Restorative Materials Exposed to Acid Challenge: Influence of Temperature on In Vitro Weight Loss
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Tested
2.2. Determination of Sample Size
2.3. Sample Preparation
- Group A: nine specimens immersed in 50 mL of a soft drink (Coca-Cola, Coca-Cola Company, Milano, Italy) at temperature 4 ± 1 °C;
- Group B: nine specimens immersed in 50 mL of a soft drink (Coca-Cola, Coca-Cola Company, Milano, Italy) at temperature 37 ± 1 °C.
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, B.G. Toothwear: Aetiology and diagnosis. Dent. Update 1989, 16, 204–212. [Google Scholar] [PubMed]
- Bedi, R. Management of a child with anorexia nervosa who presents with severe tooth erosion. J. Prosthodont. Restor. Dent. 1991, 1, 13–17. [Google Scholar]
- Welbury, R.R. A clinical study of a microfilled composite resin for labial veneers. Int. J. Paediatr. Dent. 1991, 1, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Dahl, B.L.; Carlsson, G.E.; Ekfeldt, A. Occlusal wear of teeth and restorative materials. A review of classification, etiology, mechanisms of wear, and some aspects of restorative procedures. Acta Odontol. Scand. 1993, 51, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, D.W.; Coward, P.Y.; Nikkah, C.; Wilson, R.F. The prevalence of tooth wear in a cluster sample of adolescent schoolchildren and its relationship with potential explanatory factors. Br. Dent. J. 1998, 184, 125–129. [Google Scholar] [CrossRef]
- Osborne-Smith, K.L.; Burke, F.J.; Wilson, N.H. The aetiology of the non-carious cervical lesion. Int. Dent. J. 1999, 49, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Watson, M.L.; Burke, F.J. Investigation and treatment of patients with teeth affected by tooth substance loss: A review. Dent. Update 2000, 27, 175–183. [Google Scholar] [CrossRef]
- Ganss, C. Definition of erosion and links to tooth wear. In Dental Erosion: From Diagnosis to Therapy; Lussi, A., Ed.; Karger Publishers: Basel, Switzerland, 2006; p. 9.e16. [Google Scholar]
- Wegehaupt, F.J.; Tauböck, T.T.; Attin, T. Durability of the anti-erosive effect of surfaces sealants under erosive abrasive conditions. Acta Odontol. Scand. 2013, 71, 1188–1194. [Google Scholar] [CrossRef] [Green Version]
- Steiger-Ronay, V.; Kuster, I.M.; Wiedemeier, D.B.; Attin, T.; Wegehaupt, F.J. Erosive loss of tooth substance is dependent on enamel surface structure and presence of pellicle—An in vitro study. Arch. Oral Biol. 2020, 112, 104686. [Google Scholar] [CrossRef]
- Stafne, E.C.; Lovestedt, S.A. Dissolution of tooth substance by lemon juice, acid beverages and acids from some other sources. J. Am. Dent. Assoc. 1947, 34, 586–592. [Google Scholar] [CrossRef]
- Thomas, A.E. Further observations on the influence of citrus fruit juices on human teeth. N. Y. State Dent. J. 1957, 23, 424. [Google Scholar]
- Holloway, P.J.; Mellanby, M.; Stewart, R.J.C. Fruit drinks and tooth erosion. Br. Dent. J. 1958, 104, 305. [Google Scholar]
- Lussi, A.; Schaffner, M.; Hotz, P.; Suter, P. Dental erosion in a population of Swiss adults. Community Dent. Oral Epidemiol. 1991, 19, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Lussi, A.; Jaeggi, T. Erosion—Diagnosis and risk factors. Clin. Oral Investig. 2008, 12 (Suppl. S1), S5–S13. [Google Scholar] [CrossRef] [Green Version]
- Levine, R.S. Fruit juice erosion—An increasing danger? J. Dent. 1973, 2, 85–88. [Google Scholar] [CrossRef]
