A Systematic Review of Metal Composite Bone Grafts in Preclinical Spinal Fusion Models
Abstract
1. Introduction
2. Literature Review
2.1. Study Design and Search Strategy
2.2. Eligibility Criteria
2.3. Selection Process and Screening
2.4. Data Extraction and Data Outcomes
2.5. Risk of Bias Assessment
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Included Studies
3.2. Arthrodesis Rates
3.3. Bone Quality of Formed Bone Masses
3.4. Adverse Events and Toxicity
4. Discussion
4.1. Strontium as Novel Osteoinductive Biomaterial
4.2. The Role of Magnesium in Enhancing Osteogenesis in Bone Tissue Engineering
4.3. Synergistic and Biomimetic Mechanisms of Metal-Induced Osteogenesis
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
rhBMP-2 | Recombinant human bone morphogenetic protein-2 |
TCP | Tricalcium-phosphate |
HA | Hydroxyapatite |
RANKL | Receptor activator of nuclear factor kappa ligand |
PRISMA | Preferred reporting items for systematic reviews and meta-analyses |
TP | Transverse process |
BV% | Bone volume percentage |
SYRCLE | Systematic review center for laboratory animal experimentation |
ACDF | Anterior cervical discectomy and fusion |
PLGA | Poly(lactic-co-glycolic acid) |
DBM | Demineralized bone matrix |
BMSC | Bone marrow stem cell |
ADSC | Adipose stem cell |
PRP | Platelet-rich plasma |
PDRN | Polydeoxyribonucleotide |
Ti-Al-V | Titanium–aluminum–vanadium |
CaSR | Calcium-sensing receptor |
PCL | Polycaprolactone |
VEGF | Vascular endothelial growth factor |
Appendix A. Information Sources and Search Strategy
References
- Daniels, C.J.; Wakefield, P.J.; Bub, G.A.; Toombs, J.D. A Narrative Review of Lumbar Fusion Surgery With Relevance to Chiropractic Practice. J. Chiropr. Med. 2016, 15, 259–271. [Google Scholar] [CrossRef]
- Ishida, W.; Elder, B.D.; Holmes, C.; Lo, S.-F.L.; Witham, T.F. Variables Affecting Fusion Rates in the Rat Posterolateral Spinal Fusion Model with Autogenic/Allogenic Bone Grafts: A Meta-Analysis. Ann. Biomed. Eng. 2016, 44, 3186–3201. [Google Scholar] [CrossRef]
- Shahzad, H.; Ahmad, M.; Singh, V.K.; Bhatti, N.; Yu, E.; Phillips, F.M.; Khan, S.N. Predictive Factors of Symptomatic Lumbar Pseudoarthrosis Following Multilevel Primary Lumbar Fusion. N. Am. Spine Soc. J. 2024, 17, 100302. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Ha, K.-Y.; Kim, Y.-S.; Kim, K.-W.; Rhyu, K.-W.; Park, J.-B.; Shin, J.-H.; Kim, Y.-Y.; Lee, J.-S.; Park, H.-Y.; et al. Lumbar Interbody Fusion and Osteobiologics for Lumbar Fusion. Asian Spine J. 2022, 16, 1022–1033. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Kim, K.-W.; Rhyu, K.-W.; Park, J.-B.; Shin, J.-H.; Kim, Y.-Y.; Lee, J.-S.; Ahn, J.-H.; Ryu, J.-H.; Park, H.-Y.; et al. Bone Fusion Materials: Past, Present, and Future. Asian Spine J. 2025, 19, 490–500. [Google Scholar] [CrossRef]
- McKay, W.F.; Peckham, S.M.; Badura, J.M. A Comprehensive Clinical Review of Recombinant Human Bone Morphogenetic Protein-2 (INFUSE Bone Graft). Int. Orthop. 2007, 31, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Tannoury, C.A.; An, H.S. Complications with the Use of Bone Morphogenetic Protein 2 (BMP-2) in Spine Surgery. Spine J. 2014, 14, 552–559. [Google Scholar] [CrossRef]
