Osseointegration of Titanium Implants in a Botox-Induced Muscle Paralysis Rat Model Is Sensitive to Surface Topography and Semaphorin 3A Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Implant Manufacturing
2.2. Hydrogel Preparation
2.3. Animals and Surgical Procedures
2.3.1. Therapeutic Effect of Sema3a on the Botox-Induced Compromised Bone Phenotype
2.3.2. Effect of Surface Topography on Response to Sema3A
2.4. Tissue Analysis
2.4.1. Micro-Computed Tomography
2.4.2. Mechanical Testing
2.5. Statistical Analysis
3. Results
3.1. Botox Compromised the Trabecular and Cortical Bone Phenotype at the Distal Metaphysis of the Femurs
3.2. Sema3A Burst Release Had a Therapeutic Effect on the Botox-Compromised Cortical Bone at Its Injection Sites
3.3. Biomimetic Surface Topography Improved Osseointegration, and this was Enhanced by Sema3A Treatment
3.4. Ti Surfaces with a Multiscale Biomimetic Topography Improve Osseointegration for Mechanical Unloading Situations Regardless of Sema3A Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moy, P.K.; Medina, D.; Shetty, V.; Aghaloo, T.L. Dental Implant Failure Rates and Associated Risk Factors. Int. J. Oral. Maxillofac. Implant. 2005, 20, 569–577. [Google Scholar]
- Olivares-Navarrete, R.; Raines, A.L.; Hyzy, S.L.; Park, J.H.; Hutton, D.L.; Cochran, D.L.; Boyan, B.D.; Schwartz, Z. Osteoblast Maturation and New Bone Formation in Response to Titanium Implant Surface Features Are Reduced with Age. J. Bone Miner. Res. 2012, 27, 1773–1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotz, E.M.; Olivares-Navarrete, R.; Berner, S.; Boyan, B.D.; Schwartz, Z. Osteogenic Response of Human MSCs and Osteoblasts to Hydrophilic and Hydrophobic Nanostructured Titanium Implant Surfaces. J. Biomed. Mater. Res. A 2016, 104, 3137–3148. [Google Scholar] [CrossRef] [PubMed]
- Boyan, B.D.; Lotz, E.M.; Schwartz, Z. Roughness and Hydrophilicity as Osteogenic Biomimetic Surface Properties. Tissue Eng. Part A. 2017, 23, 1479–1489. [Google Scholar] [CrossRef]
- Gittens, R.A.; Olivares-Navarrete, R.; Schwartz, Z.; Boyan, B.D. Implant Osseointegration and the Role of Microroughness and Nanostructures: Lessons for Spine Implants. Acta Biomater. 2014, 10, 3363–3371. [Google Scholar] [CrossRef] [Green Version]
- Elias, C.N.; Fernandes, D.J.; Resende, C.R.S.; Roestel, J. Mechanical Properties, Surface Morphology and Stability of a Modified Commercially Pure High Strength Titanium Alloy for Dental Implants. Dent. Mater. 2015, 31, e1–e13. [Google Scholar] [CrossRef]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Cheng, A.; Humayun, A.; Cohen, D.J.; Boyan, B.D.; Schwartz, Z. Additively Manufactured 3D Porous Ti-6Al-4V Constructs Mimic Trabecular Bone Structure and Regulate Osteoblast Proliferation, Differentiation and Local Factor Production in a Porosity and Surface Roughness Dependent Manner. Biofabrication 2014, 6, 45007. [Google Scholar] [CrossRef]
- Civantos, A.; Martínez-Campos, E.; Ramos, V.; Elvira, C.; Gallardo, A.; Abarrategi, A. Titanium Coatings and Surface Modifications: Toward Clinically Useful Bioactive Implants. ACS Biomater. Sci. Eng. 2017, 3, 1245–1261. [Google Scholar] [CrossRef]
