Innovation in Gastroenterology—Can We Do Better?
Abstract
:1. Introduction
2. Methods
2.1. Dataset
2.2. Inclusion Criteria
2.3. Data Processing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Baregheh, A.; Rowley, J.; Sambrook, S. Towards a multidisciplinary definition of innovation. In Management Decision; Emerald Group Publishing Limited: Bingley, UK, 2009. [Google Scholar]
- Edison, H.; Bin Ali, N.; Torkar, R. Towards innovation measurement in the software industry. J. Syst. Softw. 2013, 86, 1390–1407. [Google Scholar] [CrossRef] [Green Version]
- Thuraisingham, B. Data Mining: Technologies, Techniques, Tools, and Trends; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Song, M.; Kim, S.Y. Detecting the knowledge structure of bioinformatics by mining full-text collections. Scientometrics 2013, 96, 183–201. [Google Scholar] [CrossRef]
- Schirmer, M.; Garner, A.; Vlamakis, H.; Xavier, R.J. Microbial genes and pathways in inflammatory bowel disease. Nat. Rev. Microbiol. 2019, 17, 497–511. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Chang, E.B. Inflammatory bowel diseases (IBD) and the microbiome—Searching the crime scene for clues. Gastroenterology 2021, 160, 524–537. [Google Scholar] [CrossRef] [PubMed]
- Smet, A.; Kupcinskas, J.; Link, A.; Hold, G.L.; Bornschein, J. The role of microbiota in gastrointestinal cancer and cancer treatment–chance or curse? Cell. Mol. Gastroenterol. Hepatol. 2022, 13, 857–874. [Google Scholar] [CrossRef]
- Baruch, E.N.; Youngster, I.; Ben-Betzalel, G.; Ortenberg, R.; Lahat, A.; Katz, L.; Adler, K.; Dick-Necula, D.; Raskin, S.; Bloch, N. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 2021, 371, 602–609. [Google Scholar] [CrossRef]
- Zeidan, A.; Do, D.; Kang, D.; Ikuta, M.; Ryu, J.; Tearney, G.J. High-Resolution, Wide-Field, Forward-Viewing Spectrally Encoded Endoscope. Lasers Surg. Med. 2019, 51, 808–814. [Google Scholar] [CrossRef]
- Kwon, R.S.; Adler, D.G.; Chand, B.; Conway, J.D.; Diehl, D.L.; Kantsevoy, S.V.; Mamula, P.; Rodriguez, S.A.; Shah, R.J.; Song, L.M.W.K. High-resolution and high-magnification endoscopes. Gastrointest. Endosc. 2009, 69, 399–407. [Google Scholar] [CrossRef]
- Louie, J.S.; Richards-Kortum, R.; Anandasabapathy, S. Applications and advancements in the use of high-resolution microendoscopy for detection of gastrointestinal neoplasia. Clin. Gastroenterol. Hepatol. 2014, 12, 1789–1792. [Google Scholar] [CrossRef] [Green Version]
- Doyama, H.; Nakanishi, H.; Yao, K. Image-enhanced endoscopy and its corresponding histopathology in the stomach. Gut Liver 2021, 15, 329. [Google Scholar] [CrossRef] [Green Version]
- Gross, S.A.; Gerson, L.B.; Lewis, B.S.; Ganz, R.A. A novel device for improving visualization in an inadequately prepared colon. Gastrointest. Endosc. 2018, 87, 883–888. [Google Scholar] [CrossRef] [PubMed]
- van Keulen, K.E.; Neumann, H.; Schattenberg, J.M.; van Esch, A.A.; Kievit, W.; Spaander, M.C.; Siersema, P.D. A novel device for intracolonoscopy cleansing of inadequately prepared colonoscopy patients: A feasibility study. Endoscopy 2019, 51, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Massimino, L.; Lamparelli, L.A.; Houshyar, Y.; D’Alessio, S.; Peyrin-Biroulet, L.; Vetrano, S.; Danese, S.; Ungaro, F. The inflammatory bowel disease transcriptome and metatranscriptome meta-analysis (IBD TaMMA) framework. Nat. Comput. Sci. 2021, 1, 511–515. [Google Scholar] [CrossRef]
- Modos, D.; Thomas, J.P.; Korcsmaros, T. A handy meta-analysis tool for IBD research. Nat. Comput. Sci. 2021, 1, 571–572. [Google Scholar] [CrossRef]
- Sahoo, D.; Swanson, L.; Sayed, I.M.; Katkar, G.D.; Ibeawuchi, S.-R.; Mittal, Y.; Pranadinata, R.F.; Tindle, C.; Fuller, M.; Stec, D.L. Artificial intelligence guided discovery of a barrier-protective therapy in inflammatory bowel disease. Nat. Commun. 2021, 12, 4246. [Google Scholar] [CrossRef]