- Wijaya, J.H.; Tjahyanto, T.; Alexi, R.; Purnomo, A.E.; Rianto, L.; Arjuna, Y.Y.E.; Tobing, J.F.L.; Yunus, Y.; Faried, A. Application of rhBMP in Spinal Fusion Surgery: Any Correlation of Cancer Incidence? A Systematic Review and Meta-Analysis. Eur. Spine J. 2023, 32, 2020–2028. [Google Scholar] [CrossRef]
- Davis, J.; Everist, B.; Hatfield, C.; Sage, K. A Retrospective Review of MagnetOs Easypack Putty Bone Graft Used Standalone in Transforaminal Lumbar Interbody Fusion. Orthop. Rev. 2025, 17, 133986. [Google Scholar] [CrossRef]
- Bose, S.; Fielding, G.; Tarafder, S.; Bandyopadhyay, A. Understanding of Dopant-Induced Osteogenesis and Angiogenesis in Calcium Phosphate Ceramics. Trends Biotechnol. 2013, 31, 594–605. [Google Scholar] [CrossRef]
- Castiglioni, S.; Cazzaniga, A.; Albisetti, W.; Maier, J.A.M. Magnesium and Osteoporosis: Current State of Knowledge and Future Research Directions. Nutrients 2013, 5, 3022–3033. [Google Scholar] [CrossRef]
- Sun, T.; Li, Z.; Zhong, X.; Cai, Z.; Ning, Z.; Hou, T.; Xiong, L.; Feng, Y.; Leung, F.; Lu, W.W.; et al. Strontium Inhibits Osteoclastogenesis by Enhancing LRP6 and β-Catenin-Mediated OPG Targeted by miR-181d-5p. J. Cell Commun. Signal. 2019, 13, 85–97. [Google Scholar] [CrossRef]
- Lin, Z.; Cao, Y.; Zou, J.; Zhu, F.; Gao, Y.; Zheng, X.; Wang, H.; Zhang, T.; Wu, T. Improved Osteogenesis and Angiogenesis of a Novel Copper Ions Doped Calcium Phosphate Cement. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 114, 111032. [Google Scholar] [CrossRef]
- Qin, H.; Weng, J.; Zhou, B.; Zhang, W.; Li, G.; Chen, Y.; Qi, T.; Zhu, Y.; Yu, F.; Zeng, H. Magnesium Ions Promote In Vitro Rat Bone Marrow Stromal Cell Angiogenesis Through Notch Signaling. Biol. Trace Elem. Res. 2023, 201, 2823–2842. [Google Scholar] [CrossRef]
- Wu, M.-H.; Lee, M.-H.; Wu, C.; Tsai, P.-I.; Hsu, W.-B.; Huang, S.-I.; Lin, T.-H.; Yang, K.-Y.; Chen, C.-Y.; Chen, S.-H.; et al. In Vitro and In Vivo Comparison of Bone Growth Characteristics in Additive-Manufactured Porous Titanium, Nonporous Titanium, and Porous Tantalum Interbody Cages. Materials 2022, 15, 3670. [Google Scholar] [CrossRef] [PubMed]
- Fiani, B.; Jarrah, R.; Shields, J.; Sekhon, M. Enhanced Biomaterials: Systematic Review of Alternatives to Supplement Spine Fusion Including Silicon Nitride, Bioactive Glass, Amino Peptide Bone Graft, and Tantalum. Neurosurg. Focus 2021, 50, E10. [Google Scholar] [CrossRef] [PubMed]
- Hanc, M.; Fokter, S.K.; Vogrin, M.; Molicnik, A.; Recnik, G. Porous Tantalum in Spinal Surgery: An Overview. Eur. J. Orthop. Surg. Traumatol. 2016, 26, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Thomé, C.; Leheta, O.; Krauss, J.K.; Zevgaridis, D. A Prospective Randomized Comparison of Rectangular Titanium Cage Fusion and Iliac Crest Autograft Fusion in Patients Undergoing Anterior Cervical Discectomy. J. Neurosurg. Spine 2006, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Tu, J.; Wang, B.; Song, Y.; Wang, K.; Zhao, K.; Hua, W.; Li, S.; Tan, L.; Feng, X.; et al. Innovative 3D-Printed Porous Tantalum Cage with Non-Window Design to Accelerate Spinal Fusion: A Proof-of-Concept Study. Mater. Today Bio 2025, 31, 101576. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.M.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s Risk of Bias Tool for Animal Studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef] [PubMed]
