Moving toward Soft Robotics: A Decade Review of the Design of Hand Exoskeletons
Abstract
:1. Introduction
2. Method
2.1. Inclusion and Exclusion Criteria
2.1.1. Inclusion Criteria
- The study introduced and applied soft robotics technology for the development of a hand exoskeleton that included a wearable glove, actuator or both
- The study presented the mechanical or electrical aspect of the hand exoskeleton in at least three of the following attributes: actuation, active degrees of freedom (DOFs), finger movement, output force, range of motion (ROM), weight and functionality
- The hand exoskeleton had at least one soft robotic finger (3 degrees of freedom)
- The study presented a prototype or at least a design of the hand exoskeleton
2.1.2. Exclusion Criteria
- The study was published in any language other than English
- The device used rigid or ferrous mechanical components for the glove design and linkages
- The device was used other than that for rehabilitation and assistance for ADL
- The device was a prosthetic or anthropomorphic hand
2.2. Methodological Framework
3. Soft Hand Exoskeleton Systems
3.1. The General Trend: Soft Wearable Glove
3.2. Discussion of the Actuating Mechanism
4. Technological Trend
4.1. Timeline of Exoskeleton
4.2. Evolution of the Soft Robotic Hand Exoskeleton
5. Conclusions
Funding
Conflicts of Interest
References
- Nurzaman, S.G.; Iida, F.; Laschi, C.; Ishiguro, A.; Wood, R. Soft robotics—TC spotlight. IEEE Robot. Autom. Mag. 2013, 20, 24–95. [Google Scholar]
- Rus, D.; Tolley, M.T. Design, fabrication and control of soft robots. Nature 2015, 521, 467–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuk, H.; Kim, D.; Lee, H.; Jo, S.; Shin, J.H. Shape memory alloy-based small crawling robots inspired by C. elegans. Bioinspir. Biomim. 2011, 6, 046002. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.T.; Trimmer, B.A. The substrate as a skeleton: Ground reaction forces from a soft-bodied legged animal. J. Exp. Biol. 2011, 214, 2451. [Google Scholar] [CrossRef]
- Ilievski, F.; Mazzeo, A.D.; Shepherd, R.F.; Chen, X.; Whitesides, G.M. Soft robotics for chemists. Angew. Chem. 2011, 123, 1930–1935. [Google Scholar] [CrossRef] [Green Version]
- Polygerinos, P.; Wang, Z.; Galloway, K.C.; Wood, R.J.; Walsh, C.J. Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 2015, 73, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Polygerinos, P.; Galloway, K.C.; Sanan, S.; Herman, M.; Walsh, C.J. EMG Controlled Soft Robotic Glove for Assistance during Activities of Daily Living. In Proceedings of the 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore, 11–14 August 2015; pp. 55–60. [Google Scholar]
- Polygerinos, P.; Lyne, S.; Wang, Z.; Nicolini, L.F.; Mosadegh, B.; Whitesides, G.M.; Walsh, C.J. Towards a Soft Pneumatic Glove for Hand Rehabilitation. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, 3–7 November 2013; pp. 1512–1517. [Google Scholar]
- Yap, H.K.; Kamaldin, N.; Lim, J.H.; Nasrallah, F.A.; Goh, J.C.; Yeow, C.H. A magnetic resonance compatible soft wearable robotic glove for hand rehabilitation and brain imaging. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Yap, H.K.; Lim, J.H.; Nasrallah, F.; Cho Hong Goh, J.; Yeow, C.H. Characterisation and evaluation of soft elastomeric actuators for hand assistive and rehabilitation applications. J. Med. Eng. Technol. 2016, 40, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Yap, H.K.; Lim, J.H.; Nasrallah, F.; Low, F.Z.; Goh, J.C.; Yeow, R.C. MRC-Glove: A fMRI Compatible Soft Robotic Glove for Hand Rehabilitation Application. In Proceedings of the 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore, 11–14 August 2015; pp. 735–740. [Google Scholar]
- Yap, H.K.; Ang, B.W.; Lim, J.H.; Goh, J.C.; Yeow, C.H. A Fabric-Regulated Soft Robotic Glove with User Intent Detection Using EMG and RFID for Hand Assistive Application. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 3537–3542. [Google Scholar]
- Yap, H.K.; Lim, J.H.; Nasrallah, F.; Goh, J.C.; Yeow, R.C. A Soft Exoskeleton for Hand Assistive and Rehabilitation Application Using Pneumatic Actuators with Variable Stiffness. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 4967–4972. [Google Scholar]
