Next Article in Journal / Special Issue
1st Symposium on Polydopamine and NanoTech Poland 2018: Conference Report
Previous Article in Journal
Effect of Non-Vital Bleaching on the Durability of Resin–Dentin Bond with an Ethanol-Based Etch-And-Rinse Adhesive
Previous Article in Special Issue
The Chemistry of Polydopamine Film Formation: The Amine-Quinone Interplay
Article

Enzymatically Active Polydopamine @ Alkaline Phosphatase Nanoparticles Produced by NaIO4 Oxidation of Dopamine

1
Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1121, 11 rue Humann, CEDEX, 67085 Strasbourg, France
2
Institut de Physique et de Chimie des Matériaux, UMR 7504 CNRS—Université de Strasbourg, 23 rue du Loess, BP 43, CEDEX 2, 67034 Strasbourg, France
3
Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, 67000 Strasbourg, France
*
Author to whom correspondence should be addressed.
Biomimetics 2018, 3(4), 36; https://doi.org/10.3390/biomimetics3040036
Received: 28 September 2018 / Revised: 7 November 2018 / Accepted: 7 November 2018 / Published: 12 November 2018
Polydopamine (PDA) deposition, obtained from the oxidation of dopamine and other catecholamines, is a universal way to coat all known materials with a conformal coating which can subsequently be functionalized at will. The structural analogies between polydopamine and eumelanin, the black-brown pigment of the skin, were incited to produce stable polydopamine nanoparticles in solution, instead of amorphous precipitates obtained from the oxidation of dopamine. Herein, we demonstrate that size-controlled and colloidally stable PDA-based nanoparticles can be obtained in acidic conditions, where spontaneous auto-oxidation of dopamine is suppressed, using sodium periodate as the oxidant and a protein, like alkaline phosphatase (ALP), as a templating agent. The size of the [email protected] nanoparticles depends on the dopamine/enzyme ratio and the obtained particles display enzymatic activity of alkaline phosphatase, with an activity extending up to two weeks after particle synthesis. The [email protected] nanoparticles can be engineered in polyelectrolyte multilayered films to potentially design model biosensors. View Full-Text
Keywords: melanin-like nanoparticles; sodium periodate; enzymatic activity; layer-by-layer films melanin-like nanoparticles; sodium periodate; enzymatic activity; layer-by-layer films
Show Figures

Graphical abstract

MDPI and ACS Style

El Yakhlifi, S.; Ihiawakrim, D.; Ersen, O.; Ball, V. Enzymatically Active Polydopamine @ Alkaline Phosphatase Nanoparticles Produced by NaIO4 Oxidation of Dopamine. Biomimetics 2018, 3, 36. https://doi.org/10.3390/biomimetics3040036

AMA Style

El Yakhlifi S, Ihiawakrim D, Ersen O, Ball V. Enzymatically Active Polydopamine @ Alkaline Phosphatase Nanoparticles Produced by NaIO4 Oxidation of Dopamine. Biomimetics. 2018; 3(4):36. https://doi.org/10.3390/biomimetics3040036

Chicago/Turabian Style

El Yakhlifi, Salima; Ihiawakrim, Dris; Ersen, Ovidiu; Ball, Vincent. 2018. "Enzymatically Active Polydopamine @ Alkaline Phosphatase Nanoparticles Produced by NaIO4 Oxidation of Dopamine" Biomimetics 3, no. 4: 36. https://doi.org/10.3390/biomimetics3040036

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop