Exposure of Biomimetic Composite Materials to Acidic Challenges: Influence on Flexural Resistance and Elastic Modulus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
- (1)
- subgroups A (1a–5a): 4-week storage in 50 mL distilled water (control subgroups);
- (2)
- subgroups B (1b–5b): 3-week storage in 50 mL distilled water + 1-week storage in 50 mL soft drink;
- (3)
- subgroups C (1c–5c): 4-week storage in 50 mL soft drink.
2.2. Three-Point Flexural Test
3. Results
3.1. Flexural Strength
3.2. Elastic Modulus
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Frencken, J.E.; Sharma, P.; Stenhouse, L.; Green, D.; Laverty, D.; Dietrich, T. Global epidemiology of dental caries and severe periodontitis - a comprehensive review. J. Clin. Periodontol. 2017, 44, S94–S105. [Google Scholar] [CrossRef] [PubMed]
- Pepla, E.; Besharat, L.K.; Palaia, G.; Tenore, G.; Migliau, G. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: A review of literature. Ann. Stomatol. (Roma) 2014, 5, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Scribante, A.; Dermenaki Farahani, M.R.; Marino, G.; Matera, C.; Rodriguez Y Baena, R.; Lanteri, V.; Butera, A. Biomimetic Effect of Nano-Hydroxyapatite in Demineralized Enamel before Orthodontic Bonding of Brackets and Attachments: Visual, Adhesion Strength, and Hardness in In Vitro Tests. Biomed. Res. Int. 2020, 2020, 6747498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, N.X.; Lussi, A.; Seong, J.; Hellwig, E. Dentin hypersensitivity: Pain mechanisms and aetiology of exposed cervical dentin. Clin. Oral Investig. 2013, 17, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanzow, P.; Wegehaupt, F.J.; Attin, T.; Wiegand, A. Etiology and pathogenesis of dental erosion. Quintessence Int. 2016, 47, 275–278. [Google Scholar]
- Scribante, A.; Poggio, C.; Gallo, S.; Riva, P.; Cuocci, A.; Carbone, M.; Arciola, C.R.; Colombo, M. In Vitro Re-Hardening of Bleached Enamel Using Mineralizing Pastes: Toward Preventing Bacterial Colonization. Materials 2020, 13, 818. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, E.A.; Curzon, M.E. A comparison of acidic dietary factors in children with and without dental erosion. ASDC J. Dent. Child. 2000, 78, 186–192. [Google Scholar]
- Cheng, Z.J.; Wang, X.Z.; Cui, F.Z.; GE, J.; Yan, J.X. The enamel softening and loss during early erosion studied by AFM, SEM and nanoindentation. Biomed. Mater. 2009, 4, 1–7. [Google Scholar] [CrossRef]
- Tahmassebi, J.F.; BaniHani, A. Impact of soft drinks to health and economy: A critical review. Eur. Arch. Paediatr. Dent. 2020, 21, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.H.S.; Mai, Y.; Kim, H.; Tong, K.C.T.; Ng, D.; Hsiao, J.C.M. Review: Resin Composite Filling. Materials 2010, 3, 1228–1243. [Google Scholar] [CrossRef]
- da Silva, G.R.; Simamoto-Júnior, P.C.; da Mota, A.S.; Soares, C.J. Mechanical properties of light-curing composites polymerized with different laboratory photo-curing units. Dent. Mater J. 2007, 26, 217–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseinalipour, M.; Javadpour, J.; Rezaie, H.; Dadras, T.; Hayati, A.N. Investigation of mechanical properties of experimental Bis-GMA/TEGDMA dental composite resins containing various mass fractions of silica nanoparticles. J. Prosthodont. 2010, 19, 112–117. [Google Scholar] [CrossRef]
