physico-mechanical and antioxidant properties of edible gelatin films from the skin of cuttlefish. Int. J. Biol. Macromol. 2013, 61, 17–25. [Google Scholar] [CrossRef]
- Fematt-Flores, G.E.; Aguiló-Aguayo, I.; Marcos, B.; Camargo-Olivas, B.A.; Sánchez-Vega, R.; Soto-Caballero, M.C.; Salas-Salazar, N.A.; Flores-Córdova, M.A.; Rodríguez-Roque, M.J. Milk protein-based edible films: Influence on mechanical, hydrodynamic, optical and antioxidant properties. Coatings 2022, 12, 196. [Google Scholar] [CrossRef]
- Baranwal, J.; Barse, B.; Fais, A.; Delogu, G.L.; Kumar, A. Biopolymer: A sustainable material for food and medical applications. Polymers 2022, 14, 983. [Google Scholar] [CrossRef]
- Hanani, Z.N.; Roos, Y.; Kerry, J.P. Use of beef, pork and fish gelatin sources in the manufacture of films and assessment of their composition and mechanical properties. Food Hydrocoll. 2012, 29, 144–151. [Google Scholar] [CrossRef]
- Fakhouri, F.M.; Martelli, S.M.; Caon, T.; Velasco, J.I.; Mei, L.H.I. Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biol. Technol. 2015, 109, 57–64. [Google Scholar] [CrossRef]
- Jridi, M.; Abdelhedi, O.; Salem, A.; Kechaou, H.; Nasri, M.; Menchari, Y. Physicochemical, antioxidant and antibacterial properties of fish gelatin-based edible films enriched with orange peel pectin: Wrapping application. Food Hydrocoll. 2020, 103, 105688. [Google Scholar] [CrossRef]
- Musso, Y.S.; Salgado, P.R.; Mauri, A.N. Smart edible films based on gelatin and curcumin. Food Hydrocoll. 2017, 66, 8–15. [Google Scholar] [CrossRef]
- Duconseille, A.; Astruc, T.; Quintana, N.; Meersman, F.; Sante-Lhoutellier, V. Gelatin structure and composition linked to hard capsule dissolution: A review. Food Hydrocoll. 2015, 43, 360–376. [Google Scholar] [CrossRef]
- Hafidz, R.; Yaakob, C.; Amin, I.; Noorfaizan, A. Chemical and functional properties of bovine and porcine skin gelatin. Int. Food Res. J. 2011, 18, 787–791. [Google Scholar]
- Gómez-Guillén, M.C.; Turnay, J.; Fernández-Dıaz, M.; Ulmo, N.; Lizarbe, M.A.; Montero, P. Structural and physical properties of gelatin extracted from different marine species: A comparative study. Food Hydrocoll. 2002, 16, 25–34. [Google Scholar] [CrossRef]
- Ahmad, M.; Benjakul, S.; Prodpran, T.; Agustini, T.W. Physico-mechanical and antimicrobial properties of gelatin film from the skin of unicorn leatherjacket incorporated with essential oils. Food Hydrocoll. 2012, 28, 189–199. [Google Scholar] [CrossRef]
- Bimakr, M.; Rahman, R.A.; Ganjloo, A.; Taip, F.S.; Salleh, L.M.; Sarker, M.Z.I. Optimization of supercritical carbon dioxide extraction of bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves by using response surface methodology. Food Bioprocess Technol. 2012, 5, 912–920. [Google Scholar] [CrossRef]
- Mokhtarikhah, G.; Ebadi, M.-T.; Ayyari, M. Qualitative changes of spearmint essential oil as affected by drying methods. Ind. Crops Prod. 2020, 153, 112492. [Google Scholar] [CrossRef]
- Snoussi, M.; Noumi, E.; Trabelsi, N.; Flamini, G.; Papetti, A.; De Feo, V. Mentha spicata essential oil: Chemical composition, antioxidant and antibacterial activities against planktonic and biofilm cultures of Vibrio spp. strains. Molecules 2015, 20, 14402–14424. [Google Scholar] [CrossRef]
- Rhim, J.; Wu, Y.; Weller, C.; Schnepf, M. Physical characteristics of a composite film of soy protein isolate and propyleneglycol alginate. J. Food Sci. 1999, 64, 149–152. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Y.; Liu, C. Film Transparency and Opacity Measurements. Food Anal. Methods 2022, 15, 2840–2846. [Google Scholar] [CrossRef]
- Erdem, B.G.; Dıblan, S.; Kaya, S. Development and structural assessment of whey protein isolate/sunflower seed oil biocomposite film. Food Bioprod. Process. 2019, 118, 270–280. [Google Scholar] [CrossRef]
- Kim, S.; Song, K.B. Antimicrobial activity of buckwheat starch films containing zinc oxide nanoparticles against Listeria monocytogenes on mushrooms. Int. J. Food Sci. Technol. 2018, 53, 1549–1557. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Soković, M.; Van Griensven, L.J. Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus. Eur. J. Plant Pathol. 2006, 116, 211–224. [Google Scholar] [CrossRef]
- Kofidis, G.; Bosabalidis, A.; Kokkini, S. Seasonal variation of essential oils in a linalool-rich chemotype of Mentha spicata grown wild in Greece. J. Essent. Oil Res. 2004, 16, 469–472. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Shahid, M.; Ashraf, M.; Przybylski, R. Chemical composition, and antioxidant and antimicrobial activities of essential oil of spearmint (Mentha spicata L.) from Pakistan. J. Essent. Oil Res. 2010, 22, 78–84. [Google Scholar] [CrossRef]
- Haghighi, H.; Biard, S.; Bigi, F.; De Leo, R.; Bedin, E.; Pfeifer, F.; Siesler, H.W.; Licciardello, F.; Pulvirenti, A. Comprehensive characterization of active chitosan-gelatin blend films enriched with different essential oils. Food Hydrocoll. 2019, 95, 33–42. [Google Scholar] [CrossRef]
- Sancakli, A.; Basaran, B.; Arican, F.; Polat, O. Effects of bovine gelatin viscosity on gelatin-based edible film mechanical, physical and morphological properties. SN Appl. Sci. 2021, 3, 8. [Google Scholar] [CrossRef]
- Alexandre, E.M.C.; Lourenço, R.V.; Bittante, A.M.Q.B.; Moraes, I.C.F.; do Amaral Sobral, P.J. Gelatin-based films reinforced with montmorillonite and activated with nanoemulsion of ginger essential oil for food packaging applications. Food Packag. Shelf Life 2016, 10, 87–96. [Google Scholar] [CrossRef]
- Wang, K.; Wang, W.; Ye, R.; Xiao, J.; Liu, Y.; Ding, J.; Zhang, S.; Liu, A. Mechanical and barrier properties of maize starch–gelatin composite films: Effects of amylose content. J. Sci. Food Agric. 2017, 97, 3613–3622. [Google Scholar] [CrossRef]
