Cupric Oxide Nanostructures from Plasma Surface Modification of Copper
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Plasma Surface Modification
2.2. Characterizations
2.2.1. Water Contact Angle Measurements
2.2.2. Scanning Electron Microscopy (SEM)
2.2.3. Energy Dispersive Spectroscopy (EDS)
3. Results and Discussion
3.1. Water Contact Angle Measurements
3.2. Scanning Electron Microscopy (SEM)
3.3. Energy Dispersive Spectroscopy (EDS)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guittard, F.; Darmanin, T. Bioinspired Superhydrophobic Surfaces: Advances and Applications with Metallic and Inorganic Materials; CRC Press: New York, NY, USA, 2017. [Google Scholar]
- Taleb, S.; Darmanin, T.; Guittard, F. Superoleophobic/superhydrophobic PEDOP conducting copolymers with dual-responsivity by voltage and ion exchange. Mater. Today 2016, 6, 1–8. [Google Scholar] [CrossRef]
- Ramos Chagas, G.; Morán Cruz, G.; Giraudon-Colas, G.; Savina, F.; Méallet-Renault, R.; Amigoni, S.; Guittard, F.; Darmanin, T. Ant-bacterial and fluorescent properties of hydrophobic electrodeposited non-fluorinated polypyrenes. Appl. Surf. Sci. 2018, 452, 352–363. [Google Scholar] [CrossRef]
- Godeau, G.; Godeau, R.P.; Orange, F.; Szczepanski, C.R.; Guittard, F.; Darmanin, T. Variation of Goliathus orientalis (Moser, 1909) Elytra Nanostructurations and Their Impact on Wettability. Biomimetics 2018, 3, 6. [Google Scholar] [CrossRef] [PubMed]
- Mortier, C.; Bourd, R.; Godeau, G.; Guittard, F.; Darmanin, T. Superhydrophobic and superoleophobic poly(3,4-ethylenedioxypyrrole) polymers synthesized using the Staudinger-Vilarrasa reaction. Pure Appl. Chem. 2017, 89, 1751–1760. [Google Scholar] [CrossRef]
- Koch, K.; Barthlott, W. Superhydrophobic and superhydrophilic plant surfaces: An inspiration for biomimetic materials. Phil. Trans. R. Soc. A 2009, 367, 1487–1509. [Google Scholar] [CrossRef] [PubMed]
- Salapare, H.S., III; Tiquio, M.G.J.P.; Ramos, H.J. Superhydrophilic properties of plasma-treated Posidonia oceanica. Appl. Surf. Sci. 2013, 273, 444–447. [Google Scholar] [CrossRef]
- Salapare, H.S., III; Suarez, B.A.T.; Cosiñero, H.S.O.; Bacaoco, M.Y.; Ramos, H.J. Irradiation of poly(tetrafluoroethylene) surfaces by CF4 plasma to achieve robust superhydrophobic and enhanced oleophilic properties for biological applications. Mater. Sci. Eng. C. 2015, 46, 270–275. [Google Scholar] [CrossRef]
- Salapare, H.S., III; Blantocas, G.Q.; Rivera, W.L.; Ong, V.A.; Hipolito, R.S.; Ramos, H.J. Anti-bacterial property of hydrogen-ion and oxygen-ion treated polytetrafluoroethylene (PTFE) materials. Plasma Fus. Res. 2011, 6, 2406043. [Google Scholar]
- Salapare, H.S., III; Darmanin, T.; Guittard, F. Reactive-ion etching of nylon fabric meshes using oxygen plasma for creating surface nanostructures. Appl. Surf. Sci. 2015, 356, 408–415. [Google Scholar] [CrossRef]
- Lee, C.; Graves, D.B.; Lieberman, M.A.; Hess, D.W. Global model of plasma chemistry in a high density oxygen discharge. J. Electrochem. Soc. 1994, 141, 1546–1555. [Google Scholar] [CrossRef]
- Salapare, H.S., III; Cosiñero, H.S.O.; Suarez, B.A.T.; Bacaoco, M.Y.; Nuñez, J.A.P.; Guittard, F.; Ramos, H.J. Gas discharge plasma treatment of poly(ethylene glycol-co-1,3/1,4 cyclohexanedimethanol terephthalate) for enhanced paint adhesion. J. Vac. Sci. Technol. A. 2016, 34, 041303. [Google Scholar] [CrossRef]