- Gittens, R.A.; McLachlan, T.; Olivares-Navarrete, R.; Cai, Y.; Berner, S.; Tannenbaum, R.; Schwartz, Z.; Sandhage, K.H.; Boyan, B.D. The Effects of Combined Micron-/Submicron-Scale Surface Roughness and Nanoscale Features on Cell Proliferation and Differentiation. Biomaterials 2011, 32, 3395–3403. [Google Scholar] [CrossRef] [Green Version]
- Souza, J.C.M.; Sordi, M.B.; Kanazawa, M.; Ravindran, S.; Henriques, B.; Silva, F.S.; Aparicio, C.; Cooper, L.F. Nano-Scale Modification of Titanium Implant Surfaces to Enhance Osseointegration. Acta Biomater. 2019, 94, 112–131. [Google Scholar] [CrossRef]
- Siqueira, R.; Ferreira, J.A.; Rizzante, F.A.P.; Moura, G.F.; Mendonça, D.B.S.; de Magalhães, D.; Cimões, R.; Mendonça, G. Hydrophilic Titanium Surface Modulates Early Stages of Osseointegration in Osteoporosis. J. Periodontal. Res. 2021, 56, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Stadlinger, B.; Korn, P.; Tödtmann, N.; Eckelt, U.; Range, U.; Bürki, A.; Ferguson, S.J.; Kramer, I.; Kautz, A.; Schnabelrauch, M.; et al. Osseointegration of Biochemically Modified Implants in an Osteoporosis Rodent Model. Eur. Cell Mater. 2012, 25, 326–340. [Google Scholar] [CrossRef]
- Zhou, W.; Tangl, S.; Reich, K.M.; Kirchweger, F.; Liu, Z.; Zechner, W.; Ulm, C.; Rausch-Fan, X. The Influence of Type 2 Diabetes Mellitus on the Osseointegration of Titanium Implants with Different Surface Modifications-A Histomorphometric Study in High-Fat Diet/Low-Dose Streptozotocin-Treated Rats. Implant Dent. 2019, 28, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Lotz, E.M.; Cohen, D.J.; Ellis, R.A.; Wayne, J.S.; Schwartz, Z.; Boyan, B.D. Ibandronate Treatment Before and After Implant Insertion Impairs Osseointegration in Aged Rats with Ovariectomy Induced Osteoporosis. JBMR Plus. 2019, 3, e10184. [Google Scholar] [CrossRef] [PubMed]
- Boyan, B.D.; Berger, M.B.; Nelson, F.R.; Donahue, H.J.; Schwartz, Z. The Biological Basis for Surface-Dependent Regulation of Osteogenesis and Implant Osseointegration. J. Am. Acad. Orthop. Surg. 2022, 30, E894–E898. [Google Scholar] [CrossRef]
- Kieswetter, K.; Schwartz, Z.; Hummert, T.W.; Cochran, D.L.; Simpson, J.; Dean, D.D.; Boyan, B.D. Surface Roughness Modulates the Local Production of Growth Factors and Cytokines by Osteoblast-like MG-63 Cells. J. Biomed Mater. Res. A. 1996, 32, 55–63. [Google Scholar] [CrossRef]
- Boyan, B.D.; Lossdörfer, S.; Wang, L.; Zhao, G.; Lohmann, C.H.; Cochran, D.L.; Schwartz, Z. Osteoblasts Generate an Osteogenic Microenvironment When Grown on Surfaces with Rough Microtopographies. Eur. Cell Mater. 2003, 6, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, K.M.; Reddy, G.B.; Hyzy, S.L.; Schwartz, Z.; Boyan, B.D.; Olivares-Navarrete, R. Titanium Surface Characteristics, Including Topography and Wettability, Alter Macrophage Activation. Acta Biomater. 2016, 31, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Cheng, X.; Jansen, J.A.; Yang, F.; van den Beucken, J.J.J.P. Titanium Surfaces Characteristics Modulate Macrophage Polarization. Mater. Sci. Eng. C Mater Biol. Appl. 2019, 95, 143–151. [Google Scholar] [CrossRef]