- Mosleh, Y.; de Zeeuw, W.; Nijemeisland, M.; Bijleveld, J.C.; van Duin, P.; Poulis, J.A. The structure–property correlations in dry gelatin adhesive films. Adv. Eng. Mater. 2021, 23, 2000716. [Google Scholar] [CrossRef]
- Bergo, P.; Sobral, P.J.d.A. Effects of plasticizer on physical properties of pigskin gelatin films. Food Hydrocoll. 2007, 21, 1285–1289. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, W.; Guo, Y.; Zhu, Y.; Lu, H.; Wu, Y. Superhydrophobic coatings on gelatin-based films: Fabrication, characterization and cytotoxicity studies. RSC Adv. 2018, 8, 23712–23719. [Google Scholar] [CrossRef]
- Pietrucha, K.; Safandowska, M. Dialdehyde cellulose-crosslinked collagen and its physicochemical properties. Process Biochem. 2015, 50, 2105–2111. [Google Scholar] [CrossRef]
- Scartazzini, L.; Tosati, J.; Cortez, D.; Rossi, M.; Flôres, S.; Hubinger, M.; Di Luccio, M.; Monteiro, A. Gelatin edible coatings with mint essential oil (Mentha arvensis): Film characterization and antifungal properties. J. Food Sci. Technol. 2019, 56, 4045–4056. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S.; Prodpran, T.; Nilsuwan, K. Emulsion film based on fish skin gelatin and palm oil: Physical, structural and thermal properties. Food Hydrocoll. 2015, 48, 248–259. [Google Scholar] [CrossRef]
- Bahram, S.; Rezaei, M.; Soltani, M.; Kamali, A.; Ojagh, S.M.; Abdollahi, M. Whey protein concentrate edible film activated with cinnamon essential oil. J. Food Process. Preserv. 2014, 38, 1251–1258. [Google Scholar] [CrossRef]
- Liu, T.; Wang, J.; Chi, F.; Tan, Z.; Liu, L. Development and characterization of novel active chitosan films containing fennel and peppermint essential oils. Coatings 2020, 10, 936. [Google Scholar] [CrossRef]
- Wang, L.; Auty, M.A.; Rau, A.; Kerry, J.F.; Kerry, J.P. Effect of pH and addition of corn oil on the properties of gelatin-based biopolymer films. J. Food Eng. 2009, 90, 11–19. [Google Scholar] [CrossRef]
- Avena-Bustillos, R.; Chiou, B.-s.; Olsen, C.; Bechtel, P.; Olson, D.; McHugh, T. Gelation, oxygen permeability, and mechanical properties of mammalian and fish gelatin films. J. Food Sci. 2011, 76, E519–E524. [Google Scholar] [CrossRef]
- Shah, U.; Naqash, F.; Gani, A.; Masoodi, F. Art and science behind modified starch edible films and coatings: A review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 568–580. [Google Scholar] [CrossRef]
- Zhang, Y.; Simpson, B.K.; Dumont, M.-J. Effect of beeswax and carnauba wax addition on properties of gelatin films: A comparative study. Food Biosci. 2018, 26, 88–95. [Google Scholar] [CrossRef]
- Ma, W.; Tang, C.-H.; Yin, S.-W.; Yang, X.-Q.; Wang, Q.; Liu, F.; Wei, Z.-H. Characterization of gelatin-based edible films incorporated with olive oil. Food Res. Int. 2012, 49, 572–579. [Google Scholar] [CrossRef]