- Assad, M.; Jarzem, P.; Leroux, M.A.; Coillard, C.; Chernyshov, A.V.; Charette, S.; Rivard, C.-H. Porous Titanium-Nickel for Intervertebral Fusion in a Sheep Model: Part 1. Histomorphometric and Radiological Analysis. J. Biomed. Mater. Res. B Appl. Biomater. 2003, 64, 107–120. [Google Scholar] [CrossRef]
- Assad, M.; Chernyshov, A.V.; Jarzem, P.; Leroux, M.A.; Coillard, C.; Charette, S.; Rivard, C.H. Porous Titanium-Nickel for Intervertebral Fusion in a Sheep Model: Part 2. Surface Analysis and Nickel Release Assessment. J. Biomed. Mater. Res. B Appl. Biomater. 2003, 64, 121–129. [Google Scholar] [CrossRef]
- Sidhu, K.S.; Prochnow, T.D.; Schmitt, P.; Fischgrund, J.; Weisbrode, S.; Herkowitz, H.N. Anterior Cervical Interbody Fusion with rhBMP-2 and Tantalum in a Goat Model. Spine J. 2001, 1, 331–340. [Google Scholar] [CrossRef]
- Cunningham, B.W.; Orbegoso, C.M.; Dmitriev, A.E.; Hallab, N.J.; Sefter, J.C.; McAfee, P.C. The Effect of Titanium Particulate on Development and Maintenance of a Posterolateral Spinal Arthrodesis: An in Vivo Rabbit Model. Spine 2002, 27, 1971–1981. [Google Scholar] [CrossRef] [PubMed]
- Takemoto, M.; Fujibayashi, S.; Neo, M.; So, K.; Akiyama, N.; Matsushita, T.; Kokubo, T.; Nakamura, T. A Porous Bioactive Titanium Implant for Spinal Interbody Fusion: An Experimental Study Using a Canine Model. J. Neurosurg. Spine 2007, 7, 435–443. [Google Scholar] [CrossRef]
- Kaya, R.A.; Cavuşoğlu, H.; Tanik, C.; Kaya, A.A.; Duygulu, O.; Mutlu, Z.; Zengin, E.; Aydin, Y. The Effects of Magnesium Particles in Posterolateral Spinal Fusion: An Experimental in Vivo Study in a Sheep Model. J. Neurosurg. Spine 2007, 6, 141–149. [Google Scholar] [CrossRef]
- Bròdano, G.B.; Giavaresi, G.; Lolli, F.; Salamanna, F.; Parrilli, A.; Martini, L.; Griffoni, C.; Greggi, T.; Arcangeli, E.; Pressato, D.; et al. Hydroxyapatite-Based Biomaterials Versus Autologous Bone Graft in Spinal Fusion: An In Vivo Animal Study. Spine 2014, 39, E661–E668. [Google Scholar] [CrossRef] [PubMed]
- Salamanna, F.; Giavaresi, G.; Contartese, D.; Bigi, A.; Boanini, E.; Parrilli, A.; Lolli, R.; Gasbarrini, A.; Barbanti Brodano, G.; Fini, M. Effect of Strontium Substituted ß-TCP Associated to Mesenchymal Stem Cells from Bone Marrow and Adipose Tissue on Spinal Fusion in Healthy and Ovariectomized Rat. J. Cell. Physiol. 2019, 234, 20046–20056. [Google Scholar] [CrossRef]
- Salamanna, F.; Giavaresi, G.; Parrilli, A.; Torricelli, P.; Boanini, E.; Bigi, A.; Fini, M. Antiresorptive Properties of Strontium Substituted and Alendronate Functionalized Hydroxyapatite Nanocrystals in an Ovariectomized Rat Spinal Arthrodesis Model. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 95, 355–362. [Google Scholar] [CrossRef]
