Tilted Arch; Implementation of Additive Manufacturing and Bio-Welding of Mycelium-Based Composites
Abstract
:1. Introduction
2. Background
3. Methodology
3.1. Understanding the Material and Material Exploration
- The wood waste consists of sawdust produced in carpentry—municipal waste like paper, cardboard, egg combs, and paper cups.
- Agricultural waste usually refers to the severed stems of post-harvest plants, often incinerated and producing CO2 in the air. Substances such as wheat straw, rice, barley, sugarcane pulp bagasse, oilseed pulp, and sesame pulp fall into this category.
3.2. Material Manifestation
3.3. Product Design
4. Result and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karana, E.; Blauwhoff, D.; Hultink, E.J.; Camere, S. When the material grows: A case study on designing (with) mycelium-based materials. Int. J. Des. 2018, 12, 119–136. [Google Scholar]
- A Sustainable Alternative to Architectural Materials: Mycelium-based Bio-Composites. In Proceedings of the ConCave Ph.D. Symposium: Divergence in Architectural Research, Georgia Institute of Technology, Atlanta, GA, USA, February 2021; pp. 159–167. [CrossRef]
- Meyer, V.; Basenko, E.Y.; Benz, J.P.; Braus, G.H.; Caddick, M.X.; Csukai, M.; De Vries, R.P.; Endy, D.; Frisvad, J.C.; Gunde-Cimerman, N.; et al. Growing a circular economy with fungal biotechnology: A white paper. Fungal Biol. Biotechnol. 2020, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.; Mautner, A.; Luenco, S.; Bismarck, A.; John, S. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Mater. Des. 2020, 187, 108397. [Google Scholar] [CrossRef]
- Stelzer, L.; Hoberg, F.; Bach, V.; Schmidt, B.; Pfeiffer, S.; Meyer, V.; Finkbeiner, M. Life Cycle Assessment of Fungal-Based Composite Bricks. Sustainability 2021, 13, 11573. [Google Scholar] [CrossRef]
- Elsacker, E.; Søndergaard, A.; Van Wylick, A.; Peeters, E.; De Laet, L. Growing living and multifunctional mycelium composites for large-scale formwork applications using robotic abrasive wire-cutting. Constr. Build. Mater. 2021, 283, 122732. [Google Scholar] [CrossRef]
- Jones, M.; Huynh, T.; Dekiwadia, C.; Daver, F.; John, S. Mycelium composites: A review of engineering characteristics and growth kinetics. J. Bionanosci. 2017, 11, 241–257. [Google Scholar] [CrossRef]
- Appels, F.V.; Camere, S.; Montalti, M.; Karana, E.; Jansen, K.; Dijksterhuis, J.; Krijgsheld, P.; Wösten, H.A. Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites. Mater. Des. 2019, 161, 64–71. [Google Scholar] [CrossRef]
- Ghazvinian, A.; Farrokhsiar, P.; Vieira, F.; Pecchia, J.; Gursoy, B. Mycelium-Based Bio-Composites for Architecture: Assessing the Effects of Cultivation Factors on Compressive Strength. In Proceedings of the eCAADe and SIGraDi Conference, University of Porto, Porto, Portugal, 11–13 September 2019; pp. 505–514. Available online: http://papers.cumincad.org/cgi-bin/works/paper/ecaadesigradi2019_465 (accessed on 5 November 2021).