- Ferracane, J.L. Resin composite--state of the art. Dent. Mater. 2011, 27, 29–38. [Google Scholar] [CrossRef]
- Colombo, M.; Gallo, S.; Poggio, C.; Ricaldone, V.; Arciola, C.R.; Scribante, A. New Resin-Based Bulk-Fill Composites: In vitro Evaluation of Micro-Hardness and Depth of Cure as Infection Risk Indexes. Materials 2020, 13, 1308. [Google Scholar] [CrossRef] [Green Version]
- Foek, D.L.; Ozcan, M.; Krebs, E.; Sandham, A. Adhesive properties of bonded orthodontic retainers to enamel: Stainless steel wire vs fiber-reinforced composites. J. Adhes. Dent. 2009, 11, 381–390. [Google Scholar] [PubMed]
- Scribante, A.; Massironi, S.; Pieraccini, G.; Vallittu, P.; Lassila, L.; Sfondrini, M.F.; Gandini, P. Effects of nanofillers on mechanical properties of fiber-reinforced composites polymerized with light-curing and additional postcuring. J. Appl. Biomater. Funct. Mater. 2015, 13, e296–e299. [Google Scholar] [CrossRef] [PubMed]
- Annousaki, O.; Zinelis, S.; Eliades, G.; Eliades, T. Comparative analysis of the mechanical properties of fiber and stainless steel multistranded wires used for lingual fixed retention. Dent. Mater. 2017, 33, e205–e211. [Google Scholar] [CrossRef] [Green Version]
- Scribante, A.; Vallittu, P.; Lassila, L.V.J.; Viola, A.; Tessera, P.; Gandini, P.; Sfondrini, M.F. Effect of Long-Term Brushing on Deflection, Maximum Load, and Wear of Stainless Steel Wires and Conventional and Spot Bonded Fiber-Reinforced Composites. Int. J. Mol. Sci. 2019, 20, 6043. [Google Scholar] [CrossRef] [Green Version]
- Nagani, N.I.; Ahmed, I. Effectiveness of Two Types of Fixed Lingual Retainers in Preventing Mandibular Incisor Relapse. J. Coll. Phys. Surg. Pak. 2020, 30, 282–286. [Google Scholar] [CrossRef]
- Scribante, A.; Sfondrini, M.F.; Broggini, S.; D’Allocco, M.; Gandini, P. Efficacy of Esthetic Retainers: Clinical Comparison between Multistranded Wires and Direct-Bond Glass Fiber-Reinforced Composite Splints. Int. J. Dent. 2011, 2011, 548356. [Google Scholar] [CrossRef] [Green Version]
- Borges, M.G.; Soares, C.G.; Maia, T.S.; Bicalho, A.A.; Barbosa, T.P.; Costa, H.L.; Menezes, M.S. Effect of acidic drinks on shade matching, surface topography, and mechanical properties of conventional and bulk-fill composite resins. J. Prosthet. Dent. 2019, 121, 868.e1–868.e8. [Google Scholar] [CrossRef]
- Ayatollahi, M.R.; Yahya, M.Y.; Karimzadeh, A.; Nikkhooyifar, M.; Ayob, A. Effects of temperature change and beverage on mechanical and tribological properties of dental restorative composites. Mater Sci Eng. C Mater. Biol. Appl. 2015, 54, 69–75. [Google Scholar] [CrossRef] [PubMed]
- BinMahfooz, A.M.; Qutub, O.A.; Basunbul, G.I. Effect of Stimulating Drinks on the Mechanical Properties of Composite Resin Provisional Restorative Materials. World J. Dentistry. 2019, 10, 192–196. [Google Scholar] [CrossRef]
- Sample Size Calculator. Available online: https://www.calculator.net/sample-size-calculator.html. (accessed on 2 December 2019).