- Biasci, D.; Lee, J.C.; Noor, N.M.; Pombal, D.R.; Hou, M.; Lewis, N.; Ahmad, T.; Hart, A.; Parkes, M.; McKinney, E.F. A blood-based prognostic biomarker in IBD. Gut 2019, 68, 1386–1395. [Google Scholar] [CrossRef] [Green Version]
- Waljee, A.K.; Lipson, R.; Wiitala, W.L.; Zhang, Y.; Liu, B.; Zhu, J.; Wallace, B.; Govani, S.M.; Stidham, R.W.; Hayward, R. Predicting hospitalization and outpatient corticosteroid use in inflammatory bowel disease patients using machine learning. Inflamm. Bowel Dis. 2018, 24, 45–53. [Google Scholar] [CrossRef]
- Waljee, A.K.; Sauder, K.; Patel, A.; Segar, S.; Liu, B.; Zhang, Y.; Zhu, J.; Stidham, R.W.; Balis, U.; Higgins, P.D. Machine learning algorithms for objective remission and clinical outcomes with thiopurines. J. Crohn’s Colitis 2017, 11, 801–810. [Google Scholar] [CrossRef] [Green Version]
- Waljee, A.K.; Wallace, B.I.; Cohen-Mekelburg, S.; Liu, Y.; Liu, B.; Sauder, K.; Stidham, R.W.; Zhu, J.; Higgins, P.D. Development and validation of machine learning models in prediction of remission in patients with moderate to severe Crohn disease. JAMA Netw. Open 2019, 2, e193721. [Google Scholar] [CrossRef] [PubMed]
- Milluzzo, S.M.; Cesaro, P.; Grazioli, L.M.; Olivari, N.; Spada, C. Artificial intelligence in lower gastrointestinal endoscopy: The current status and future perspective. Clin. Endosc. 2021, 54, 329. [Google Scholar] [CrossRef]
- Repici, A.; Spadaccini, M.; Antonelli, G.; Correale, L.; Maselli, R.; Galtieri, P.A.; Pellegatta, G.; Capogreco, A.; Milluzzo, S.M.; Lollo, G. Artificial intelligence and colonoscopy experience: Lessons from two randomised trials. Gut 2022, 71, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Klang, E.; Barash, Y.; Levartovsky, A.; Lederer, N.B.; Lahat, A. Differentiation Between Malignant and Benign Endoscopic Images of Gastric Ulcers Using Deep Learning. Clin. Exp. Gastroenterol. 2021, 14, 155. [Google Scholar] [CrossRef] [PubMed]
- Soffer, S.; Klang, E.; Shimon, O.; Nachmias, N.; Eliakim, R.; Ben-Horin, S.; Kopylov, U.; Barash, Y. Deep learning for wireless capsule endoscopy: A systematic review and meta-analysis. Gastrointest. Endosc. 2020, 92, 831–839.e8. [Google Scholar] [CrossRef] [PubMed]
- Klang, E.; Barash, Y.; Yehuda Margalit, R.; Soffer, S.; Shimon, O.; Albshesh, A.; Ben-Horin, S.; Michal Amitai, M.; Eliakim, R.; Kopylov, U. Deep learning algorithms for automated detection of Crohn’s disease ulcers by video capsule endoscopy. Gastrointest. Endosc. 2020, 91, 606–613.e2. [Google Scholar] [CrossRef]
- Le Berre, C.; Sandborn, W.J.; Aridhi, S.; Devignes, M.D.; Fournier, L.; Smail-Tabbone, M.; Danese, S.; Peyrin-Biroulet, L. Application of Artificial Intelligence to Gastroenterology and Hepatology. Gastroenterology 2020, 158, 76–94.e2. [Google Scholar] [CrossRef] [Green Version]
- Lahat, A.; Shatz, Z. Telemedicine in clinical gastroenterology practice: What do patients prefer? Ther. Adv. Gastroenterol. 2021, 14, 1756284821989178. [Google Scholar] [CrossRef]
- Shah, E.D.; Amann, S.T.; Karlitz, J.J. The time is now: A guide to sustainable telemedicine during COVID-19 and beyond. Am. J. Gastroenterol. 2020, 115, 1371–1375. [Google Scholar] [CrossRef]
- Cross, R.K.; Langenberg, P.; Regueiro, M.; Schwartz, D.A.; Tracy, J.K.; Collins, J.F.; Katz, J.; Ghazi, L.; Patil, S.A.; Quezada, S.M. A randomized controlled trial of TELEmedicine for patients with inflammatory bowel disease (TELE-IBD). Off. J. Am. Coll. Gastroenterol. ACG 2019, 114, 472–482. [Google Scholar] [CrossRef]
- Su, G.L.; Glass, L.; Tapper, E.B.; Van, T.; Waljee, A.K.; Sales, A.E. Virtual Consultations Through the V eterans A dministration SCAN-ECHO Project Improves Survival for Veterans with Liver Disease. Hepatology 2018, 68, 2317–2324. [Google Scholar] [CrossRef] [Green Version]