- Hotchkiss, K.M.; Clark, N.M.; Olivares-Navarrete, R. Macrophage Response to Hydrophilic Biomaterials Regulates MSC Recruitment and T-Helper Cell Populations. Biomaterials 2018, 182, 202–215. [Google Scholar] [CrossRef] [PubMed]
- Raines, A.L.; Berger, M.B.; Patel, N.; Hyzy, S.L.; Boyan, B.D.; Schwartz, Z. VEGF-A Regulates Angiogenesis during Osseointegration of Ti Implants via Paracrine/Autocrine Regulation of Osteoblast Response to Hierarchical Microstructure of the Surface. J. Biomed Mater. Res. A. 2019, 107, 423–433. [Google Scholar] [CrossRef]
- Raines, A.L.; Berger, M.B.; Schwartz, Z.; Boyan, B.D. Osteoblasts Grown on Microroughened Titanium Surfaces Regulate Angiogenic Growth Factor Production through Specific Integrin Receptors. Acta Biomater. 2019, 97, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Lotz, E.M.; Berger, M.B.; Schwartz, Z.; Boyan, B.D. Regulation of Osteoclasts by Osteoblast Lineage Cells Depends on Titanium Implant Surface Properties. Acta Biomater. 2018, 68, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Mellis, D.J.; Itzstein, C.; Helfrich, M.H.; Crockett, J.C. The Skeleton: A Multi-Functional Complex Organ. The Role of Key Signalling Pathways in Osteoclast Differentiation and in Bone Resorption. . J. Endocrinol. 2011, 211, 131–143. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, N. Bone Cell Communication Factors Provide a New Therapeutic Strategy for Osteoporosis. Chonnam Med. J. 2020, 56, 94. [Google Scholar] [CrossRef]
- Olivares-Navarrete, R.; Hyzy, S.L.; Haithcock, D.A.; Cundiff, C.A.; Schwartz, Z.; Boyan, B.D. Coordinated Regulation of Mesenchymal Stem Cell Differentiation on Microstructured Titanium Surfaces by Endogenous Bone Morphogenetic Proteins. Bone 2015, 73, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Lotz, E.M.; Berger, M.B.; Boyan, B.D.; Schwartz, Z. Regulation of Mesenchymal Stem Cell Differentiation on Microstructured Titanium Surfaces by Semaphorin 3A. Bone 2020, 134, 115260. [Google Scholar] [CrossRef]
- Hayashi, M.; Nakashima, T.; Taniguchi, M.; Kodama, T.; Kumanogoh, A.; Takayanagi, H. Osteoprotection by Semaphorin 3A. Nature 2012, 485, 69–74. [Google Scholar] [CrossRef]
- Li, Z.; Hao, J.; Duan, X.; Wu, N.; Zhou, Z.; Yang, F.; Li, J.; Zhao, Z.; Huang, S. The Role of Semaphorin 3A in Bone Remodeling. Front. Cell Neurosci. 2017, 11, 40. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.J.; Koh, J.M. Coupling Factors Involved in Preserving Bone Balance. Cell Mol. Life Sci. 2019, 76, 1243–1253. [Google Scholar] [CrossRef] [PubMed]
- Verlinden, L.; Vanderschueren, D.; Verstuyf, A. Semaphorin Signaling in Bone. Mol. Cell Endocrinol. 2016, 432, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Pinotti, F.E.; Aron, M.A.T.; Oliveira, G.J.P.L.; Marcantonio, J.E.; Marcantonio, R.A.C. Implants with Hydrophilic Surfaces Equalize the Osseointegration of Implants in Normo- and Hyperglycaemic Rats. Braz. Dent J. 2022, 33, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Mardas, N.; Schwarz, F.; Petrie, A.; Hakimi, A.R.; Donos, N. The Effect of SLActive Surface in Guided Bone Formation in Osteoporotic-like Conditions. Clin. Oral Implant. Res. 2011, 22, 406–415. [Google Scholar] [CrossRef]