- Scribante, A.; Bollardi, M.; Chiesa, M.; Poggio, C.; Colombo, M. Flexural Properties and Elastic Modulus of Different Esthetic Restorative Materials: Evaluation after Exposure to Acidic Drink. Biomed. Res. Int. 2019, 2019, 5109481. [Google Scholar] [CrossRef]
- Zorzin, J.; Maier, E.; Harre, S.; Fey, T.; Belli, R.; Lohbauer, U.; Petschelt, A.; Taschner, M. Bulk-fill resin composites: Polymerization properties and extended light curing. Dent. Mater. 2015, 31, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Alrahlah, A.; Silikas, N.; Watts, D.C. Post-cure depth of cure of bulk fill dental resin composites. Dent. Mater. 2014, 30, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Colombo, M.; Poggio, C.; Lasagna, A.; Chiesa, M.; Scribante, A. Vickers Micro-Hardness of New Restorative CAD/CAM Dental Materials: Evaluation and Comparison after Exposure to Acidic Drink. Materials 2019, 12, 1246. [Google Scholar] [CrossRef] [Green Version]
- Briso, A.L.F.; Caruzo, L.P.; Guedes, A.P.A.; Catelan, A.; Dos Santos, P.H. In vitro evaluation of surface roughness and microhardness of restorative materials submitted to erosive challenges. Oper. Dent. 2011, 36, 397–402. [Google Scholar] [CrossRef]
- Sfondrini, M.F.; Gandini, P.; Alcozer, R.; Vallittu, P.K.; Scribante, A. Failure load and stress analysis of orthodontic miniscrews with different transmucosal collar diameter. J. Mech. Behav. Biomed. Mater. 2018, 87, 132–137. [Google Scholar] [CrossRef]
- Rodrigues, S.A., Jr.; Zanchi, C.H.; de Carvalho, R.V.; Demarco, F.F. Flexural strength and modulus of elasticity of different types of resin-based composites. Braz. Oral Res. 2007, 21, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Nahm, F.S. Nonparametric statistical tests for the continuous data: The basic concept and the practical use. Korean J. Anesthesiol. 2016, 69, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Devoto, W.; Saracinelli, M.; Manauta, J. Composite in everyday practice: How to choose the right material and simplify application techniques in the anterior teeth. Eur. J. Esthet. Dent. 2010, 5, 102–124. [Google Scholar] [PubMed]
- Bourbia, M.; Ma, D.; Cvitkovitch, D.G.; Santerre, J.P.; Finer, Y. Cariogenic bacteria degrade dental resin composites and adhesives. J. Dent. Res. 2013, 92, 989–994. [Google Scholar] [CrossRef] [PubMed]
- Rajavardhan, K.; Sankar, A.; Kumar, M.; Kumar, K.; Pranitha, K.; Kishore, K. Erosive potential of cola and orange fruit juice on tooth colored restorative materials. Ann. Med. Health Sci. Res. 2014, 4, S208–S212. [Google Scholar]
- Kitchens, M.; Owens, B.M. Effect of carbonated beverages, coffee, sports and high energy drinks, and bottled water on the in vitro erosion characteristics of dental enamel. J. Clin. Pediatr. Dent. 2007, 31, 153–159. [Google Scholar] [CrossRef]
- Scribante, A.; Vallittu, P.K.; Özcan, M. Fiber-Reinforced Composites for Dental Applications. Biomed. Res. Int. 2018, 2018, 4734986. [Google Scholar] [CrossRef]
- Özcan, E.; Çetin, A.R.; Capar, İ.D.; Tunçdemir, A.R.; Aydinbelge, H.A. Influence of eugenol on the push-out bond strengths of fiber posts cemented with different types of resin luting agents. Odontology. 2013, 101, 204–209. [Google Scholar] [CrossRef]
- Vallittu, P.K.; Shinya, A.; Baraba, A.; Kerr, I.; Keulemans, F.; Kreulen, C.; Lassila, L.; Malmstrom, H.; Novotny, R.; Peumans, M.; et al. Fiber-reinforced composites in fixed prosthodontics—Quo vadis? Dent. Mater. 2017, 33, 877–879. [Google Scholar] [CrossRef] [Green Version]
- ISO178:2010, Plastics—Determination of Flexural Properties. Available online: https://www.iso.org/standard/45091.html (accessed on 23 October 2020).