- Scott Kruse, C.; Karem, P.; Shifflett, K.; Vegi, L.; Ravi, K.; Brooks, M. Evaluating barriers to adopting telemedicine worldwide: A systematic review. J. Telemed. Telecare 2018, 24, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Kontos, E.; Blake, K.D.; Chou, W.-Y.S.; Prestin, A. Predictors of eHealth usage: Insights on the digital divide from the Health Information National Trends Survey 2012. J. Med. Internet Res. 2014, 16, e3117. [Google Scholar] [CrossRef] [PubMed]
- Seymour, N.E.; Gallagher, A.G.; Roman, S.A.; O’brien, M.K.; Bansal, V.K.; Andersen, D.K.; Satava, R.M. Virtual reality training improves operating room performance: Results of a randomized, double-blinded study. Ann. Surg. 2002, 236, 458. [Google Scholar] [CrossRef] [PubMed]
- Lewis, T.; Aggarwal, R.; Rajaretnam, N.; Grantcharov, T.; Darzi, A. Training in surgical oncology–The role of VR simulation. Surg. Oncol. 2011, 20, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Yeung, A.W.K.; Tosevska, A.; Klager, E.; Eibensteiner, F.; Laxar, D.; Stoyanov, J.; Glisic, M.; Zeiner, S.; Kulnik, S.T.; Crutzen, R. Virtual and augmented reality applications in medicine: Analysis of the scientific literature. J. Med. Internet Res. 2021, 23, e25499. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, B.M. Virtual medicine: How virtual reality is easing pain, calming nerves and improving health. Med. J. Aust. 2018, 209, 245–247. [Google Scholar] [CrossRef]
- Gupta, A.; Scott, K.; Dukewich, M. Innovative technology using virtual reality in the treatment of pain: Does it reduce pain via distraction, or is there more to it? Pain Med. 2018, 19, 151–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pozeg, P.; Palluel, E.; Ronchi, R.; Solcà, M.; Al-Khodairy, A.-W.; Jordan, X.; Kassouha, A.; Blanke, O. Virtual reality improves embodiment and neuropathic pain caused by spinal cord injury. Neurology 2017, 89, 1894–1903. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.; Plahouras, J.; Johnston, B.C.; Scaffidi, M.A.; Grover, S.C.; Walsh, C.M. Virtual reality simulation training in endoscopy: A Cochrane review and meta-analysis. Endoscopy 2019, 51, 653–664. [Google Scholar] [CrossRef]
- Mahmood, T.; Scaffidi, M.A.; Khan, R.; Grover, S.C. Virtual reality simulation in endoscopy training: Current evidence and future directions. World J. Gastroenterol. 2018, 24, 5439. [Google Scholar] [CrossRef]
Artificial Intelligence | Artificial Intelligence, Machine Learning, Deep Learning, Convolutional Neural Network, Artificial Neural Network, Computer Vision |
---|---|
Telemedicine | telemedicine, telehealth, mobile health, mhealth, virtual care, telemonitoring, telecare |
Microbiome | microbiome, microbiota, probiotic, prebiotic |
Virtual reality | virtual reality, augmented reality, extended reality |
Advanced Endoscopy | peroral endoscopic myotomy, natural orifice transluminal endoscopic surgery, endoscopic submucosal dissection, video capsule endoscopy, robotics in gastrointestinal endoscopy, bariatric endoscopic treatment, confocal laser endomicroscopy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klang, E.; Soffer, S.; Tsur, A.; Shachar, E.; Lahat, A. Innovation in Gastroenterology—Can We Do Better? Biomimetics 2022, 7, 33. https://doi.org/10.3390/biomimetics7010033
Klang E, Soffer S, Tsur A, Shachar E, Lahat A. Innovation in Gastroenterology—Can We Do Better? Biomimetics. 2022; 7(1):33. https://doi.org/10.3390/biomimetics7010033
Chicago/Turabian StyleKlang, Eyal, Shelly Soffer, Abraham Tsur, Eyal Shachar, and Adi Lahat. 2022. "Innovation in Gastroenterology—Can We Do Better?" Biomimetics 7, no. 1: 33. https://doi.org/10.3390/biomimetics7010033
APA StyleKlang, E., Soffer, S., Tsur, A., Shachar, E., & Lahat, A. (2022). Innovation in Gastroenterology—Can We Do Better? Biomimetics, 7(1), 33. https://doi.org/10.3390/biomimetics7010033