Fast UV-Curable Zwitter-Wettable Coatings with Reliable Antifogging/Frost-Resisting Performances
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of BP-Acrylate-Based Copolymers
2.3. Preparation of Zwitter-Wettable Polymeric Coatings
2.4. Antifogging and Frost-Resisting Evaluations
2.5. Time-Dependent Surface Wetting Behavior
2.6. Coating Stability
3. Results and Discussion
3.1. Preparation and Properties of the Zwitter-Wettable Coatings
3.2. Antifogging Performances
3.3. Frost-Resisting Performances
3.4. Surface Wetting Behaviors
3.5. Surface Stability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; He, J. Progress in Antifogging Technology-from Surface Engineering to Functional Surfaces. Prog. Chem. 2010, 22, 270–276. [Google Scholar]
- Feng, C.; Zhang, Z.; Li, J.; Qu, Y.; Xing, D.; Gao, X.; Zhang, Z.; Wen, Y.; Ma, Y.; Ye, J. A Bioinspired, Highly Transparent Surface with Dry-Style Antifogging, Antifrosting, Antifouling, and Moisture Self-Cleaning Properties. Macromol. Rapid Commun. 2019, 40, 1800708. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Chu, Z.; Fan, X.; Jia, Z.; Teng, M. Study on Surface Wetting Property Regulation of Greenhouse Film and its Antifogging Performance. J. Coat. Technol. Res. 2022, 19, 1199–1209. [Google Scholar] [CrossRef]
- Liu, S.; Han, Y.; Qie, J.; Chen, S.; Liu, D.; Duo, L.; Chen, H.; Lin, Q. Environment Friendly Superhydrophobic and Transparent Surface Coating via Layer-by-layer Self-assembly for Antifogging of Optical Lenses. J. Biomater. Sci. Polym. Ed. 2022, 33, 847–857. [Google Scholar] [CrossRef]
- Patel, P.; Choi, C.K.; Meng, D.D. Superhydrophilic Surfaces for Antifogging and Antifouling Microfluidic Devices. J. Assoc. Lab. Autom. 2010, 15, 114–119. [Google Scholar] [CrossRef]
- Asthana, Y.; Kim, D.P. A Novel Formulation for the Modification of Transition Metal Oxide Surfaces for Antifogging Optical Application. Mater. Sci. Forum 2006, 510–511, 42–45. [Google Scholar] [CrossRef]
- Li, Y.; Bai, Q.; Yao, C.; Zhang, P.; Shen, R.; Liu, H.; Lu, L.; Jiang, Y.; Yuan, X.; Miao, X. Long-lasting Antifogging Mechanism for Large-aperture Optical Surface in Low-Pressure Air Plasma in-situ Treated. Appl. Surf. Sci. 2022, 581, 152358. [Google Scholar] [CrossRef]
- Wen, M.; Wang, L.; Zhang, M.; Jiang, L.; Zheng, Y. Antifogging and Icing-Delay Properties of Composite Micro- and Nanostructured Surfaces. ACS Appl. Mater. Interfaces 2014, 6, 3963–3968. [Google Scholar] [CrossRef]
- Ohdaira, T.; Nagai, H.; Kayano, S.; Kazuhito, H. Antifogging Effects of a Socket-type Device with the Superhydrophilic, Titanium dioxide–Coated Glass for the Laparoscope. Surg. Endosc. 2007, 21, 333–338. [Google Scholar] [CrossRef]
- Luo, S.; Peng, X.-X.; Zhang, Y.-F.; Fu, P.; Du, F.-P. Oil-repellent and Antifog Coatings Based on Poly(vinyl alcohol)/Hydrolyzed Poly (styrene-co-maleic anhydride)/Fluorocarbon Surfactant. Prog. Org. Coat. 2020, 141, 105560. [Google Scholar] [CrossRef]
- Zhao, J.; Song, L.; Ming, W. Antifogging and Frost-Resisting Polymeric Surfaces. Contam. Mitigating Polym. Coat. Extrem. Environ. 2019, 284, 185–214. [Google Scholar]
- Chang, T.-A.; Hsu, W.-J.; Hung, T.-H.; Hu, S.-W.; Tsao, H.-K.; Zou, C.-L.; Lin, L.-C.; Kang, Y.-H.; Chen, J.-J.; Kang, D.-Y. Toward Long-Lasting Low-Haze Antifog Coatings through the Deposition of Zeolites. Ind. Eng. Chem. Res. 2020, 59, 13042–13050. [Google Scholar] [CrossRef]
- Leonard, R.L.; Terekhov, A.Y.; Thompson, C.; Erck, R.A.; Johnson, J.A. Antifog Coating for Bronchoscope Lens. Surf. Eng. 2012, 28, 468–472. [Google Scholar] [CrossRef]
