Effect of Composition Strategies on Mycelium-Based Composites Flexural Behaviour
Abstract
:1. Introduction
2. Materials and Methods
- Control: no fibre,
- Inner hessian: a flat layer of hessian was introduced at mid-thickness,
- Hessian jacketing: a hessian jacketing was introduced in the length,
- Rattan: five parallel rattan fibres of 5 mm diameter by 500 mm, separated by 8 mm, were introduced in the length and at mid-thickness.
2.1. Materials
2.2. Cultivation Protocol
3. Results and Discussion
Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rigobello, A.; Ayres, P. Design Strategies for Mycelium-Based Composites. In Fungi and Fungal Products in Human Welfare and Biotechnology; Satyanarayana, T., Deshmukh, S.K., Eds.; Springer Nature: Berlin, Germany, 2022; in press. [Google Scholar]
- Sisti, L.; Gioia, C.; Totaro, G.; Verstichel, S.; Cartabia, M.; Camere, S.; Celli, A. Valorization of wheat bran agro-industrial byproduct as an upgrading filler for mycelium-based composite materials. Ind. Crops Prod. 2021, 170, 113742. [Google Scholar] [CrossRef]
- Appels, F.V.W.; Camere, S.; Montalti, M.; Karana, E.; Jansen, K.M.B.; Dijksterhuis, J.; Krijgsheld, P.; Wösten, H.A.B. Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites. Mater. Des. 2019, 161, 64–71. [Google Scholar] [CrossRef]
- Cesar, E.; Montoya, L.; Barcenas-Pazos, G.M.; Ordonez-Candelaria, V.R.; Bandala, V.M. Performance of mycelium composites of Lentinus crinitus under two compression protocols. Madera y Bosques 2021, 27, e2722047. [Google Scholar] [CrossRef]
- Jiang, L.; Walczyk, D.; McIntyre, G.; Bucinell, R.; Tudryn, G. Manufacturing of biocomposite sandwich structures using mycelium-bound cores and preforms. J. Manuf. Process. 2017, 28, 50–59. [Google Scholar] [CrossRef]
- Sàez, D.; Grizmann, D.; Trautz, M.; Werner, A. Developing sandwich panels with a mid-layer of fungal mycelium composite for a timber panel construction system. In Proceedings of the 2021 World Conference on Timber Engineering, Santiago, Chile, 9–12 August 2021. [Google Scholar]
- Ziegler, A.R.; Bajwa, S.G.; Holt, G.A.; McIntyre, G.; Bajwa, D.S. Evaluation of Physico-Mechanical Properties of Mycelium Reinforced Green Biocomposites Made from Cellulosic Fibers. Appl. Eng. Agric. 2016, 32, 931–938. [Google Scholar]
- Haneef, M.; Ceseracciu, L.; Canale, C.; Bayer, I.S.; Heredia-Guerrero, J.A.; Athanassiou, A. Advanced Materials From Fungal Mycelium: Fabrication and Tuning of Physical Properties. Sci. Rep. 2017, 7, 41292. [Google Scholar] [CrossRef] [PubMed]
- Green, D.W.; Winandy, J.E.; Kretschmann, D.E. Mechanical properties of wood. In Wood Handbook: Wood as an Engineering Material; General technical report FPL; USDA Forest Service, Forest Products Laboratory: Madison, WI, USA, 1999; Volume GTR-113, pp. 4.1–4.45. [Google Scholar]
- Rigobello, A.; Ayres, P. Mycelium-Based Composites as Two-Phase Particulate Composites: Compressive Behaviour of Anisotropic Designs. Sci. Rep. 2021, in press. [Google Scholar] [CrossRef]
- Elsacker, E.; Vandelook, S.; Damsin, B.; Van Wylick, A.; Peeters, E.; De Laet, L. Mechanical characteristics of bacterial cellulose-reinforced mycelium composite materials. Fungal Biol. Biotechnol. 2021, 8, 18. [Google Scholar] [CrossRef] [PubMed]
- Travaglini, S.; Dharan, C.K.H.; Ross, P.G. Mycology Matrix Sandwich Composites Flexural Characterization. In Proceedings of the American Society for Composites 29th Technical Conference, La Jolla, CA, USA, 8–10 September 2014; DEStech Publications, Inc.: Lancaster, PA, USA, 2014; pp. 1941–1955. [Google Scholar]
- ASTM D1037-12; Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials. ASTM International: West Conshohocken, PA, USA, 2020.