- Mohammadi, E.; Pishevar, L.; Mirzakouchaki Boroujeni, P. Effect of food simulating liquids on the flexural strength of a methacrylate and silorane-based composite. PLoS ONE 2017, 12, e0188829. [Google Scholar] [CrossRef] [Green Version]
- Ricci, W.A.; Alfano, P.; Pamato, S.; Cruz, C.A.D.S.; Pereira, J.R. 2. Mechanical Degradation of Different Classes of Composite Resins Aged in Water, Air, and Oil. Biomed. Res. Int. 2019, 2019, 7410759. [Google Scholar] [CrossRef] [Green Version]
- Kalra, S.; Singh, A.; Gupta, M.; Chadha, V. Ormocer: An aesthetic direct restorative material; An in vitro study comparing the marginal sealing ability of organically modified ceramics and a hybrid composite using an ormocer-based bonding agent and a conventional fifth-generation bonding agent. Contemp. Clin. Dent. 2012, 3, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Schubert, A.; Ziegler, C.; Bernhard, A.; Bürgers, R.; Miosge, N. Cytotoxic effects to mouse and human gingival fibroblasts of a nanohybrid ormocer versus dimethacrylate-based composites. Clin. Oral Investig. 2019, 23, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Monsarrat, P.; Garnier, S.; Vergnes, J.N.; Nasr, K.; Grosgogeat, B.; Joniot, S. Survival of directly placed ormocer-based restorative materials: A systematic review and meta-analysis of clinical trials. Dent. Mater. 2017, 33, e212–e220. [Google Scholar] [CrossRef] [PubMed]
- ISO4049:2009, Dentistry-Resin Based Filling Materials. International Organization for Standardization. Available online: https://www.iso.org/standard/42898.html (accessed on 23 October 2020).
- Ilie, T.; Hilton, S.; Heintze, R.; Hickel, D.; Watts, N.; Silikas, J.; Stansbury, M.; Cadenaro, J. Ferracane, Academy of dental materials guidance—Resin composites: Part I—Mechanical properties. Dent. Mater. 2017, 33, 880–894. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Hanabusa, M.; Kimura, S.; Momoi, Y.; Hayakawa, T. Changes in polymerization stress and elastic modulus of bulk-fill resin composites for 24 hours after irradiation. Dent. Mater. 2018, 37, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Buzalaf, M.A.; Hannas, A.R.; Kato, M.T. Saliva and dental erosion. J. Appl. Oral Sci. 2012, 20, 493–502. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, I.B.; Güler, A.U. Effects of different surface treatments on the color stability of various dental porcelains. J. Dent. Sci. 2011, 6, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Aliping-McKenzie, M.; Linden, R.W.; Nicholson, J.W. The effect of Coca-Cola and fruit juices on the surface hardness of glass-ionomers and ’compomers’. J. Oral. Rehabil. 2004, 31, 1046–1052. [Google Scholar] [CrossRef]
Group | Material | Code | Type | Composition | Filler Content % | Lot Number | Manufacturer |
---|---|---|---|---|---|---|---|
1 | x-tra fil | XTF | Light-curing posterior filling material | Matrix: dimethacrylate (Bis-GMA, TEGDMA, UDMA) Filler: Inorganic filler (Bariumaluminium silicate, fumed silica, pigments) | 86 (w/w) | 1906144 Ex: 08/2021 | Voco, Cuxhaven, Germany |
2 | GrandioSO x-tra | GXT | Aesthetic nanohybrid bulk restorative material | Matrix: Bis-GMA, Bis-EMA, aliphatic dimethacrylate Filler: Inorganic filler, organically modified silica | 86 (w/w) | 1907626 Ex: 08/2020 | Voco, Cuxhaven, Germany |
3 | Admira Fusion x-tra | AFX | Nano-hybrid ORMOCER®-based material | Matrix: ORMOCER® Filler: glass ceramics, silica nanoparticles, pigments | 84 (w/w) | 1904427 Ex: 04/2021 | Voco, Cuxhaven, Germany |