- Yap, H.K.; Lim, J.H.; Nasrallah, F.; Yeow, C.H. Design and preliminary feasibility study of a soft robotic glove for hand function assistance in stroke survivors. Front. Neurosci. 2017, 11, 547. [Google Scholar] [CrossRef] [PubMed]
- Yap, H.K.; Lim, J.H.; Goh, J.C.; Yeow, C.H. Design of a soft robotic glove for hand rehabilitation of stroke patients with clenched fist deformity using inflatable plastic actuators. J. Med. Devices 2016, 10, 044504. [Google Scholar] [CrossRef]
- Yap, H.K.; Ng, H.Y.; Yeow, C.H. High-force soft printable pneumatics for soft robotic applications. Soft Robot. 2016, 3, 144–158. [Google Scholar] [CrossRef]
- Yap, H.K.; Goh, J.C.; Yeow, R.C. Design and Characterization of Soft Actuator for Hand Rehabilitation Application. In Proceedings of the 6th European Conference of the International Federation for Medical and Biological Engineering; Dubrovnik, Croatia, 7–11 September 2014; Springer: Cham, Switzerland, 2015; pp. 367–370. [Google Scholar]
- Kang, B.B.; Lee, H.; In, H.; Jeong, U.; Chung, J.; Cho, K.J. Development of a Polymer-Based Tendon-Driven Wearable Robotic Hand. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 3750–3755. [Google Scholar]
- In, H.; Kang, B.B.; Sin, M.; Cho, K.J. Exo-Glove: A wearable robot for the hand with a soft tendon routing system. IEEE Robot. Autom. Mag. 2015, 22, 97–105. [Google Scholar] [CrossRef]
- Kang, B.B.; In, H.; Cho, K. Force Transmission in Joint-Less Tendon Driven Wearable Robotic Hand. In Proceedings of the 2012 12th International Conference on Control, Automation and Systems (ICCAS), Jeju Island, Korea, 17–21 October 2012; pp. 1853–1858. [Google Scholar]
- In, H.; Cho, K.J. Evaluation of the Antagonistic Tendon Driven System for SNU Exo-Glove. In Proceedings of the 2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jeju Island, Korea, 26–28 November 2012; pp. 507–509. [Google Scholar]
- In, H.; Cho, K.J. Analysis of the forces on the finger joints by a joint-less wearable robotic hand, SNU Exo-Glove. In Converging Clinical and Engineering Research on Neurorehabilitation; Springer: Berlin/Heidelberg, Germany, 2013; pp. 93–97. [Google Scholar]
- Kim, B.; In, H.; Lee, D.Y.; Cho, K.J. Development and assessment of a hand assist device: GRIPIT. J. Neuroeng. Rehabil. 2017, 14, 15. [Google Scholar] [CrossRef] [PubMed]
- Tikly, M.; Makda, M.A. A diagnostic approach to the common arthritic conditions. S. Afr. Fam. Pract. 2009, 51, 188–193. [Google Scholar] [Green Version]
- Bailey, R.R.; Birkenmeier, R.L.; Lang, C.E. Real-world affected upper limb activity in chronic stroke: An examination of potential modifying factors. Top. Stroke Rehabil. 2015, 22, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Chua, M.C.; Lim, J.H.; Yeow, R.C. Design and characterization of a soft robotic therapeutic glove for rheumatoid arthritis. Assist. Technol. 2017, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.B. Modeling of Tendon Driven Soft Wearable Robot for the Finger. Master’s Thesis, School of Mechanical and Aerospace Engineering, the Graduate School, Seoul National University, Seoul, Korea, 2013. [Google Scholar]
- Schwarz, R.J.; Taylor, C.L. The anatomy and mechanics of the human hand. Artif. Limbs 1955, 2, 22–35. [Google Scholar]
- Chu, C.Y.; Patterson, R.M. Soft robotic devices for hand rehabilitation and assistance: A narrative review. J. Neuroeng. Rehabil. 2018, 15, 9. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Xiang, S.; Yu, H. Soft Robotic Hand Exoskeleton Systems: Review and Challenges Surrounding the Technology. In Proceedings of the 2nd International Conference on Electrical, Automation and Mechanical Engineering (EAME 2017), Shanghai, China, 23–24 April 2017. [Google Scholar]
- Tsagarakis, N.G.; Caldwell, D.G. Development and control of a soft-actuated exoskeleton for use in physiotherapy and training. Auton. Robots 2003, 15, 21–33. [Google Scholar] [CrossRef]
- Creative Commons—Attribution 2.0 Generic—CC BY 2.0. Available online: http://creativecommons.org/licenses/by/2.0/.