- Shen, Y.; Ni, Z.-J.; Thakur, K.; Zhang, J.-G.; Hu, F.; Wei, Z.-J. Preparation and characterization of clove essential oil loaded nanoemulsion and pickering emulsion activated pullulan-gelatin based edible film. Int. J. Biol. Macromol. 2021, 181, 528–539. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, D.; Shen, R.; Zhang, R.; Liu, L.; Yang, X. Konjac glucomannan-based edible films loaded with thyme essential oil: Physical properties and antioxidant-antibacterial activities. Food Packag. Shelf Life 2021, 29, 100700. [Google Scholar] [CrossRef]
- Anis, A.; Pal, K.; Al-Zahrani, S.M. Essential oil-containing polysaccharide-based edible films and coatings for food security applications. Polymers 2021, 13, 575. [Google Scholar] [CrossRef]
- Jafari, R.; Zandi, M.; Ganjloo, A. Characterization of Alginate-Gelatin Edible Film Containing Anise (Pimpinella anisum L.) Essential Oil. J. Polym. Environ. 2023, 31, 1568–1583. [Google Scholar] [CrossRef]
- Valizadeh, S.; Naseri, M.; Babaei, S.; Hosseini, S.M.H.; Imani, A. Development of bioactive composite films from chitosan and carboxymethyl cellulose using glutaraldehyde, cinnamon essential oil and oleic acid. Int. J. Biol. Macromol. 2019, 134, 604–612. [Google Scholar] [CrossRef]
- Saranti, T.F.d.S.; Melo, P.T.; Cerqueira, M.A.; Aouada, F.A.; de Moura, M.R. Performance of gelatin films reinforced with Cloisite Na+ and black pepper essential oil loaded nanoemulsion. Polymers 2021, 13, 4298. [Google Scholar] [CrossRef]
- Wu, Z.; Tan, B.; Liu, Y.; Dunn, J.; Martorell Guerola, P.; Tortajada, M.; Cao, Z.; Ji, P. Chemical composition and antioxidant properties of essential oils from peppermint, native spearmint and scotch spearmint. Molecules 2019, 24, 2825. [Google Scholar] [CrossRef]
- Bao, S.; Xu, S.; Wang, Z. Antioxidant activity and properties of gelatin films incorporated with tea polyphenol-loaded chitosan nanoparticles. J. Sci. Food Agric. 2009, 89, 2692–2700. [Google Scholar] [CrossRef]
- Kowalczyk, D.; Biendl, M. Physicochemical and antioxidant properties of biopolymer/candelilla wax emulsion films containing hop extract–A comparative study. Food Hydrocoll. 2016, 60, 384–392. [Google Scholar] [CrossRef]
Sample Codes | Chemical Composition |
---|---|
Po1 | GE (Po) (2%) + Gly (0.3%) |
Po2 | GE (Po) (2%) + Gly (0.3%) + SEO (0.05%) + Tween 80 (0.05%) |
Po3 | GE (Po) (2%) + Gly (0.3%) + SEO (0.075%) + Tween 80 (0.075%) |
Po4 | GE (Po) (2%) + Gly (0.3%) + SEO (0.1%) + Tween 80 (0.1%) |
Bo1 | GE (Bo) (2%) + Gly (0.3%) |
Bo2 | GE (Bo) (2%) + Gly (0.3%) + SEO (0.05%) + Tween 80 (0.05%) |
Bo3 | GE (Bo) (2%) + Gly (0.3%) + SEO (0.075%) + Tween 80 (0.075%) |
Bo4 | GE (Bo) (2%) + Gly (0.3%) + SEO (0.1%) + Tween 80 (0.1%) |
Component | Area (%) | RT * |
---|---|---|
Carvone | 55.01 | 20.570 |
Limonene | 25.38 | 10.397 |
α-Pinene | 5.25 | 6.542 |
Cyclohexene | 4.61 | 12.549 |
β-pinene | 3.97 | 8.050 |
β-Myrcene | 3.91 | 8.588 |
Sample Codes | TS (MPa) | EAB (%) | WS (%) | WVP | MC (%) | Thickness (mm) |
---|---|---|---|---|---|---|
Po1 | 9.25 ± 0.15 d | 197.85 ± 5.18 b | 69.45 ± 0.40 a | 0.167 ± 0.01 a | 37.89 ± 1.08 a | 0.023 ± 0.005 a |