- Elsacker, E.; Vandelook, S.; Van Wylick, A.; Ruytinx, J.; De Laet, L.; Peeters, E. A comprehensive framework for the production of mycelium-based lignocellulosic composites. Sci. Total Environ. 2020, 725, 138431. [Google Scholar] [CrossRef] [PubMed]
- Rafiee, K.; Kaur, G.; Brar, S.K. Fungal biocomposites: How process engineering affects composition and properties? Bioresour. Technol. Rep. 2021, 14, 100692. [Google Scholar] [CrossRef]
- Manan, S.; Ullah, M.W.; Ul-Islam, M.; Atta, O.M.; Yang, G. Synthesis and applications of fungal mycelium-based advanced functional materials. J. Bioresour. Bioprod. 2021, 6, 1–10. [Google Scholar] [CrossRef]
- Attias, N.; Danai, O.; Abitbol, T.; Tarazi, E.; Ezov, N.; Pereman, I.; Grobman, Y.J. Mycelium bio-composites in industrial design and architecture: Comparative review and experimental analysis. J. Clean. Prod. 2020, 246, 119037. [Google Scholar] [CrossRef]
- Almpani-Lekka, D.; Pfeiffer, S.; Schmidts, C.; Seo, S. A review on architecture with fungal biomaterials: The desired and the feasible. Fungal Biol. Biotechnol. 2021, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Grünewald, J.; Parlevliet, P.; Altstädt, V. Manufacturing of thermoplastic composite sandwich structures. J. Thermoplast. Compos. Mater. 2016, 30, 437–464. [Google Scholar] [CrossRef]
- Colmo, C.; Ayres, P. 3d Printed Bio-hybrid Structures Investigating the architectural potentials of Mycoremediation. In Proceedings of the eCAADe Conference, Berlin, Germany, 16–18 September 2020; pp. 573–582. Available online: http://papers.cumincad.org/cgi-bin/works/BrowseTree=series:acadia/Show?ecaade2020_299 (accessed on 5 November 2021).
- Goidea, A.; Floudas, D.; Andréen, D. Pulp Faction: 3d printed material assemblies through microbial biotransformation. Fabricate 2020, 2020, 42–49. [Google Scholar]
- Elbasdi, G.; Alaçam, S. An investigation on growth behaviour of mycelium in a fabric formwork. In Proceedings of the Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference], London, UK, 7–8 November 2016; pp. 65–74. Available online: http://papers.cumincad.org/cgi-bin/works/paper/ascaad2016_009 (accessed on 5 November 2021).
- McGaw, J. Dark Matter. Arch. Theory Rev. 2018, 22, 120–139. [Google Scholar] [CrossRef]
- Heisel, F.; Lee, J.; Schlesier, K.; Rippmann, M.; Saeidi, N.; Javadian, A.; Nugroho, A.R.; Van Mele, T.; Block, P.; Hebel, D.E. Design, Cultivation and Application of Load-Bearing Mycelium Components: The MycoTree at the 2017 Seoul Biennale of Architecture and Urbanism. Int. J. Sustain. Energy Dev. 2017, 6, 296–303. [Google Scholar] [CrossRef]
- Dessi-Olive, J. Monolithic Mycelium: Growing Vault Structures. In Proceedings of the 18th International Conference on Non-Conventional Materials and Technologies (NOCMAT), Nairobi, Kenya, 24–26 July 2019; Available online: https://www.academia.edu/39909593/Monolithic_Mycelium_Growing_Vault_Structures?auto=download&campaign=weekly_digest (accessed on 28 April 2020).
- Bhardwaj, A.; Vasselli, J.; Lucht, M.; Pei, Z.; Shaw, B.; Grasley, Z.; Wei, X.; Zou, N. 3D Printing of Biomass-Fungi Composite Material: A Preliminary Study. Manuf. Lett. 2020, 24, 96–99. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Rahman, A.M.; Wei, X.; Pei, Z.; Truong, D.; Lucht, M.; Zou, N. 3D Printing of Biomass–Fungi Composite Material: Effects of Mixture Composition on Print Quality. J. Manuf. Mater. Process. 2021, 5, 112. [Google Scholar] [CrossRef]
- Soh, E.; Chew, Z.Y.; Saeidi, N.; Javadian, A.; Hebel, D.; Le Ferrand, H. Development of an extrudable paste to build mycelium-bound composites. Mater. Des. 2020, 195, 109058. [Google Scholar] [CrossRef]
- Jauk, J.; Vašatko, H.; Gosch, L.; Christian, I.; Klaus, A.; Stavric, M. DIGITAL FABRICATION OF GROWTH Combining digital manufacturing of clay with natural growth of mycelium. In Proceedings of the 26th CAADRIA Conference, The Chinese University of Hong Kong, Hong Kong, China, 29 March–1 April 2021; pp. 753–762. Available online: http://papers.cumincad.org/cgi-bin/works/paper/caadria2021_282 (accessed on 5 November 2021).