- Raut, H.K.; Dinachali, S.S.; Loke, Y.C.; Ganesan, R.; Ansah-Antwi, K.K.; Gora, A.; Khoo, E.H.; Ganesh, V.A.; Saifullah, M.S.M.; Ramakrishna, S. Multiscale Ommatidial Arrays with Broadband and Omnidirectional Antireflection and Antifogging Properties by Sacrificial Layer Mediated Nanoimprinting. ACS Nano 2015, 9, 1305–1314. [Google Scholar] [CrossRef] [PubMed]
- Nakata, K.; Sakai, M.; Ochiai, T.; Murakami, T.; Takagi, K.; Fujishima, A. Antireflection and Self-Cleaning Properties of a Moth-Eye-Like Surface Coated with TiO2 Particles. Langmuir 2011, 27, 3275–3278. [Google Scholar] [CrossRef]
- Zhang, X.-T.; Sato, O.; Taguchi, M.; Einaga, Y.; Murakami, T.; Fujishima, A. Self-cleaning Particle Coating with Antireflection Properties. Chem. Mater. 2005, 17, 696–700. [Google Scholar] [CrossRef]
- Hamada, T.; Sugimoto, T.; Maeda, T.; Katsura, D.; Mineoi, S.; Ohshita, J. Robust and Transparent Antifogging Polysilsesquioxane Film Containing a Hydroxy Group. Langmuir 2022, 38, 5829–5837. [Google Scholar] [CrossRef]
- Yang, L.; Huo, R.; Zhang, B. Dual Functional Coatings with Antifogging and Antimicrobial Performances for Endoscope Lens, via Facile Adsorption-cross-linking Strategy. Colloids Surf. B Biointerfaces 2021, 206, 111933. [Google Scholar] [CrossRef]
- England, M.W.; Urata, C.; Dunderdale, G.J.; Hozumi, A. Anti-Fogging/Self-Healing Properties of Clay-Containing Transparent Nanocomposite Thin Films. ACS Appl. Mater. Interfaces 2016, 8, 4318–4322. [Google Scholar] [CrossRef]
- Fromel, M.; Sweeder, D.M.; Jang, S.; Williams, T.A.; Kim, S.H.; Pester, C.W. Superhydrophilic Polymer Brushes with High Durability and Anti-fogging Activity. ACS Appl. Polym. Mater. 2021, 3, 5291–5301. [Google Scholar] [CrossRef]
- Choi, M.; Xiangde, L.; Park, J.; Choi, D.; Heo, J.; Chang, M.; Lee, C.; Hong, J. Superhydrophilic Coatings with Intricate Nanostructure Based on Biotic Materials for Antifogging and Antibiofouling Applications. Chem. Eng. J. 2017, 309, 463–470. [Google Scholar] [CrossRef]
- Mundo, R.D.; d’Agostino, R.; Palumbo, F. Long-Lasting Antifog Plasma Modification of Transparent Plastics. ACS Appl. Mater. Interfaces 2014, 6, 17059–17066. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, Y.; Sun, J.; Shen, J. Mechanically Stable Antireflection and Antifogging Coatings Fabricated by the Layer-by-Layer Deposition Process and Postcalcination. Langmuir 2008, 24, 10851–10857. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Du, X.; He, J. Hierarchically Structured Porous Films of Silica Hollow Spheres via Layer-by-Layer Assembly and Their Superhydrophilic and Antifogging Properties. Chemphyschem 2008, 9, 305–309. [Google Scholar] [CrossRef]
- Park, S.; Moon, H. Antifogging, Antireflective, and Highly Transparent Coatings Fabricated with SiO2 and TiO2 Nanoparticles. Sci. Adv. Mater. 2017, 9, 1560–1565. [Google Scholar] [CrossRef]
- Zeman, P.; Takabayashi, S. Self-cleaning and Antifogging Effects of TiO2 Films Prepared by Radio Frequency Magnetron Sputtering. J. Vac. Sci. Technol. A Vac. Surf. Film. 2002, 20, 388–393. [Google Scholar] [CrossRef]
- Gao, X.; Yan, X.; Yao, X.; Xu, L.; Zhang, K.; Zhang, J.; Yang, B.; Jiang, L. The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography. Adv. Mater. 2007, 19, 2213–2217. [Google Scholar] [CrossRef]
- Yoon, J.; Ryu, M.; Kim, H.; Ahn, G.N.; Yim, S.J.; Kim, D.P.; Lee, H. Wet-Style Superhydrophobic Antifogging Coatings for Optical Sensors. Adv. Mater. 2020, 32, 2002710. [Google Scholar] [CrossRef]
- Wang, N.; Wang, Q.; Xu, S. A Review on Applications of Superhydrophobic Materials in Civil Engineering. Adv. Eng. Mater. 2022, 24, 2101238. [Google Scholar] [CrossRef]
- Zhao, J.; Meyer, A.; Ma, L.; Wang, X.; Ming, W. Terpolymer-based SIPN Coating with Excellent Antifogging and Frost-resisting Properties. RSC Adv. 2015, 5, 102560–102566. [Google Scholar] [CrossRef]