- Yun, S.S.; Kang, B.B.; Cho, K.J. Exo-Glove PM: An easily customizable modularized pneumatic assistive glove. IEEE Robot. Autom. Lett. 2017, 2, 1725–1732. [Google Scholar] [CrossRef]
- Noritsugu, T.; Takaiwa, M.; Sasaki, D. Power Assist Wear Driven with Pneumatic Rubber Artificial Muscles. In Proceedings of the 15th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Auckland, New Zealand, 2–4 December 2008; pp. 539–544. [Google Scholar]
- Ochoa, J.M.; Narasimhan, Y.J.; Kamper, D.G. Development of a Portable Actuated Orthotic Glove to Facilitate Gross Extension of the Digits for Therapeutic Training after Stroke. In Proceedings of the Annual International Conference of the IEEE 2009 Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 6918–6921. [Google Scholar]
- Ochoa, J.M.; Kamper, D.G.; Listenberger, M.; Lee, S.W. Use of an Electromyographically Driven Hand Orthosis for Training after Stroke. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), Zurich, Switzerland, 29 June–1 July 2011; pp. 1–5. [Google Scholar]
- Connelly, L.; Jia, Y.; Toro, M.L.; Stoykov, M.E.; Kenyon, R.V.; Kamper, D.G. A pneumatic glove and immersive virtual reality environment for hand rehabilitative training after stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Kadowaki, Y.; Noritsugu, T.; Takaiwa, M.; Sasaki, D.; Kato, M. Development of soft Power-Assist glove and control based on human intent. J. Robot. Mechatron. 2011, 23, 281–291. [Google Scholar] [CrossRef]
- Toya, K.; Miyagawa, T.; Kubota, Y. Power-Assist glove operated by predicting the grasping mode. J. Syst. Des. Dyn. 2011, 5, 94–108. [Google Scholar] [CrossRef]
- Nilsson, M.; Ingvast, J.; Wikander, J.; von Holst, H. The Soft Extra Muscle System for Improving the Grasping Capability in Neurological Rehabilitation. In Proceedings of the 2012 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), Langkawi, Malaysia, 17–19 December 2012. [Google Scholar]
- Delph, M.A.; Fischer, S.A.; Gauthier, P.W.; Luna, C.H.; Clancy, E.A.; Fischer, G.S. A Soft Robotic Exomusculature Glove with Integrated sEMG Sensing for Hand Rehabilitation. In Proceedings of the 2013 IEEE International Conference Rehabilitation Robotics (ICORR), Seattle, WA, USA, 24–26 June 2013; pp. 1–7. [Google Scholar]
- Nycz, C.J.; Delph, M.A.; Fischer, G.S. Modeling and Design of a Tendon Actuated Soft Robotic Exoskeleton for Hemiparetic Upper Limb Rehabilitation. In Proceedings of the 2015 37th Annual International Conference of Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 3889–3892. [Google Scholar]
- Maeder-York, P.; Clites, T.; Boggs, E.; Neff, R.; Polygerinos, P.; Holland, D.; Stirling, L.; Galloway, K.; Wee, C.; Walsh, C. Biologically inspired soft robot for thumb rehabilitation. J. Med. Devices 2014, 8, 020933. [Google Scholar] [CrossRef]
- Coffey, A.L.; Leamy, D.J.; Ward, T.E. A Novel BCI-Controlled Pneumatic Glove System for Home-Based Neurorehabilitation. In Proceedings of the 2014 36th Annual International Conference of Engineering in Medicine and Biology Society (EMBC), Chicago, IL, USA, 26–30 August 2014; pp. 3622–3625. [Google Scholar]