- Oghazian, F.; Vazquez, E. A Multi-Scale Workflow for Designing with New Materials in Architecture: Case Studies across Materials and Scales Case Studies across Materials and Scales. In Proceedings of the 26th CAADRIA Conference, The Chinese University of Hong Kong, Hong Kong, China, 29 March–1 April 2021; pp. 533–542. Available online: http://papers.cumincad.org/cgi-bin/works/paper/caadria2021_213 (accessed on 5 November 2021).
- Bhatia, S.; Bera, T. Somatic Embryogenesis and Organogenesis. In Modern Applications of Plant Biotechnology in Pharmaceutical Sciences; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 209–230. [Google Scholar] [CrossRef]
- Silverman, J.; Cao, H.; Cobb, K. Development of Mushroom Mycelium Composites for Footwear Products. Cloth. Text. Res. J. 2020, 38, 119–133. [Google Scholar] [CrossRef]
- Mudgil, D.; Barak, S.; Khatkar, B.S. Guar gum: Processing, properties and food applications—A Review. J. Food Sci. Technol. 2014, 51, 409–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimele, Z.; Irbe, I.; Grinins, J.; Bikovens, O.; Verovkins, A.; Bajare, D. Novel mycelium-based biocomposites (Mbb) as building materials. J. Renew. Mater. 2020, 8, 1067–1076. [Google Scholar] [CrossRef]
Treatment | Substrate | Gelling Agent | Water Content (g) |
---|---|---|---|
A | Sawdust (1 to 3 mm) | Guar Gum (10 g) | 500 |
B | Sawdust (1 to 3 mm) | Arabic Gum (10 g) | 500 |
C | Shredded Paper (>5 mm) | Guar Gum (30 g) | 500 |
D | Shredded Paper (>5 mm) | Arabic Gum (30 g) | 500 |
Treatment | Yield Stress (KPa) | Young Modulus (MPa) | Behavior |
---|---|---|---|
A | 171.44 | 19.1 | Plastic |
B | 167.68 | 18.2 | Brittle |
C | 524.14 | 41.4 | Plastic |
D | 536.27 | 78.3 | Brittle |
Nozzle Size (mm) | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|
Step (mm) | 4 | 4 | 6 | 6 | 9 |
Pressure (bar) | 2.2 | 2.1 | 1.8 | 1.7 | 1.7 |
Speed (mm/s) | 100 | 100 | 100 | 100 | 100 |
Fresh Thickness (mm) | 10 | 12 | 14 | 16 | 18 |
Dried Thickness (mm) | 9 | 10 | 12 | 14 | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modanloo, B.; Ghazvinian, A.; Matini, M.; Andaroodi, E. Tilted Arch; Implementation of Additive Manufacturing and Bio-Welding of Mycelium-Based Composites. Biomimetics 2021, 6, 68. https://doi.org/10.3390/biomimetics6040068
Modanloo B, Ghazvinian A, Matini M, Andaroodi E. Tilted Arch; Implementation of Additive Manufacturing and Bio-Welding of Mycelium-Based Composites. Biomimetics. 2021; 6(4):68. https://doi.org/10.3390/biomimetics6040068
Chicago/Turabian StyleModanloo, Behzad, Ali Ghazvinian, Mohammadreza Matini, and Elham Andaroodi. 2021. "Tilted Arch; Implementation of Additive Manufacturing and Bio-Welding of Mycelium-Based Composites" Biomimetics 6, no. 4: 68. https://doi.org/10.3390/biomimetics6040068
APA StyleModanloo, B., Ghazvinian, A., Matini, M., & Andaroodi, E. (2021). Tilted Arch; Implementation of Additive Manufacturing and Bio-Welding of Mycelium-Based Composites. Biomimetics, 6(4), 68. https://doi.org/10.3390/biomimetics6040068