- Minardi, S.; Taraballi, F.; Cabrera, F.J.; Van Eps, J.; Wang, X.; Gazze, S.A.; Fernandez-Mourev, J.S.; Tampieri, A.; Francis, L.; Weiner, B.K.; et al. Biomimetic Hydroxyapatite/collagen Composite Drives Bone Niche Recapitulation in a Rabbit Orthotopic Model. Mater. Today Bio 2019, 2, 100005. [Google Scholar] [CrossRef]
- Van Eps, J.L.; Fernandez-Moure, J.S.; Cabrera, F.J.; Taraballi, F.; Paradiso, F.; Minardi, S.; Wang, X.; Aghdasi, B.; Tasciotti, E.; Weiner, B.K. Improved Posterolateral Lumbar Spinal Fusion Using a Biomimetic, Nanocomposite Scaffold Augmented by Autologous Platelet-Rich Plasma. Front. Bioeng. Biotechnol. 2021, 9, 622099. [Google Scholar] [CrossRef]
- Cui, L.; Xiang, S.; Chen, D.; Fu, R.; Zhang, X.; Chen, J.; Wang, X. A Novel Tissue-Engineered Bone Graft Composed of Silicon-Substituted Calcium Phosphate, Autogenous Fine Particulate Bone Powder and BMSCs Promotes Posterolateral Spinal Fusion in Rabbits. J. Orthop. Transl. 2021, 26, 151–161. [Google Scholar] [CrossRef]
- Conway, J.C.; Oliver, R.A.; Wang, T.; Wills, D.J.; Herbert, J.; Buckland, T.; Walsh, W.R.; Gibson, I.R. The Efficacy of a Nanosynthetic Bone Graft Substitute as a Bone Graft Extender in Rabbit Posterolateral Fusion. Spine J. 2021, 21, 1925–1937. [Google Scholar] [CrossRef]
- Lee, H.Y.; Kim, D.-S.; Hwang, G.Y.; Lee, J.-K.; Lee, H.-L.; Jung, J.-W.; Hwang, S.Y.; Baek, S.-W.; Yoon, S.L.; Ha, Y.; et al. Multi-Modulation of Immune-Inflammatory Response Using Bioactive Molecule-Integrated PLGA Composite for Spinal Fusion. Mater. Today Bio 2023, 19, 100611. [Google Scholar] [CrossRef]
- Newsom, E.T.; Sadeghpour, A.; Entezari, A.; Vinzons, J.L.U.; Stanford, R.E.; Mirkhalaf, M.; Chon, D.; Dunstan, C.R.; Zreiqat, H. Design and Evaluation of 3D-Printed Sr-HT-Gahnite Bioceramic for FDA Regulatory Submission: A Good Laboratory Practice Sheep Study. Acta Biomater. 2023, 156, 214–221. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Zhang, Y.; Zhou, Y. Strontium Functionalized in Biomaterials for Bone Tissue Engineering: A Prominent Role in Osteoimmunomodulation. Front. Bioeng. Biotechnol. 2022, 10, 928799. [Google Scholar] [CrossRef] [PubMed]
- Pilmane, M.; Salma-Ancane, K.; Loca, D.; Locs, J.; Berzina-Cimdina, L. Strontium and Strontium Ranelate: Historical Review of Some of Their Functions. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 78, 1222–1230. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Adeeb, S.M.; Duke, M.J.; Munoz-Paniagua, D.; Doschak, M.R. Compositional and Material Properties of Rat Bone after Bisphosphonate And/or Strontium Ranelate Drug Treatment. J. Pharm. Pharm. Sci. 2013, 16, 52–64. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, N.K.; Lee, S.Y. Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation. Mol. Cells 2017, 40, 706–713. [Google Scholar] [CrossRef]
- Reginster, J.Y.; Neuprez, A.; Dardenne, N.; Beaudart, C.; Emonts, P.; Bruyere, O. Efficacy and Safety of Currently Marketed Anti-Osteoporosis Medications. Best Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 809–834. [Google Scholar] [CrossRef]