- Wang, B.; Aw, K.C.; Biglari-Abhari, M.; McDaid, A. Modelling of Pneumatic Air Muscles for Direct Rotary Actuation of Hand Rehabilitation Glove. In Proceedings of the International Conference on Social Robotics, Sydney, Australia, 27–29 October 2014; Springer: Cham, Switzerland, 2014; pp. 360–369. [Google Scholar]
- Wang, B.; McDaid, A.; Biglari-Abhari, M.; Aw, K.C. Design and Development of a Glove for Post-Stroke Hand Rehabilitation. In Proceedings of the 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich, Germany, 3–7 July 2017; pp. 1047–1051. [Google Scholar]
- Haghshenas-Jaryani, M.; Carrigan, W.; Wijesundara, M.B. Design and Development of a Novel Soft-and-Rigid Hybrid Actuator System for Robotic Applications. In Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, MA, USA, 2–5 August 2015; American Society of Mechanical Engineers: New York, NY, USA, 2015; pp. 1–6. [Google Scholar]
- Haghshenas-Jaryani, M.; Carrigan, W.; Nothnagle, C.; Wijesundara, M.B. Sensorized Soft Robotic Glove for Continuous Passive Motion Therapy. In Proceedings of the 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, 26–29 June 2016; pp. 815–820. [Google Scholar]
- Haghshenas-Jaryani, M.; Nothnagle, C.; Patterson, R.M.; Bugnariu, N.; Wijesundara, M.B. Soft Robotic Rehabilitation Exoskeleton (REHAB Glove) for Hand Therapy. In Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Cleveland, OH, USA, 6–9 August 2017; American Society of Mechanical Engineers: New York, NY, USA, 2017; pp. 1–10. [Google Scholar]
- Haghshenas-Jaryani, M.; Carrigan, W.; Wijesundara, M.B.; Patterson, R.M.; Bugnariu, N.; Niacaris, T. Kinematic Study of a Soft-and-Rigid Robotic Digit for Rehabilitation and Assistive Applications. In Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Charlotte, NC, USA, 21–24 August 2016; American Society of Mechanical Engineers: New York, NY, USA, 2016; pp. 1–7. [Google Scholar]
- Diftler, M.A.; Bridgwater, L.B.; Rogers, J.M.; Laske, E.A.; Ensley, K.G.; Lee, J.H.; Ihrke, C.A.; Davis, D.R.; Linn, D.M. RoboGlove—A Grasp Assist Device for Earth and Space. In Proceedings of the 45th International Conference on Environmental Systems, Bellevue, WA, USA, 12–16 July 2015. [Google Scholar]
- Lee, H.; Kang, B.B.; In, H.; Cho, K.J. Design improvement of a polymer-based tendon-driven wearable robotic hand (Exo-Glove Poly). In Wearable Robotics: Challenges and Trends; Springer: Cham, Switzerland, 2017; pp. 95–99. [Google Scholar]
- Tarvainen, T.V.; Yu, W. Preliminary Results on Multi-Pocket Pneumatic Elastomer Actuators for Human-Robot Interface in Hand Rehabilitation. In Proceedings of the 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, 6–9 December 2015; pp. 2635–2639. [Google Scholar]
- Low, J.H.; Ang, M.H.; Yeow, C.H. Customizable Soft Pneumatic Finger Actuators for Hand Orthotic and Prosthetic Applications. In Proceedings of the 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore, 11–14 August 2015; pp. 380–385. [Google Scholar]