- Li, Y.; He, S.; Hua, Y.; Hu, J. Effect of Osteoporosis on Fixation of Osseointegrated Implants in Rats. J. Biomed Mater. Res. B Appl. Biomater. 2017, 105, 2426–2432. [Google Scholar] [CrossRef]
- Du, Z.; Xiao, Y.; Hashimi, S.; Hamlet, S.M.; Ivanovski, S. The Effects of Implant Topography on Osseointegration under Estrogen Deficiency Induced Osteoporotic Conditions: Histomorphometric, Transcriptional and Ultrastructural Analysis. Acta Biomater. 2016, 42, 351–363. [Google Scholar] [CrossRef] [Green Version]
- Rolvien, T.; Amling, M. Disuse Osteoporosis: Clinical and Mechanistic Insights. Calcif. Tissue Int. 2022, 110, 592–604. [Google Scholar] [CrossRef]
- Scott, J.M.; Warburton, D.E.R.; Williams, D.; Whelan, S.; Krassioukov, A. Challenges, Concerns and Common Problems: Physiological Consequences of Spinal Cord Injury and Microgravity. Spinal Cord. 2011, 49, 4–16. [Google Scholar] [CrossRef] [Green Version]
- Marusic, U.; Narici, M.; Simunic, B.; Pisot, R.; Ritzmann, R. Nonuniform Loss of Muscle Strength and Atrophy during Bed Rest: A Systematic Review. J. Appl. Physiol. (1985) 2021, 131, 194–206. [Google Scholar] [CrossRef]
- Deng, J.; Cohen, D.J.; Redden, J.; McClure, M.J.; Boyan, B.D.; Schwartz, Z. Differential Effects of Neurectomy and Botox-Induced Muscle Paralysis on Bone Phenotype and Titanium Implant Osseointegration. Bone 2021, 153, 116145. [Google Scholar] [CrossRef]
- Deng, J.; Cohen, D.J.; Sabalewski, E.L.; Van Duyn, C.; Wilson, D.S.; Schwartz, Z.; Boyan, B.D. Semaphorin 3A Delivered by a Rapidly Polymerizing Click Hydrogel Overcomes Impaired Implant Osseointegration in a Rat Type 2 Diabetes Model. Acta Biomaterialia. 2022, 157, 236–251. [Google Scholar] [CrossRef] [PubMed]
- Lotz, E.M.; Cohen, D.J.; Schwartz, Z.; Boyan, B.D. Titanium Implant Surface Properties Enhance Osseointegration in Ovariectomy Induced Osteoporotic Rats without Pharmacologic Intervention. Clin. Oral. Implant. Res. 2020, 31, 374–387. [Google Scholar] [CrossRef] [PubMed]
- Hermann, C.D.; Wilson, D.S.; Lawrence, K.A.; Ning, X.; Olivares-Navarrete, R.; Williams, J.K.; Guldberg, R.E.; Murthy, N.; Schwartz, Z.; Boyan, B.D. Rapidly Polymerizing Injectable Click Hydrogel Therapy to Delay Bone Growth in a Murine Re-Synostosis Model. Biomaterials 2014, 35, 9698–9708. [Google Scholar] [CrossRef] [Green Version]
- Hyzy, S.L.; Kajan, I.; Wilson, D.S.; Lawrence, K.A.; Mason, D.; Williams, J.K.; Olivares-Navarrete, R.; Cohen, D.J.; Schwartz, Z.; Boyan, B.D. Inhibition of Angiogenesis Impairs Bone Healing in an in Vivo Murine Rapid Resynostosis Model. J. Biomed Mater. Res. A. 2017, 105, 2742–2749. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, M.L.; Mazzanti, A.; Galbiati, E.; Saraifoger, S.; Dubini, A.; Cornelio, F.; Morandi, L. Bone Mineral Density and Bone Metabolism in Duchenne Muscular Dystrophy. Osteoporos Int. 2003, 14, 761–767. [Google Scholar] [CrossRef]