- Eccles, J.D. Erosion affecting the palatal surfaces of upper anterior teeth in young people. A report of 19 cases. Br. Dent. J. 1982, 152, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Asher, C.; Read, M.J. Early enamel erosion in children associated with the excessive consumption of citric acid. Br. Dent. J. 1987, 162, 384–387. [Google Scholar] [CrossRef]
- Mackie, I.C.; Blinkhorn, A.S. Unexplained losses of enamel on upper incisor teeth. Dent. Update 1989, 16, 403–404. [Google Scholar]
- O’Sullivan, E.A.; Curzon, M.E. Dental erosion associated with the use of ‘alcopop’—A case report. Br. Dent. J. 1998, 184, 594–596. [Google Scholar] [CrossRef]
- Lussi, A.; Hellwig, E. Erosive potential of oral care products. Caries Res. 2001, 35 (Suppl. S1), 52–56. [Google Scholar] [CrossRef]
- Maupome, G.; Aguilar-Avila, M.; Medrano-Ugalde, H.; Borges-Yanez, A. In vitro quantitative microhardness assessment of enamel with early salivary pellicles after exposure to an eroding cola drink. Caries Res. 1999, 33, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Eisenburger, M.; Addy, M. Influence of liquid temperature and flow rate on enamel erosion and surface softening. J. Oral Rehabil. 2003, 30, 1076–1080. [Google Scholar] [CrossRef] [PubMed]
- Shellis, R.P.; Finke, M.; Eisenburger, M.; Parker, D.M.; Addy, M. Relationship between enamel erosion and liquid flow rate. Eur. J. Oral Sci. 2005, 113, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Attin, T.; Becker, K.; Wiegand, A.; Tauböck, T.T.; Wegehaupt, F.J. Impact of laminar flow velocity of different acids on enamel calcium loss. Clin. Oral Investig. 2013, 17, 595–600. [Google Scholar] [CrossRef] [Green Version]
- Grobler, S.R.; Senekal, P.J.; Kotze, T.J. The degree of enamel erosion by five different kinds of fruit. Clin. Prev. Dent. 1989, 11, 23–28. [Google Scholar]
- Report of Health Promotion Administration, Ministry of Health and Welfare; Reference No. DOH94-HP-1310/DOH95-HP-1317; Health Promotion Administration, Ministry of Health and Welfare: Taipei, China, 2006.
- Gedalia, I.; Dakuar, A.; Shapira, L.; Lewinstein, I.; Goultschin, J.; Rahamim, E. Enamel softening with Coca-Cola and rehardening with milk or saliva. Am. J. Dent. 1991, 4, 120–122. [Google Scholar]
- Airoldi, G.; Riva, G.; Vanelli, M.; Filippi, V.; Garattini, G. Oral environment temperature changes induced by cold/hot liquid intake. Am. J. Orthod. Dentofac. Orthop. 1997, 112, 58–63. [Google Scholar] [CrossRef]
- Hankermeyer, C.R.; Ohashi, K.L.; Delaney, D.C.; Ross, J.; Constantz, B.R. Dissolution rates of carbonated hydroxyapatite in hydrochloric acid. Biomaterials 2002, 23, 743–750. [Google Scholar] [CrossRef]
- Ferracane, J.L. Is the wear of dental composites still a clinical concern? Is there still a need for in vitro wear simulating devices? Dent. Mater. 2006, 22, 689–692. [Google Scholar] [CrossRef]
- Yap, A.U.; Tan, S.H.; Wee, S.S.; Lee, C.W.; Lim, E.L.; Zeng, K.Y. Chemical degradation of composite restoratives. J. Oral Rehabil. 2001, 28, 1015–1021. [Google Scholar] [CrossRef]
- Da Silva, M.A.; Fardin, A.B.; de Vasconcellos, R.C.; Santos Lde, M.; Tonholo, J.; da Silva, J.G., Jr.; dos Reis, J.I. Analysis of roughness and surface hardness of a dental composite using atomic force microscopy and microhardness testing. Microsc. Microanal. 2011, 17, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Coelho, A.; Paula, A.; Amaro, I.; Marto, C.M.; Costa, N.; Saraiva, J.; Ferreira, M.M.; Antunes, P.; Carrilho, E. Mechanical Characterization of Two Dental Restorative Materials after Acidic Challenge. J. Compos. Sci. 2021, 5, 31. [Google Scholar] [CrossRef]