- Zhang, J.; Wang, H.; Tang, J.; Guo, H.; Hong, J. Modeling and Design of a Soft Pneumatic Finger for Hand Rehabilitation. In Proceedings of the 2015 IEEE International Conference on Information and Automation, Lijiang, China, 8–10 August 2015; pp. 2460–2465. [Google Scholar]
- Fischer, H.C.; Triandafilou, K.M.; Thielbar, K.O.; Ochoa, J.M.; Lazzaro, E.D.; Pacholski, K.A.; Kamper, D.G. Use of a portable assistive glove to facilitate rehabilitation in stroke survivors with severe hand impairment. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Radder, B.; Prange-Lasonder, G.B.; Kottink, A.I.; Gaasbeek, L.; Holmberg, J.; Meyer, T.; Melendez-Calderon, A.; Ingvast, J.; Buurke, J.H.; Rietman, J.S. A wearable soft-robotic glove enables hand support in ADL and rehabilitation: A feasibility study on the assistive functionality. J. Rehabil. Assist. Technol. Eng. 2016, 3, 2055668316670553. [Google Scholar] [CrossRef]
- Radder, B.; Prange, G.B.; Kottink, A.I.; Gaasbeek, L.; Holmberg, J.; Meyer, T.; Buurke, J.; Rietman, J.S. Preliminary Findings of Feasibility of a Wearable Soft-Robotic Glove Supporting Impaired Hand Function in Daily Life. In Proceedings of the 2nd International Conference on Information and Communication Technologies for Ageing Well and e-Health, (ICT4AWE), Rome, Italy, 21–22 April 2016; SciTePress: Belfast, UK, 2016. [Google Scholar]
- Radder, B.; Prange-Lasonder, G.B.; Kottink, A.I.; Gaasbeek, L.; Sletta, K.; Holmberg, J.; Meyer, T.; Buurke, J.H.; Rietman, J.S. Preliminary evaluation of a wearable soft-robotic glove supporting grip strength in ADL. In Converging Clinical and Engineering Research on Neurorehabilitation II; Springer: Cham, Switzerland, 2017; pp. 1245–1250. [Google Scholar]
- Cao, H.; Zhang, D. Soft Robotic Glove with Integrated sEMG Sensing for Disabled People with Hand Paralysis. In Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China, 3–7 December 2016; pp. 714–718. [Google Scholar]
- Park, S.; Bishop, L.; Post, T.; Xiao, Y.; Stein, J.; Ciocarlie, M. On the Feasibility of Wearable Exotendon Networks for Whole-Hand Movement Patterns in Stroke Patients. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 3729–3735. [Google Scholar]
- Xiloyannis, M.; Cappello, L.; Khanh, D.B.; Yen, S.C.; Masia, L. Modelling and Design of a Synergy-Based Actuator for a Tendon-Driven Soft Robotic Glove. In Proceedings of the 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, 26 June 2016; pp. 1213–1219. [Google Scholar]
- Biggar, S.; Yao, W. Design and evaluation of a soft and wearable robotic glove for hand rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Jalving, J.; Huang, R.; Knepper, R.; Ruina, A.; Shepherd, R. A helping hand: Soft orthosis with integrated optical strain sensors and EMG control. IEEE Robot. Autom. Mag. 2016, 23, 55–64. [Google Scholar] [CrossRef]
- Reymundo, A.A.; Muñoz, E.M.; Navarro, M.; Vela, E.; Krebs, H.I. Hand Rehabilitation Using Soft-Robotics. In Proceedings of the 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, 26–29 June 2016. [Google Scholar]