- Holt, G.A.; Mcintyre, G.; Flagg, D.; Bayer, E.; Wanjura, J.D.; Pelletier, M.G. Fungal Mycelium and Cotton Plant Materials in the Manufacture of Biodegradable Molded Packaging Material: Evaluation Study of Select Blends of Cotton Byproducts. J. Biobased Mater. Bioenergy 2012, 6, 431–439. [Google Scholar] [CrossRef]
- Lokko, M.L.; Rowell, M.; Dyson, A.; Rempel, A. Development of Affordable Building Materials Using Agricultural Waste By-Products and Emerging Pith, Soy and Mycelium Biobinders. In Proceedings of the PLEA 2016: The 32nd International Conference on Passive and Low-Energy Architecture, Los Angeles, CA, USA, 11–13 July 2016. [Google Scholar]
- Sun, X.; Tang, M. Comparison of four routinely used methods for assessing root colonization by arbuscular mycorrhizal fungi. Botany 2012, 90, 1073–1083. [Google Scholar] [CrossRef]
- Chan, X.Y.; Saeidi, N.; Javadian, A.; Hebel, D.E.; Gupta, M. Mechanical properties of dense mycelium-bound composites under accelerated tropical weathering conditions. Sci. Rep. 2021, 11, 22112. [Google Scholar] [CrossRef] [PubMed]
- Elsacker, E.; Søndergaard, A.; Van Wylick, A.; Peeters, E.; De Laet, L. Growing living and multifunctional mycelium composites for large-scale formwork applications using robotic abrasive wire-cutting. Constr. Build. Mater. 2021, 283, 122732. [Google Scholar] [CrossRef]
- López Nava, J.A.; Méndez González, J.; Ruelas Chacón, X.; Nájera Luna, J.A. Assessment of Edible Fungi and Films Bio-Based Material Simulating Expanded Polystyrene. Mater. Manuf. Process. 2016, 31, 1085–1090. [Google Scholar] [CrossRef]
- Sun, W.; Tajvidi, M.; Hunt, C.G.; McIntyre, G.; Gardner, D.J. Fully Bio-Based Hybrid Composites Made of Wood, Fungal Mycelium and Cellulose Nanofibrils. Sci. Rep. 2019, 9, 3766. [Google Scholar] [CrossRef] [PubMed]
- Sivaprasad, S.; Byju, S.K.; Prajith, C.; Shaju, J.; C R, R. Development of a novel mycelium bio-composite material to substitute for polystyrene in packaging applications. Mater. Today Proc. 2021, 47, 5038–5044. [Google Scholar] [CrossRef]
- Ongpeng, J.; Inciong, E.; Siggaoat, A.; Soliman, C.A.; Sendo, V.B. Using Waste in Producing Bio-Composite Mycelium Bricks. Appl. Sci. 2020, 10, 5303. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis; Pearson Education Limited: London, UK, 2013. [Google Scholar]
- Zhao, H.; Zhao, S.; Fei, B.; Liu, H.; Yang, H.; Dai, H.; Wang, D.; Jin, W.; Tang, F.; Gao, Q.; et al. Announcing the Genome Atlas of Bamboo and Rattan (GABR) project: Promoting research in evolution and in economically and ecologically beneficial plants. GigaScience 2017, 6, gix046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Standard | Designation | Refs. |
---|---|---|
ASTM C203 | Standard Test Methods for Breaking Load and Flexural Properties of Block-Type Thermal Insulation. | [14] |
ASTM C393 | Standard Test Method for Core Shear Properties of Sandwich Constructions by Beam Flexure | [5] |
ASTM D7250 | Standard Practice for Determining Sandwich Beam Flexural and Shear Stiffness | [5] |
ASTM D1037 | Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials. | [15,16,17] |
ISO 16978 | Wood-based panels—Determination of modulus of elasticity in bending and of bending strength. | [18] |
ISO 12344 | Thermal insulating products for building applications—Determination of bending behavior. | [18] |
Type | Fibre Composition | Mean Density (s.d.) [kg/m3] | Mean Flexural Modulus (s.d.) [MPa] | Mean Modulus of Rupture (s.d.) [MPa] |
---|---|---|---|---|
BM | Control | 232.24 (18.24) | 192.71 (52.40) | 0.12 (0.03) |
BM_I | Inner hessian | 227.22 (8.46) | 197.33 (45.56) | 0.11 (0.02) |
BM_H | Hessian jacketing | 236.75 (12.00) | 375.14 (98.81) | 0.18 (0.03) |
BM_R | Rattan | 249.48 (9.78) | 1.34 × 10 (570.68) | 0.61 (0.12) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rigobello, A.; Colmo, C.; Ayres, P. Effect of Composition Strategies on Mycelium-Based Composites Flexural Behaviour. Biomimetics 2022, 7, 53. https://doi.org/10.3390/biomimetics7020053
Rigobello A, Colmo C, Ayres P. Effect of Composition Strategies on Mycelium-Based Composites Flexural Behaviour. Biomimetics. 2022; 7(2):53. https://doi.org/10.3390/biomimetics7020053
Chicago/Turabian StyleRigobello, Adrien, Claudia Colmo, and Phil Ayres. 2022. "Effect of Composition Strategies on Mycelium-Based Composites Flexural Behaviour" Biomimetics 7, no. 2: 53. https://doi.org/10.3390/biomimetics7020053
APA StyleRigobello, A., Colmo, C., & Ayres, P. (2022). Effect of Composition Strategies on Mycelium-Based Composites Flexural Behaviour. Biomimetics, 7(2), 53. https://doi.org/10.3390/biomimetics7020053