4 | VisCalor bulk | VCB | Termoviscous bulk-fill composite (Nano-hybrid composite) | Matrix: Bis-GMA, aliphatic dimethacrylate Filler: Inorganic filler | 83 (w/w) | 76292 Ex: 06/2019 | Voco, Cuxhaven, Germany |
5 | Enamel Plus HRi | EPH | Nano-hybrid composite | Matrix: Diurethandimethacrylate, BisGMA, 1,4-butandioldimethacrylate Filler: surface-treated nano zirconium oxide particles, glass | 74% (w/w) | 2018004910 Ex: 07/2021 | Micerium, Genova, Italy |
Material Code | Group-Subgroup | Mean (*) | Standard Deviation (%) | Minimum | Median | Maximum |
---|---|---|---|---|---|---|
XTF | 1a | 149.66 a | 6.18 | 132.30 | 150.22 | 166.95 |
XTF | 1b | 144.78 a | 11.22 | 123.24 | 143.13 | 172.86 |
XTF | 1c | 142.18 a | 9.26 | 123.24 | 141.16 | 172.46 |
GXT | 2a | 139.31 a | 7.48 | 122.06 | 138.60 | 154.74 |
GXT | 2b | 131.91 a | 4.73 | 121.67 | 131.71 | 140.18 |
GXT | 2c | 118.09 b | 8.84 | 100.80 | 120.09 | 129.94 |
AFX | 3a | 69.58 c | 7.62 | 59.06 | 70.68 | 75.99 |
AFX | 3b | 70.98 c | 22.57 | 43.71 | 71.86 | 101.59 |
AFX | 3c | 76.66 c | 16.11 | 56.31 | 78.95 | 95.68 |
VCB | 4a | 147.18 a | 4.82 | 135.06 | 147.07 | 159.47 |
VCB | 4b | 139.55 a | 11.54 | 109.07 | 138.21 | 163.80 |
VCB | 4c | 115.01 b | 13.28 | 91.35 | 117.14 | 137.42 |
EPH | 5a | 119.31 b | 4.30 | 111.43 | 119.70 | 128.36 |
EPH | 5b | 116.55 b | 11.36 | 92.93 | 116.55 | 137.81 |
EPH | 5c | 123.18 b | 6.83 | 111.43 | 121.67 | 135.06 |
Material Code | Group-Subgroup | Mean (*) | Standard Deviation (%) | Minimum | Median | Maximum |
---|---|---|---|---|---|---|
XTF | 1a | 17.87 a | 10.12 | 13.89 | 18.23 | 20.45 |
XTF | 1b | 17.99 a | 13.56 | 15.09 | 17.53 | 22.65 |
XTF | 1c | 17.01 a | 13.35 | 12.37 | 17.29 | 21.13 |
GXT | 2a | 17.90 a | 15.70 | 14.95 | 17.39 | 25.03 |
GXT | 2b | 14.69 a | 16.54 | 9.64 | 15.41 | 17.17 |
GXT | 2c | 14.83 a | 37.58 | 11.94 | 14.52 | 22.86 |
AFX | 3a | 8.52 b | 7.63 | 7.24 | 8.66 | 9.31 |
AFX | 3b | 8.16 b | 11.15 | 7.04 | 7.96 | 9.41 |
AFX | 3c | 8.42 b | 19.48 | 5.68 | 8.33 | 10.76 |
VCB | 4a | 17.58 a | 9.73 | 13.39 | 18.02 | 19.53 |
VCB | 4b | 16.23 a | 23.66 | 12.04 | 15.77 | 25.54 |
VCB | 4c | 14.40 a,c | 21.53 | 11.19 | 13.77 | 21.92 |
EPH | 5a | 11.20 b,c | 25.00 | 6.35 | 11.27 | 14.90 |
EPH | 5b | 9.45 b | 16.51 | 6.33 | 9.77 | 11.29 |
EPH | 5c | 9.16 b | 26.97 | 6.20 | 9.47 | 12.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scribante, A.; Gallo, S.; Scarantino, S.; Dagna, A.; Poggio, C.; Colombo, M. Exposure of Biomimetic Composite Materials to Acidic Challenges: Influence on Flexural Resistance and Elastic Modulus. Biomimetics 2020, 5, 56. https://doi.org/10.3390/biomimetics5040056
Scribante A, Gallo S, Scarantino S, Dagna A, Poggio C, Colombo M. Exposure of Biomimetic Composite Materials to Acidic Challenges: Influence on Flexural Resistance and Elastic Modulus. Biomimetics. 2020; 5(4):56. https://doi.org/10.3390/biomimetics5040056
Chicago/Turabian StyleScribante, Andrea, Simone Gallo, Stefano Scarantino, Alberto Dagna, Claudio Poggio, and Marco Colombo. 2020. "Exposure of Biomimetic Composite Materials to Acidic Challenges: Influence on Flexural Resistance and Elastic Modulus" Biomimetics 5, no. 4: 56. https://doi.org/10.3390/biomimetics5040056
APA StyleScribante, A., Gallo, S., Scarantino, S., Dagna, A., Poggio, C., & Colombo, M. (2020). Exposure of Biomimetic Composite Materials to Acidic Challenges: Influence on Flexural Resistance and Elastic Modulus. Biomimetics, 5(4), 56. https://doi.org/10.3390/biomimetics5040056