- Al-Fahaam, H.; Davis, S.; Nefti-Meziani, S. Power Assistive and Rehabilitation Wearable Robot Based on Pneumatic Soft Actuators. In Proceedings of the 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 29 August–1 September 2016; pp. 472–477. [Google Scholar]
- Yi, J.; Shen, Z.; Song, C.; Wang, Z. A Soft Robotic Glove for Hand Motion Assistance. In Proceedings of the 2016 IEEE International Conference on Real-Time Computing and Robotics (RCAR), Angkor Wat, Cambodia, 6–10 June 2016; pp. 111–116. [Google Scholar]
- Yeo, J.C.; Yap, H.K.; Xi, W.; Wang, Z.; Yeow, C.H.; Lim, C.T. Flexible and stretchable strain sensing actuator for wearable soft robotic applications. Adv. Mater. Technol. 2016, 1, 1600018. [Google Scholar] [CrossRef]
- Nordina, I.N.; Faudzia, A.; Kamarudina, M.; Dewic, D.E.; Rehmana, T.; Razif, M. Grip force measurement of soft-actuated finger exoskeleton. J. Teknol. 2016, 78, 25–30. [Google Scholar] [CrossRef]
- Chua, M.C.; Hoon, L.J.; Yeow, R.C. Design and Evaluation of Rheumatoid Arthritis Rehabilitative Device (RARD) for Laterally Bent Fingers. In Proceedings of the 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, 26–29 June 2016; pp. 839–843. [Google Scholar]
- Gandolla, M.; Ferrante, S.; Baldassini, D.; Cottini, M.C.; Seneci, C.; Molteni, F.; Guanziroli, E.; Pedrocchi, A. EMG-Controlled Robotic Hand Rehabilitation Device for Domestic Training. In Proceedings of the XIV Mediterranean Conference on Medical and Biological Engineering and Computing, Paphos, Cyprus, 31 March–2 April 2016; Springer: Cham, Switzerland, 2016; pp. 644–648. [Google Scholar] [CrossRef]
- Thielbar, K.O.; Triandafilou, K.M.; Fischer, H.C.; O’Toole, J.M.; Corrigan, M.L.; Ochoa, J.M.; Stoykov, M.E.; Kamper, D.G. Benefits of using a voice and EMG-driven actuated glove to support occupational therapy for stroke survivors. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Popov, D.; Gaponov, I.; Ryu, J.H. Portable exoskeleton glove with soft structure for hand assistance in activities of daily living. IEEE/ASME Trans. Mechatron. 2017, 22, 865–875. [Google Scholar] [CrossRef]
- Yao, Z.; Linnenberg, C.; Argubi-Wollesen, A.; Weidner, R.; Wulfsberg, J.P. Biomimetic design of an ultra-compact and light-weight soft muscle glove. Prod. Eng. 2017, 11, 731–743. [Google Scholar] [CrossRef]
- Randazzo, L.; Iturrate, I.; Perdikis, S.; Millán, J.D. mano: A wearable hand exoskeleton for activities of daily living and neurorehabilitation. IEEE Robot. Autom. Lett. 2018, 3, 500–507. [Google Scholar] [CrossRef]
- Zaid, A.M.; Chean, T.C.; Sukor, J.A.; Hanafi, D. Development of hand exoskeleton for rehabilitation of post-stroke patient. AIP Conf. Proc. 2017, 1891, 020103. [Google Scholar]
- Li, H.; Cheng, L. Preliminary Study on the Design and Control of a Pneumatically-Actuated Hand Rehabilitation Device. In Proceedings of the 2017 32nd Youth Academic Annual Conference of Association of Automation, Hefei, China, 19–21 May 2017. [Google Scholar] [CrossRef]
- Creative Commons—Attribution 4.0 International—CC BY 4.0. Available online: http://creativecommons.org/licenses/by/4.0/.