- Zhu, S.; Hu, X.; Tao, Y.; Ping, Z.; Wang, L.; Shi, J.; Wu, X.; Zhang, W.; Yang, H.; Nie, Z.; et al. Strontium Inhibits Titanium Particle-Induced Osteoclast Activation and Chronic Inflammation via Suppression of NF-κB Pathway. Sci. Rep. 2016, 6, 36251. [Google Scholar] [CrossRef]
- Xie, H.; Gu, Z.; He, Y.; Xu, J.; Xu, C.; Li, L.; Ye, Q. Microenvironment Construction of Strontium-Calcium-Based Biomaterials for Bone Tissue Regeneration: The Equilibrium Effect of Calcium to Strontium. J. Mater. Chem. B 2018, 6, 2332–2339. [Google Scholar] [CrossRef]
- Almeida, M.M.; Nani, E.P.; Teixeira, L.N.; Peruzzo, D.C.; Joly, J.C.; Napimoga, M.H.; Martinez, E.F. Strontium Ranelate Increases Osteoblast Activity. Tissue Cell 2016, 48, 183–188. [Google Scholar] [CrossRef]
- Liu, J.; Rawlinson, S.C.F.; Hill, R.G.; Fortune, F. Strontium-Substituted Bioactive Glasses in Vitro Osteogenic and Antibacterial Effects. Dent. Mater. 2016, 32, 412–422. [Google Scholar] [CrossRef]
- Wu, C.; Chen, Z.; Yi, D.; Chang, J.; Xiao, Y. Multidirectional Effects of Sr-, Mg-, and Si-Containing Bioceramic Coatings with High Bonding Strength on Inflammation, Osteoclastogenesis, and Osteogenesis. ACS Appl. Mater. Interfaces 2014, 6, 4264–4276. [Google Scholar] [CrossRef]
- Autefage, H.; Allen, F.; Tang, H.M.; Kallepitis, C.; Gentleman, E.; Reznikov, N.; Nitiputri, K.; Nommeots-Nomm, A.; O’Donnell, M.D.; Lange, C.; et al. Multiscale Analyses Reveal Native-like Lamellar Bone Repair and near Perfect Bone-Contact with Porous Strontium-Loaded Bioactive Glass. Biomaterials 2019, 209, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cui, X.; Zhao, S.; Wang, H.; Rahaman, M.N.; Liu, Z.; Huang, W.; Zhang, C. Evaluation of Injectable Strontium-Containing Borate Bioactive Glass Cement with Enhanced Osteogenic Capacity in a Critical-Sized Rabbit Femoral Condyle Defect Model. ACS Appl. Mater. Interfaces 2015, 7, 2393–2403. [Google Scholar] [CrossRef] [PubMed]
- Demirel, M.; Kaya, A.I. Effect of Strontium-Containing Compounds on Bone Grafts. J. Mater. Sci. 2020, 55, 6305–6329. [Google Scholar] [CrossRef]
- Henriques Lourenço, A.; Neves, N.; Ribeiro-Machado, C.; Sousa, S.R.; Lamghari, M.; Barrias, C.C.; Trigo Cabral, A.; Barbosa, M.A.; Ribeiro, C.C. Injectable Hybrid System for Strontium Local Delivery Promotes Bone Regeneration in a Rat Critical-Sized Defect Model. Sci. Rep. 2017, 7, 5098. [Google Scholar] [CrossRef]
- Müller, W.E.G.; Tolba, E.; Ackermann, M.; Neufurth, M.; Wang, S.; Feng, Q.; Schröder, H.C.; Wang, X. Fabrication of Amorphous Strontium Polyphosphate Microparticles That Induce Mineralization of Bone Cells in Vitro and in Vivo. Acta Biomater. 2017, 50, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Reginster, J.-Y.; Kaufman, J.-M.; Goemaere, S.; Devogelaer, J.P.; Benhamou, C.L.; Felsenberg, D.; Diaz-Curiel, M.; Brandi, M.-L.; Badurski, J.; Wark, J.; et al. Maintenance of Antifracture Efficacy over 10 Years with Strontium Ranelate in Postmenopausal Osteoporosis. Osteoporos. Int. 2012, 23, 1115–1122. [Google Scholar] [CrossRef]