- Cao, T.; Saw, T.Y.; Heng, B.C.; Liu, H.; Yap, A.U.; Ng, M.L. Comparison of different test models for the assessment of cytotoxicity of composite resins. J. Appl. Toxicol. 2005, 25, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Saw, T.Y.; Cao, T.; Yap, A.U.; Ng, M.M.L. Tooth slice organ culture and established cell line culture models for cytotoxicity assessment of dental materials. Toxicol. Vitro 2005, 19, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Van Dijken, J.W.; Sjöström, S.; Wing, K. Development of gingivitis around different types of composite resin. J. Clin. Periodontol. 1987, 14, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Paolantonio, M.; D’ercole, S.; Perinetti, G.; Tripodi, D.; Catamo, G.; Serra, E.; Bruè, C.; Piccolomini, R. Clinical and microbiological effects of different restorative materials on the periodontal tissues adjacent to subgingival class V restorations. J. Clin. Periodontol. 2004, 31, 200–207. [Google Scholar] [CrossRef]
- Beltrami, R.; Chiesa, M.; Scribante, A.; Allegretti, J.; Poggio, C. Comparison of shear bond strength of universal adhesives on etched and nonetched enamel. J. Appl. Biomater. Funct. Mater. 2016, 14, e78–e83. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, M.A.; Vitti, R.P.; Sinhoreti, M.A.; Consani, R.L.; Júnior, J.G.; Tonholo, J. Evaluation of the Surface Roughness and Microleakage of Dental Composites Exposed to Different Beverages. J. Contemp. Dent. Pract. 2015, 16, 800–804. [Google Scholar] [CrossRef]
- Seow, W.K.; Thong, K.M. Erosive effects of common beverages on extracted premolar teeth. Aust. Dent. J. 2005, 50, 173–178. [Google Scholar] [CrossRef]
- Sidhu, S.K.; Carrick, T.E.; McCabe, J.F. Temperature mediated coefficient of dimensional change of dental tooth-colored restorative materials. Dent. Mater. 2004, 20, 435–440. [Google Scholar] [CrossRef]
- Domingos, P.A.; Garcia, P.P.; Oliveira, A.L.; Palma-Dibb, R.G. Composite resin color stability: Influence of light sources and immersion media. J. Appl. Oral Sci. 2011, 19, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Barbour, M.E.; Parker, D.M.; Allen, G.C.; Jandt, K.D. Human enamel dissolution in citric acid as a function of pH in the range 2.30≤pH≤6.30—A nanoindentation study. Eur. J. Oral Sci. 2003, 111, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Mundim, F.M.; Garcia, L.D.A.F.; Pires-de-Souza, F.D.E.C. Effect of staining solutions and repolishing on color stability of direct composites. J. Appl. Oral Sci. 2010, 18, 249–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, M.J.; Nyvad, B. Enamel erosion by some soft drinks and orange juices relative to their pH, buffering effect and contents of calcium phosphate. Caries Res. 1999, 33, 81–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, G. pH measurement of carbonated beverages and commercial juices frequently consumed by children. Bull. Argent. Assoc. Dent. Child. 1999, 28, 8–10. [Google Scholar]
- McLean, J.W.; Wilson, A.D. The clinical development of the glass-ionomer cements. i. Formulations and properties. Aust. Dent J. 1977, 22, 31–36. [Google Scholar] [CrossRef]
- Roulet, J.F.; Walti, C. Influence of oral fluid on composite resin and glass-ionomer cement. J. Prosthet. Dent. 1984, 52, 182–189. [Google Scholar] [CrossRef]