- Adeloju, S.B.; Duan, Y.Y. Corrosion resistance of Cu2O and CuO on copper surfaces in aqueous media. Brit. Corros. J. 1994, 29, 309–314. [Google Scholar] [CrossRef]
- Nerle, U.; Rabinal, M.K. Thermal oxidation of copper for favorable formation of cupric oxide (CuO) semiconductor. IOSR J. Appl. Phys. 2013, 5, 01–07. [Google Scholar] [CrossRef]
- McDonald, B.T.; Cui, T. Superhydrophilic surface modification of copper surfaces by layer-by-layer self-assembly and liquid phase deposition of TiO2 thin film. J. Colloid Inter. Sci. 2011, 354, 1–6. [Google Scholar] [CrossRef]
- Borges, J.N.; Belmonte, T.; Guillot, J.; Duday, D.; Moreno-Couranjou, M.; Choquet, P.; Migeon, H.N. Functionalization of copper surfaces by plasma treatments to improve adhesion of epoxy resins. Plasma Proc. Polym. 2009, 6, S490–S495. [Google Scholar] [CrossRef]
- Chang, C.C.; Chen, M.C.; Li, L.J.; Wu, Z.C.; Jang, S.M.; Liang, M.S. Effects of O2- and N2-Plasma Treatments on Copper Surface. Jpn. J. Appl. Phys. 2004, 43, 7415–7418. [Google Scholar] [CrossRef]
- Choudhary, S.; Sarma, J.V.N.; Pande, S.; Ababou-Girard, S.; Turban, P.; Lepine, B.; Gangopadhyay, S. Oxidation mechanism of thin Cu films: A gateway towards the formation of single oxide phase. AIP Adv. 2018, 8, 055114. [Google Scholar] [CrossRef]
- Clayton, C.K.; Sohn, H.Y.; Whitty, K.J. Oxidation kinetics of Cu2O in oxygen carriers for chemical looping with oxygen uncoupling. Ind. Eng. Chem. Res. 2014, 53, 2976–2986. [Google Scholar] [CrossRef]
- Zhu, Y.; Mimura, K.; Isshiki, M. Oxidation mechanism of copper at 623-1073 K*. Mater. Trans. 2002, 43, 2173–2176. [Google Scholar] [CrossRef]
- Jian, G.; Zhou, L.; Piekiel, N.W.; Zachariah, M.R. Low effective activation energies for oxygen release from metal oxides: Evidence for mass-transfer limits at high heating rates. Chem. Phys. Chem. 2014, 15, 1666–1672. [Google Scholar] [CrossRef]
- Praveen, B.; Suresh, S. Experimental study on heat transfer performance of neopentyl glycol/CuO composite solid-solid PCM in TES based heat sink. Eng. Sci. Technol. Inter. J. 2018, 21, 1086–1094. [Google Scholar] [CrossRef]
- Yeh, H.H.; Wen, M.C.; Chang, L.; Ploog, K.H.; Chou, M.M.C. Epitaxial growth of Cu2O on Cu substrate—A combinatorial substrate approach. J. Crys. Grow. 2019, 512, 124–130. [Google Scholar] [CrossRef]
- Ge, P.; Turunen, M.P.K.; Kusevic, M.; Kivilahti, J.K. Effects of surface treatment on the adhesion of copper to a hybrid polymer material. J. Mater. Res. 2003, 18, 2697–2707. [Google Scholar] [CrossRef] [Green Version]
- Fritz-Popovski, G.; Sosada-Ludwikowska, F.; Köck, A.; Keckes, J.; Maier, G.A. Study of CuO nanowire growth on different copper surfaces. Sci. Rep. 2019, 9, 807. [Google Scholar] [CrossRef] [PubMed]
- Pike, J.; Chan, S.W.; Zhang, F.; Wang, X.; Hanson, J. Formation of stable Cu2O from reduction of CuO nanoparticles. Appl. Catal A: Gen. 2006, 303, 272–277. [Google Scholar] [CrossRef]
- Murali, D.S.; Kumar, S.; Choudhary, R.J.; Wadikar, A.D.; Jain, M.K.; Subrahmanyam, A. Synthesis of Cu2O from CuO thin films: Optical and electrical properties. AIP Adv. 2015, 5, 047143. [Google Scholar] [CrossRef]