- Lingam, S.; Joester, J. Lesson of the Week: Spontaneous Fractures in Children and Adolescents with Cerebral Palsy. BMJ. 1994, 309, 265. [Google Scholar] [CrossRef]
- Lau, R.Y.; Guo, X. A Review on Current Osteoporosis Research: With Special Focus on Disuse Bone Loss. J. Osteoporos. 2011, 2011, 293808. [Google Scholar] [CrossRef]
- Kiratli, B.J.; Smith, A.E.; Nauenberg, T.; Kallfelz, C.F.; Perkash, I. Bone Mineral and Geometric Changes through the Femur with Immobilization Due to Spinal Cord Injury. J. Rehabil. Res. Dev. 2000, 37, 225–233. [Google Scholar]
- Vegger, J.B.; Brüel, A.; Brent, M.B.; Thomsen, J.S. Disuse Osteopenia Induced by Botulinum Toxin Is Similar in Skeletally Mature Young and Aged Female C57BL/6J Mice. J. Bone Miner. Metab. 2018, 36, 170–179. [Google Scholar] [CrossRef]
- Ellman, R.; Grasso, D.J.; van Vliet, M.; Brooks, D.J.; Spatz, J.M.; Conlon, C.; Bouxsein, M.L. Combined Effects of Botulinum Toxin Injection and Hind Limb Unloading on Bone and Muscle. Calcif. Tissue Int. 2014, 94, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, H.; Morita, S.; Kumei, Y.; Aoki, K.; Shimokawa, H.; Ohya, K.; Shinomiya, K.I. Effects of neurectomy and tenotomy on the bone mineral density and strength of tibiae. Acta Astronaut. 2001, 49, 179–190. [Google Scholar] [CrossRef]
- Koseki, H.; Osaki, M.; Honda, Y.; Sunagawa, S.; Imai, C.; Shida, T.; Matsumura, U.; Sakamoto, J.; Tomonaga, I.; Yokoo, S.; et al. Progression of microstructural deterioration in load-bearing immobilization osteopenia. PLoS ONE 2022, 17, e0275439. [Google Scholar] [CrossRef] [PubMed]
- Warner, S.E.; Sanford, D.A.; Becker, B.A.; Bain, S.D.; Srinivasan, S.; Gross, T.S. Botox Induced Muscle Paralysis Rapidly Degrades Bone. Bone 2006, 38, 257–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warden, S.J.; Galley, M.R.; Richard, J.S.; George, L.A.; Dirks, R.C.; Guildenbecher, E.A.; Judd, A.M.; Robling, A.G.; Fuchs, R.K. Reduced Gravitational Loading Does Not Account for the Skeletal Effect of Botulinum Toxin-Induced Muscle Inhibition Suggesting a Direct Effect of Muscle on Bone. Bone 2013, 54, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Poliachik, S.L.; Bain, S.D.; Threet, D.W.; Huber, P.; Gross, T.S. Transient Muscle Paralysis Disrupts Bone Homeostasis by Rapid Degradation of Bone Morphology. Bone 2010, 46, 18–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albrektsson, T.; Wennerberg, A. On Osseointegration in Relation to Implant Surfaces. Clin. Implant. Dent. Relat. Res. 2019, 21, 4–7. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zhang, T.; Geng, T.; Wang, X.; Lin, K.; Wang, P. Dental Implants Loaded with Bioactive Agents Promote Osseointegration in Osteoporosis: A Review. Front. Bioeng. Biotechnol. 2021, 9, 591796. [Google Scholar] [CrossRef]
- Qiao, S.; Sheng, Q.; Li, Z.; Wu, D.; Zhu, Y.; Lai, H.; Gu, Y. 3D-Printed Ti6Al4V Scaffolds Coated with Freeze-Dried Platelet-Rich Plasma as Bioactive Interface for Enhancing Osseointegration in Osteoporosis. Mater. Des. 2020, 194, 108825. [Google Scholar] [CrossRef]