- Akashi, A.; Matsuya, Y.; Unemori, M.; Akamine, A. The relationship between water absorption characteristics and the mechanical strength of resin-modified glass-ionomer cements in long-term water storage. Biomaterials 1999, 20, 1573–1578. [Google Scholar] [CrossRef]
- Fukazawa, M.; Matsuya, S.; Yamane, M. The mechanism for erosion of glass-ionomer cements in organic-acid buffer solutions. J. Dent. Res. 1990, 69, 1175–1179. [Google Scholar] [CrossRef]
- Matsuya, S.; Matsuya, Y.; Yamamoto, Y.; Yamane, M. Erosion process of a glass ionomer cement in organic acids. Dent. Mater. J. 1984, 3, 210–219. [Google Scholar] [CrossRef]
- Tunc, E.S.; Bayrak, S.; Guler, A.U.; Tuloglu, N. The effects of children’s drinks on the color stability of various restorative materials. J. Clin. Pediatr. Dent. 2009, 34, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, P.A.; Garcia, P.P.; De Oliveira, A.L.; Chinelatti, M.A.; Palma-Dibb, R.G. Chemical and morphological features of dental composite resin: Influence of light curing units and immersion media. Microsc. Res. Tech. 2010, 73, 176–181. [Google Scholar] [CrossRef] [PubMed]
Group | Material | Type | Composition | Filler % (w/w) | Manufacturer | Lot Number |
---|---|---|---|---|---|---|
1 | G-ænial (Anterior) | Radiopaque Composite | Matrix: UDMA, dimethacrylate co-monomers, no bis-GMa Filler: silica, strontium, lanthanoid fluoride | 76% | GC Corporation, Tokyo, Japan | 1906251 |
2 | Enamel plus Hri Bio Function | Microfilled hybrid composite | Matrix: UDMA, Tricyclodecane dimethanol dimethacrylate Filler: silicon dioxide | 74% | Micerium S.p.A., Avegno, Italy | 2018006379 |
3 | GrandiOSO Light Flow | Flowable nanohybrid composite | Matrix: methacrylates (Bis-Gma, Bis-Ema, TEGDMA, 1,6 hexanodiylbismethacrylate, HEDMA). Filler: inorganic filler | 76% | VOCO GmbH, Cuxhaven, Germany | 1944439 |
4 | GrandiOSO Flow | Flowable nanohybrid composite | Matrix: methacrylate (Bis-Gma, Bis-Ema, TEGDMA and HEDMA). Filler: inorganic fillers | 81% | VOCO GmbH, Cuxhaven, Germany | 1945398 |
5 | GrandiOSO HeavyFlow | Flowable nanohybrid composite | Matrix: methacrylate (Bis-Gma, Bis-Ema, TEGDMA and HEDMA) Filler: inorganic fillers | 83% | VOCO GmbH, Cuxhaven, Germany | 1947547 |
6 | Admira Fusion x-Base | Nanohybrid ceramic based composite | Matrix: ORMOCER® Filler: glass ceramic, silica nanoparticles, pigments | 72% | VOCO GmbH, Cuxhaven, Germany | 1946562 |
7 | x-Tra Fil | Hybrid composite | Matrix: methacrylate (Bis-GMA, UDMA, TEGDMA) Filler: inorganic filler | 86% | VOCO GmbH, Cuxhaven, Germany | 1946276 |
8 | GrandiO Flow | Flowable nanohybrid composite | Matrix: methacrylate (Bis-Gma, Bis-Ema, TEGDMA and HEDMA) Filler: inorganic filler | 80% | VOCO GmbH, Cuxhaven, Germany | 1944463 |
9 | G-ænial Flo X | Radiopaque Flowable composite | Matrix: UDMA, Bis-MPEPP, TEGDMA Filler: silicon dioxide, strontium glass | 71% | GC Corporation, Tokyo, Japan | 1905081 |
10 | Ceram.x Spectra ST flow | Hybrid aesthetic composite | Matrix: BisGma adduct modified with urethane, BisEMA and diluents, stabilizers, pigments, camphorquinone photoinitiator Filler: based on Sphere TeC® system | 62.50% | Dentsply Sirona, Konstanz, Germany | 1902000743 |
11 | Admira Fusion x-Tra | Nanohybrid ORMOCER® bulkfill composite | Matrix: ORMOCER® Filler: glass ceramic, silica nanoparticles, pigments | 84% | VOCO GmbH, Cuxhaven, Germany | 1941488 |