- Khalid, Y.M.; Gouwanda, D.; Parasuraman, S. A review on the mechanical design elements of ankle rehabilitation robot. J. Eng. Med. 2015, 229, 452–463. [Google Scholar] [CrossRef] [PubMed]
Year of Publication | Actuation | Output Force (N)/Torque (Nm) | Active Degrees of Freedom | Finger Movement | Range of Motion | Weight | Functionality | Reference |
---|---|---|---|---|---|---|---|---|
2008 | Pneumatic | 14 N | 15 | Flexion | - | 120 g | ADL | [34] |
2009 | Tendon/cable-pulley | - | 15 | Flexion | - | - | Task-specific training | [35,36] |
2010 | Pneumatic | 2.8 Nm | 15 | Flexion and extension | - | - | Rehabilitation | [37] |
2011 | Pneumatic | 9 N | 15 | Flexion and extension | 90° | 120 g | Rehabilitation, ADL | [38,39] |
2012 | Tendon/cable-pulley | 20 N | 9 | Flexion | - | 700 g | Task-specific training, ADL | [40] |
18 N | 3 | Flexion and extension | 150° | - | Rehabilitation, ADL | [20,21,22,27] | ||
2013 | Tendon/cable-pulley | 15 N | 9 | Flexion and extension | - | - | Task-specific training, rehabilitation | [41,42] |
Pneumatic | 1.21 N | 3 | Flexion | - | 160 g | Rehabilitation, ADL | [8] | |
2014 | Hydraulic | 2 N (one finger) | 3 | Flexion and extension | 57.5° (Thumb) | - | Task-specific training | [43] |
Pneumatic | 14 N | 15 | Flexion and extension | 90° | - | ADL, rehabilitation, task-specific training | [44] | |
4 N | 3 | Flexion and extension | 171° | - | Rehabilitation | [45,46] | ||
2015 | Hybrid Pneumatic | 1.3 N | 3 | Flexion | 150° | - | Rehabilitation, ADL | [47,48,49,50] |
Hydraulic | 8 N | 15 | Flexion and extension | 250° | <500 g | Rehabilitation, ADL | [6,7] | |
Tendon/cable-pulley | 680 N | 15 | Flexion and extension | - | 711 g | Task-specific training, space exploration | [51] | |
29.5 N | 9 | Flexion and extension | 112° | 194 g | Rehabilitation, ADL | [18,19,52] | ||
Pneumatic | 13 N | 3 | Flexion | 149° | - | Rehabilitation | [53] | |
10.35 | 15 | Flexion | 141.2° | 200 g | Rehabilitation, ADL | [12,13] | ||
9.25 N | 12 | Flexion | 191.2° | 180 g | Rehabilitation, ADL | [9,10,11] | ||
2 N (one finger) | 3 | Flexion and extension | 143.5° | 25 g | Task-specific training, | [54] | ||
- | 3 | Flexion | 185° | - | ADL | [55] | ||
2016 | Linear actuator | - | 15 | Flexion and extension | - | - | Rehabilitation | [56] |
Tendon/cable-pulley | 45.42 N (pinch grip) | 9 | Flexion | - | - | Rehabilitation, ADL | [57,58,59] | |
35 N | 9 | Flexion and extension | - | 50 g | ADL | [60] | ||
32 N | 15 | Flexion and extension | - | - | Rehabilitation, ADL | [61] | ||
10 N | 8 | Flexion and extension | 90° | ≤500 g | Rehabilitation, ADL | [62] | ||
- | 9 | Flexion and extension | 93.22° | - | Rehabilitation | [63] | ||
Pneumatic | 35 N | 15 | Flexion | 105.9° | - | Rehabilitation | [64] | |
17.7 N | 12 | Flexion | - | 277 g | ADL | [14,15] | ||
17 N | 3 | Flexion and extension | 93° | - | Rehabilitation | [65] | ||
17 N | 15 | Flexion | 133° | 100 g | Rehabilitation | [66] | ||
10 N | 12 | Flexion and extension | - | <100 g | ADL | [67] | ||
8 N | 3 | Flexion and extension | - | 277 g | Rehabilitation, ADL | [16,17] | ||
5 N | 3 | Flexion | - | - | ADL | [68] | ||
4.66 N | 15 | Flexion and extension | - | 240 g | Rehabilitation | [69] | ||