- Saito, N.; Mikami, R.; Mizutani, K.; Takeda, K.; Kominato, H.; Kido, D.; Ikeda, Y.; Buranasin, P.; Nakagawa, K.; Takemura, S.; et al. Impaired Dental Implant Osseointegration in Rat with Streptozotocin-Induced Diabetes. J. Periodontal. Res. 2022, 57, 412–424. [Google Scholar] [CrossRef]
- Wang, L.; Gao, Z.; Liu, C.; Li, J. Potential Biomarkers of Abnormal Osseointegration of Implants in Type II Diabetes Mellitus. BMC Oral. Health 2021, 21, 583. [Google Scholar] [CrossRef]
- Song, A.; Jiang, F.; Wang, Y.; Wang, M.; Wu, Y.; Zheng, Y.; Song, X.; Zhang, W.; Zhou, J. Semaphorin3A Promotes Osseointegration of Titanium Implants in Osteoporotic Rabbits. Clin. Oral. Investig. 2022, 26, 969–979. [Google Scholar] [CrossRef] [PubMed]
- García-Castellano, J.M.; Díaz-Herrera, P.; Morcuende, J.A. Is Bone a Target-Tissue for the Nervous System? New Advances on the Understanding of Their Interactions. Iowa Orthop. J. 2000, 20, 49–58. [Google Scholar] [PubMed]
- Wang, Z.; Wei, S. Local Treatment with Sema3a Could Promote the Osseointegration of Hydroxyapatite Coated Titanium Rod in Diabetic Rats. J. Biomater. Appl. 2022, 36, 1775–1785. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhou, P.; Liu, S.; Attarilar, S.; Ma, R.L.W.; Zhong, Y.; Wang, L. Multi-Scale Surface Treatments of Titanium Implants for Rapid Osseointegration: A Review. Nanomaterials 2020, 10, 1244. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, Z.; Olivares-Navarrete, R.; Wieland, M.; Cochran, D.L.; Boyan, B.D. Mechanisms Regulating Increased Production of Osteoprotegerin by Osteoblasts Cultured on Microstructured Titanium Surfaces. Biomaterials 2009, 30, 3390–3396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Cohen, D.J.; Berger, M.B.; Sabalewski, E.L.; McClure, M.J.; Boyan, B.D.; Schwartz, Z. Osseointegration of Titanium Implants in a Botox-Induced Muscle Paralysis Rat Model Is Sensitive to Surface Topography and Semaphorin 3A Treatment. Biomimetics 2023, 8, 93. https://doi.org/10.3390/biomimetics8010093
Deng J, Cohen DJ, Berger MB, Sabalewski EL, McClure MJ, Boyan BD, Schwartz Z. Osseointegration of Titanium Implants in a Botox-Induced Muscle Paralysis Rat Model Is Sensitive to Surface Topography and Semaphorin 3A Treatment. Biomimetics. 2023; 8(1):93. https://doi.org/10.3390/biomimetics8010093
Chicago/Turabian StyleDeng, Jingyao, D. Joshua Cohen, Michael B. Berger, Eleanor L. Sabalewski, Michael J. McClure, Barbara D. Boyan, and Zvi Schwartz. 2023. "Osseointegration of Titanium Implants in a Botox-Induced Muscle Paralysis Rat Model Is Sensitive to Surface Topography and Semaphorin 3A Treatment" Biomimetics 8, no. 1: 93. https://doi.org/10.3390/biomimetics8010093
APA StyleDeng, J., Cohen, D. J., Berger, M. B., Sabalewski, E. L., McClure, M. J., Boyan, B. D., & Schwartz, Z. (2023). Osseointegration of Titanium Implants in a Botox-Induced Muscle Paralysis Rat Model Is Sensitive to Surface Topography and Semaphorin 3A Treatment. Biomimetics, 8(1), 93. https://doi.org/10.3390/biomimetics8010093