Po2 | 12.15 ± 0.68 c | 186.32 ± 1.86 c | 65.96 ± 0.77 b | 0.220 ± 0.01 b | 35.04 ± 1.00 b | 0.027 ± 0.005 a |
Po3 | 14.03 ± 0.38 b | 170.42 ± 4.24 d | 64.54 ± 0.25 c | 0.245 ± 0.01 c | 28.42 ± 1.94 d | 0.032 ± 0.016 ab |
Po4 | 24.46 ± 1.85 a | 43.54 ± 2.11 h | 62.19 ± 0.38 d | 0.277 ± 0.00 d | 15.20 ± 2.35 e | 0.048 ± 0.010 b |
Bo1 | 2.63 ± 0.03 e | 226.79 ± 5.41 a | 56.42 ± 0.72 e | 0.509 ± 0.00 e | 35.06 ± 0.82 b | 0.052 ± 0.008 bc |
Bo2 | 1.89 ± 0.03 f | 131.80 ± 4.06 e | 51.86 ± 0.34 f | 0.591 ± 0.00 f | 32.35 ± 1.18 c | 0.066 ± 0.009 cd |
Bo3 | 0.85 ± 0.01 g | 106.70 ± 1.79 f | 47.71 ± 0.35 g | 0.723 ± 0.01 g | 27.67 ± 1.11 d | 0.082 ± 0.008 d |
Bo4 | 0.84 ± 0.01 g | 90.91 ± 2.49 g | 47.66 ± 0.98 g | 0.771 ± 0.01 h | 16.13 ± 2.38 e | 0.1 ± 0.008 e |
Sample Code | L | a* | b* | ΔE | Opacity |
---|---|---|---|---|---|
Po1 | 95.67 ± 0.06 b | −0.25 ± 0.03 c | 1.60 ± 0.14 ef | 0.80 ± 0.15 e | 2.036 ± 0.091 a |
Po2 | 95.00 ± 0.27 c | −0.48 ± 0.01 a | 3.48 ± 0.19 c | 2.81 ± 0.17 c | 1.145 ± 0.077 b |
Po3 | 93.46 ± 0.24 d | −0.38 ± 0.02 b | 4.30 ± 0.11 b | 4.27 ± 0.22 b | 0.947 ± 0.045 c |
Po4 | 93.50 ± 0.35 d | −0.36 ± 0.05 b | 5.43 ± 0.31 a | 5.20 ± 0.23 a | 0.779 ± 0.06 d |
Bo1 | 96.02 ± 0.07 a | −0.28 ± 0.02 c | 1.34 ± 0.04 g | 0.48 ± 0.02 g | 0.610 ± 0.014 e |
Bo2 | 95.96 ± 0.09 a | −0.24 ± 0.02 c | 1.44 ± 0.02 f | 0.57 ± 0.02 f | 0.265 ± 0.011 f |
Bo3 | 95.99 ± 0.04 a | −0.19 ± 0.01 d | 1.81 ± 0.07 e | 0.91 ± 0.07 e | 0.189 ± 0.009 g |
Bo4 | 95.15 ± 0.06 c | −0.19 ± 0.01 d | 2.31 ± 0.13 d | 1.66 ± 0.13 d | 0.130 ± 0.014 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatia, S.; Al-Harrasi, A.; Jawad, M.; Shah, Y.A.; Al-Azri, M.S.; Ullah, S.; Anwer, M.K.; Aldawsari, M.F.; Koca, E.; Aydemir, L.Y. A Comparative Study of the Properties of Gelatin (Porcine and Bovine)-Based Edible Films Loaded with Spearmint Essential Oil. Biomimetics 2023, 8, 172. https://doi.org/10.3390/biomimetics8020172
Bhatia S, Al-Harrasi A, Jawad M, Shah YA, Al-Azri MS, Ullah S, Anwer MK, Aldawsari MF, Koca E, Aydemir LY. A Comparative Study of the Properties of Gelatin (Porcine and Bovine)-Based Edible Films Loaded with Spearmint Essential Oil. Biomimetics. 2023; 8(2):172. https://doi.org/10.3390/biomimetics8020172
Chicago/Turabian StyleBhatia, Saurabh, Ahmed Al-Harrasi, Muhammad Jawad, Yasir Abbas Shah, Mohammed Said Al-Azri, Sana Ullah, Md Khalid Anwer, Mohammed F. Aldawsari, Esra Koca, and Levent Yurdaer Aydemir. 2023. "A Comparative Study of the Properties of Gelatin (Porcine and Bovine)-Based Edible Films Loaded with Spearmint Essential Oil" Biomimetics 8, no. 2: 172. https://doi.org/10.3390/biomimetics8020172
APA StyleBhatia, S., Al-Harrasi, A., Jawad, M., Shah, Y. A., Al-Azri, M. S., Ullah, S., Anwer, M. K., Aldawsari, M. F., Koca, E., & Aydemir, L. Y. (2023). A Comparative Study of the Properties of Gelatin (Porcine and Bovine)-Based Edible Films Loaded with Spearmint Essential Oil. Biomimetics, 8(2), 172. https://doi.org/10.3390/biomimetics8020172