- Suttichart, C.; Boonyawan, D.; Nhuapeng, W.; Thamjaree, W. Effect of a low gas pressure plasma treatment on copper substrate used for carbon nanotubes synthesis. Surf. Coat. Technol. 2016, 306, 279–284. [Google Scholar] [CrossRef]
- Yu Fedorov, L.; Karpov, I.V.; Ushakov, A.V.; Lepeshev, A.A. Study of phase composition of CuO/Cu2O nanoparticles produced in the plasma of a low-pressure arc discharge. Inorg. Mater. Appl. Res. 2018, 9, 323–328. [Google Scholar] [CrossRef]
- Pal, D.; Neogi, S.; De, S. Surface modification of polyacrylonitrile co-polymer membranes using pulsed direct current nitrogen plasma. Thin Solid Film. 2015, 597, 171–182. [Google Scholar] [CrossRef]
- Javid, A.; Kumar, M.; Han, J.G. Study of sterilization-treatment in pure and N- doped carbon thin films synthesized by inductively coupled plasma assisted pulsed-DC magnetron sputtering. Appl. Surf. Sci. 2017, 392, 1062–1067. [Google Scholar] [CrossRef]
- Darnon, M.; Petit-Etienne, C.; Pargon, E.; Cunge, G.; Vallier, L.; Bodart, P.; Haas, M.; Banna, S.; Lill, T.; Joubert, O. Synchronous pulsed plasma for silicon etch applications. ECS Trans. 2010, 27, 717–723. [Google Scholar]
- Li, Y.; Hess, D.W. Transport considerations in the plasma-assisted oxidation of copper films. J. Electrochem. Soc. 2004, 151, G40–G46. [Google Scholar] [CrossRef]
Sample | Power (W) | Irradiation Time (s) | O2 Gas Flow Rate (sccm) | Duty Cycle (%) | Water Contact Angle (°) (0 Days after Plasma Treatment) | Water Contact Angle (°) (30 Days after Plasma Treatment) | Water Contact Angle (°) (60 Days after Plasma Treatment) | |
---|---|---|---|---|---|---|---|---|
Cu-0 a | Untreated | 116 ± 2 | ||||||
Varying Power | Cu-1 | 100 | 300 | 20 | 80 | 22 ± 2 | 23 ± 3 | 24± 3 |
Cu-2 a | 200 | 300 | 20 | 80 | <10 | <10 | <10 | |
Cu-3 | 300 | 300 | 20 | 80 | <10 | <10 | <10 | |
Varying Irradiation Time | Cu-4 | 300 | 60 | 20 | 80 | <10 | <10 | <10 |
Cu-5 | 300 | 180 | 20 | 80 | <10 | <10 | <10 | |
Varying O2 Gas Flow Rate | Cu-6 | 300 | 300 | 10 | 80 | 15 ± 1 | 16 ± 2 | 16 ± 1 |
Cu-7 | 300 | 300 | 15 | 80 | <10 | <10 | <10 | |
Varying Duty Cycle | Cu-8 | 300 | 300 | 20 | 0 | 34 ± 1 | 35 ± 3 | 36 ± 2 |
Cu-9 | 300 | 300 | 20 | 50 | 24 ± 1 | 24 ± 1 | 25 ± 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salapare, H.S., III; Balbarona, J.A.; Clerc, L.; Bassoleil, P.; Zenerino, A.; Amigoni, S.; Guittard, F. Cupric Oxide Nanostructures from Plasma Surface Modification of Copper. Biomimetics 2019, 4, 42. https://doi.org/10.3390/biomimetics4020042
Salapare HS III, Balbarona JA, Clerc L, Bassoleil P, Zenerino A, Amigoni S, Guittard F. Cupric Oxide Nanostructures from Plasma Surface Modification of Copper. Biomimetics. 2019; 4(2):42. https://doi.org/10.3390/biomimetics4020042
Chicago/Turabian StyleSalapare, Hernando S., III, Juvy A. Balbarona, Léo Clerc, Pierre Bassoleil, Arnaud Zenerino, Sonia Amigoni, and Frédéric Guittard. 2019. "Cupric Oxide Nanostructures from Plasma Surface Modification of Copper" Biomimetics 4, no. 2: 42. https://doi.org/10.3390/biomimetics4020042
APA StyleSalapare, H. S., III, Balbarona, J. A., Clerc, L., Bassoleil, P., Zenerino, A., Amigoni, S., & Guittard, F. (2019). Cupric Oxide Nanostructures from Plasma Surface Modification of Copper. Biomimetics, 4(2), 42. https://doi.org/10.3390/biomimetics4020042