- Zhao, J.; Meyer, A.; Ma, L.; Ming, W. Acrylic Coatings with Surprising Antifogging and Frost-Resisting Properties. Chem. Commun. 2013, 49, 11764–11766. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Alcaraz, M.L.; Rubner, M.F.; Cohen, R.E. Zwitter-Wettability and Antifogging Coatings with Frost-Resisting Capabilities. ACS Nano 2013, 7, 2172–2185. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Li, X.; Zhang, R.; Li, C.; Zhu, K.; Sun, P.; Zhao, Y.; Ren, L.; Yuan, X. Enhancing Antifogging/Frost-resisting Performances of Amphiphilic Coatings via Cationic, Zwitterionic or Anionic Polyelectrolytes. Chem. Eng. J. 2019, 357, 667–677. [Google Scholar] [CrossRef]
- Tao, C.; Bai, S.; Li, X.; Li, C.; Ren, L.; Zhao, Y.; Yuan, X. Formation of Zwitterionic Coatings with an Aqueous Lubricating Layer for Antifogging/Anti-icing Applications. Prog. Org. Coat. 2018, 115, 56–64. [Google Scholar] [CrossRef]
- Wang, W.; Lu, P.; Fan, Y.; Tian, L.; Niu, S.; Zhao, J.; Ren, L. A Facile Antifogging/frost-resistant Coating with Self-healing Ability. Chem. Eng. J. 2019, 378, 122173. [Google Scholar] [CrossRef]
- Howarter, J.A.; Youngblood, J.P. Self-Cleaning and Next Generation Anti-Fog Surfaces and Coatings. Macromol. Rapid Commun. 2008, 29, 455–466. [Google Scholar] [CrossRef]
- Lee, H.; Gilbert, J.B.; Angilè, F.E.; Yang, R.; Lee, D.; Rubner, M.F.; Cohen, R.E. Design and Fabrication of Zwitter-Wettable Nanostructured Films. ACS Appl. Mater. Interfaces 2015, 7, 1004–1011. [Google Scholar] [CrossRef]
- Tang, R.; Muhammad, A.; Yang, J.; Nie, J. Preparation of Antifog and Antibacterial Coatings by Photopolymerization. Polym. Adv. Technol. 2014, 25, 651–656. [Google Scholar] [CrossRef]
- Park, C.; Kim, T.; Kim, Y.-I.; Lee, M.W.; An, S.; Yoon, S.S. Supersonically Sprayed Transparent Flexible Multifunctional Composites for Self-cleaning, Anti-icing, Anti-fogging, and Anti-bacterial Applications. Compos. Part B: Eng. 2021, 222, 109070. [Google Scholar] [CrossRef]
- Hatakeyama, T.; Naoi, S.; Iijima, M.; Hatakeyama, H. Locust bean gum hydrogels formed by freezing and thawing. Macromol. Symp. 2005, 224, 253–262. [Google Scholar] [CrossRef]
- Hsiao, T.C. Plant Responses to Water Stress. Annu. Rev. Plant Physiol. 1973, 24, 519–570. [Google Scholar] [CrossRef]
- Benlloch, M.; Arboleda, F.; Barranco, D.; Fernández-Escobar, R. Response of Young Olive Trees to Sodium and Boron Excess in Irrigation Water. HortScience 1991, 26, 867–870. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Wang, L.; Liu, L.; Yang, W. Developments and New Applications of UV-induced Surface Graft Polymerizations. Prog. Polym. Sci. 2009, 34, 156–193. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, H.; Liu, X.; Yu, B.; Zhou, S. Fast UV-Curable Zwitter-Wettable Coatings with Reliable Antifogging/Frost-Resisting Performances. Biomimetics 2022, 7, 162. https://doi.org/10.3390/biomimetics7040162
Zhong H, Liu X, Yu B, Zhou S. Fast UV-Curable Zwitter-Wettable Coatings with Reliable Antifogging/Frost-Resisting Performances. Biomimetics. 2022; 7(4):162. https://doi.org/10.3390/biomimetics7040162
Chicago/Turabian StyleZhong, Hao, Xiaoxiao Liu, Boxin Yu, and Shengzhu Zhou. 2022. "Fast UV-Curable Zwitter-Wettable Coatings with Reliable Antifogging/Frost-Resisting Performances" Biomimetics 7, no. 4: 162. https://doi.org/10.3390/biomimetics7040162
APA StyleZhong, H., Liu, X., Yu, B., & Zhou, S. (2022). Fast UV-Curable Zwitter-Wettable Coatings with Reliable Antifogging/Frost-Resisting Performances. Biomimetics, 7(4), 162. https://doi.org/10.3390/biomimetics7040162