2 N | 3 | Flexion | 40° | - | Rehabilitation | [70] | ||
- | 15 | Flexion and extension | - | - | Rehabilitation | [71] | ||
2017 | Tendon/cable-pulley | 300 N | 5 | Flexion and extension | - | 800 g | Rehabilitation | [72] |
18 N | 9 | Flexion | - | 40 g | Task-specific training, rehabilitation | [23] | ||
16 N | 15 | Flexion | 141.2° | 300 g | ADL | [73] | ||
11 N | 14 | Flexion and extension | 96° | 85.03 g | Rehabilitation | [74] | ||
5 N | 12 | Flexion and extension | 110° | 285 g | Rehabilitation, ADL | [75] | ||
Pneumatic | 35 N | 4 | Flexion and extension | 90° | - | Rehabilitation | [26] | |
22.35 N | 9 | Flexion and extension | - | 350 g | Rehabilitation, ADL | [31] | ||
4 N | 3 | Flexion and extension | 171° | - | Rehabilitation | [76] | ||
- | 15 | Extension | - | - | Rehabilitation | [77] |
Year | Actuators | Number of Fingers ≥ 3 | Control Strategy | Instrumentation | Output Force ≥ 10 N | Functionality | ||||
---|---|---|---|---|---|---|---|---|---|---|
Tendon | Pneumatic and Hydraulic | Low-Level Control | High-Level Control | EEG | EMG | Rehabilitation, CPM, Task-Specific Training | ADL | |||
2008 | 1 [34] | 1 [34] | - | 1 [34] | - | 1 [34] | 1 [34] | 1 [34] | 1 [34] | |
2009 | 1 [35] | - | 1 [35] | - | 1 [35] | - | 1 [35] | - | 1 [35] | - |
2010 | - | 1 [37] | 1 [37] | - | 1 [37] | - | - | 1 [37] | 1 [37] | - |
2011 | 1 [36] | 2 [38,39] | 3 [36,38,39] | - | 1 [39] | - | 3 [36,38,39] | 2 [39] | 3 [36,38,39] | 2 [38,39] |
2012 | 3 [20,21,40] | 3 [20,21,40] | - | 1 [40] | - | - | 2 [20,21] | 1 [40] | 2 [20,21] | |
2013 | 2 [22,41] | 1 [8] | 2 [22,41] | 2 [8,41] | - | - | 1 [41] | 1 [41] | 2 [8,41] | 1 [22] |
2014 | 3 [43,44,45] | 1 [44] | 1 [44] | 1 [45] | 1 [44] | - | 1 [45] | 3 [43,44,45] | ||
2015 | 3 [19,42,51] | 10 [6,7,11,13,17,19,47,53,54,55] | 8 [6,7,11,13,19,42,51,54] | 7 [6,7,11,13,19,51,54] | - | - | 2 [7,54] | 8 [6,7,11,17,19,42,51,53] | 11 [6,7,11,13,17,42,47,51,53,54,55] | 5 [6,7,13,19,47] |
2016 | 8 [18,56,57,58,60,61,62,63] | 14 [10,12,15,16,48,50,64,65,66,67,68,69,70,71] | 16 [10,12,15,18,48,56,57,58,60,61,62,63,64,65,67,68] | 7 [10,12,15,18,60,64,68] | 3 [48,62,65] | - | 4 [10,12,60,64] | 11 [10,12,15,16,18,60,61,62,64,65,67] | 15 [10,12,15,18,48,50,56,57,58,60,61,64,65,68,70] | 10 [10,18,50,57,58,61,62,63,64,67] |
2017 | 7 [23,52,59,72,73,74,75] | 8 [9,14,26,33,46,49,76,77] | 14 [9,14,23,26,33,46,49,52,59,72,73,74,75,77] | 9 [14,23,26,33,46,73,74,76,77] | 2 [9,49] | 1 [75] | 3 [14,72,74] | 10 [9,14,23,26,33,46,72,73,74,75] | 11 [9,23,26,33,46,49,72,74,75,76,77] | 7 [9,14,33,59,73,75,79] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahid, T.; Gouwanda, D.; Nurzaman, S.G.; Gopalai, A.A. Moving toward Soft Robotics: A Decade Review of the Design of Hand Exoskeletons. Biomimetics 2018, 3, 17. https://doi.org/10.3390/biomimetics3030017
Shahid T, Gouwanda D, Nurzaman SG, Gopalai AA. Moving toward Soft Robotics: A Decade Review of the Design of Hand Exoskeletons. Biomimetics. 2018; 3(3):17. https://doi.org/10.3390/biomimetics3030017
Chicago/Turabian StyleShahid, Talha, Darwin Gouwanda, Surya G. Nurzaman, and Alpha A. Gopalai. 2018. "Moving toward Soft Robotics: A Decade Review of the Design of Hand Exoskeletons" Biomimetics 3, no. 3: 17. https://doi.org/10.3390/biomimetics3030017