12 | GrandiOSO x-Tra | Nanohybrid bulkfill composite | Matrix: Bis-GMA, Bis- EMA, aliphatic dimethacrylate Filler: inorganic filler, organically modified silica | 86% | VOCO GmbH, Cuxhaven, Germany | 1938102 |
13 | VisCalor Bulk | Thermoviscous nanohybrid bulkfill composite | Matrix: Bis-GMA, aliphatic dimethacrylate. Filler: inorganic filler | 83% | VOCO GmbH, Cuxhaven, Germany | 1946611 |
14 | GC Equia Forte | Bulk Fill Glass Hybrid | Powder: fluoro-alumino-silicate glass, polyacrylic acid powder, pigment Liquid: polyacrylic acid, distilled water, polybasic carboxylic acid | / | GC Corporation, Tokyo, Japan | 161020A |
15 | GC Equia Forte + Coat | Bulk Fill Glass Hybrid | Powder: fluoro-alumino-silicate glass, polyacrylic acid powder, pigment Liquid: polyacrylic acid, distilled water, polybasic carboxylic acid Light curing protective coating | / | GC Corporation, Tokyo, Japan | 161020A Coat 1605131 |
Group A | 7 Days | KWTIC | Group B | 7 Days | KWTIC | WTIC |
---|---|---|---|---|---|---|
1A. G—aenial | 0.149 (0.011) | A | 1B. G—aenial | 0.201 (0.049) | A | S |
2A. Enamel plus HRi Bio Function | 0.041 (0.035) | B | 2B. Enamel plus Hri Bio Function | 0.271 (0.010) | B | S |
3A. GrandiOSO Light Flow | 0.109 (0.139) | A | 3B. GrandiOSO Light Flow | 0.192 (0.031) | A | NS |
4A. GrandiOSO Flow | 0.977 (0.016) | C | 4B. GrandiOSO Flow | 0.150 (0.021) | A | S |
5A. GrandiOSO HeavyFlow | 0.125 (1.419) | A | 5B. GrandiOSO HeavyFlow | 0.752 (0.009) | C | S |
6A. Admira Fusion x-base | 0.0145 (0.015) | B | 6B. Admira Fusion x-base | 0.074 (0.015) | D | S |
7A. x-Tra Fil | 0.163 (0.034) | A | 7B. x-Tra Fil | 0.198 (0.010) | A | NS |
8A. GrandiO Flow | −0.019 (0.017) | D | 8B. GrandiO Flow | 0.076 (0.043) | D | S |
9A. G-aenial Flo-X | 0.066 (0.016) | B | 9B. G-aenial Flo-X | 0.156 (0.024) | A | S |
10A. Ceram.x Spectra ST flow | 0.034 (0.015) | B | 10B. Ceram.x Spectra ST flow | 0.109 (0.019) | A | S |
11A. Admira Fusion x-Tra | 0.068 (0.031) | B | 11B. Admira Fusion x-Tra | 0.139 (0.013) | A | S |
12A. GrandiOSO x-Tra | 0.182 (0.009) | E | 12B. GrandiOSO x-Tra | 0.189 (0.011) | A | NS |
13A. VisCalor Bulk | −0.044 (0.014) | F | 13B. VisCalor Bulk | 0.089 (0.013) | D | S |
14A. GC Equia Forte | 1.73 (0.15) | G | 14B. GC Equia Forte | 2.75 (0.006) | E | S |
15A. GC Equia Forte + Coat | 1.62 (0.14) | G | 15B. GC Equia Forte + Coat | 2.19 (0.35) | F | S |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beltrami, R.; Colombo, M.; Bitonti, G.; Chiesa, M.; Poggio, C.; Pietrocola, G. Restorative Materials Exposed to Acid Challenge: Influence of Temperature on In Vitro Weight Loss. Biomimetics 2022, 7, 30. https://doi.org/10.3390/biomimetics7010030
Beltrami R, Colombo M, Bitonti G, Chiesa M, Poggio C, Pietrocola G. Restorative Materials Exposed to Acid Challenge: Influence of Temperature on In Vitro Weight Loss. Biomimetics. 2022; 7(1):30. https://doi.org/10.3390/biomimetics7010030
Chicago/Turabian StyleBeltrami, Riccardo, Marco Colombo, Gianpaolo Bitonti, Marco Chiesa, Claudio Poggio, and Giampiero Pietrocola. 2022. "Restorative Materials Exposed to Acid Challenge: Influence of Temperature on In Vitro Weight Loss" Biomimetics 7, no. 1: 30. https://doi.org/10.3390/biomimetics7010030
APA StyleBeltrami, R., Colombo, M., Bitonti, G., Chiesa, M., Poggio, C., & Pietrocola, G. (2022). Restorative Materials Exposed to Acid Challenge: Influence of Temperature on In Vitro Weight Loss. Biomimetics, 7(1), 30. https://doi.org/10.3390/biomimetics7010030