- Cheung, K.M.C.; Lu, W.W.; Luk, K.D.K.; Wong, C.T.; Chan, D.; Shen, J.X.; Qiu, G.X.; Zheng, Z.M.; Li, C.H.; Liu, S.L.; et al. Vertebroplasty by Use of a Strontium-Containing Bioactive Bone Cement. Spine 2005, 30, S84–S91. [Google Scholar] [CrossRef]
- Korovessis, P.; Mpountogianni, E.; Syrimpeis, V.; Baikousis, A.; Tsekouras, V. Percutaneous Injection of Strontium Containing Hydroxyapatite versus Polymethacrylate Plus Short-Segment Pedicle Screw Fixation for Traumatic A2- and A3/AO-Type Fractures in Adults. Adv. Orthop. 2018, 2018, 6365472. [Google Scholar] [CrossRef]
- Yoshizawa, S.; Brown, A.; Barchowsky, A.; Sfeir, C. Magnesium Ion Stimulation of Bone Marrow Stromal Cells Enhances Osteogenic Activity, Simulating the Effect of Magnesium Alloy Degradation. Acta Biomater. 2014, 10, 2834–2842. [Google Scholar] [CrossRef]
- Hung, C.-C.; Chaya, A.; Liu, K.; Verdelis, K.; Sfeir, C. The Role of Magnesium Ions in Bone Regeneration Involves the Canonical Wnt Signaling Pathway. Acta Biomater. 2019, 98, 246–255. [Google Scholar] [CrossRef]
- Nie, X.; Zhang, X.; Lei, B.; Shi, Y.; Yang, J. Regulation of Magnesium Matrix Composites Materials on Bone Immune Microenvironment and Osteogenic Mechanism. Front. Bioeng. Biotechnol. 2022, 10, 842706. [Google Scholar] [CrossRef]
- Mammoli, F.; Castiglioni, S.; Parenti, S.; Cappadone, C.; Farruggia, G.; Iotti, S.; Davalli, P.; Maier, J.A.M.; Grande, A.; Frassineti, C. Magnesium Is a Key Regulator of the Balance between Osteoclast and Osteoblast Differentiation in the Presence of Vitamin D3. Int. J. Mol. Sci. 2019, 20, 385. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.; Shadanbaz, S.; Woodfield, T.B.F.; Staiger, M.P.; Dias, G.J. Magnesium Biomaterials for Orthopedic Application: A Review from a Biological Perspective. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102, 1316–1331. [Google Scholar] [CrossRef]
- Elkhenany, H. Emerging Nanomaterials Capable of Effectively Facilitating Osteoblast Maturation. Nanomedicine 2025, 20, 1603–1619. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Cao, C.; Wang, X.; Tao, J.; Li, C.; Xin, H.; Yang, J.; Song, Y.; Ai, F. Magnesium-Alloy Rods Reinforced Bioglass Bone Cement Composite Scaffolds with Cortical Bone-Matching Mechanical Properties and Excellent Osteoconductivity for Load-Bearing Bone in Vivo Regeneration. Sci. Rep. 2020, 10, 18193. [Google Scholar] [CrossRef]
- Kim, D.-S.; Lee, J.-K.; Kim, J.H.; Lee, J.; Kim, D.S.; An, S.; Park, S.-B.; Kim, T.-H.; Rim, J.S.; Lee, S.; et al. Advanced PLGA Hybrid Scaffold with a Bioactive PDRN/BMP2 Nanocomplex for Angiogenesis and Bone Regeneration Using Human Fetal MSCs. Sci. Adv. 2021, 7, eabj1083. [Google Scholar] [CrossRef]
- Liu, W.; Guo, S.; Tang, Z.; Wei, X.; Gao, P.; Wang, N.; Li, X.; Guo, Z. Magnesium Promotes Bone Formation and Angiogenesis by Enhancing MC3T3-E1 Secretion of PDGF-BB. Biochem. Biophys. Res. Commun. 2020, 528, 664–670. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Dey, A.; Neogi, S. An Insight into the Mechanism of Antibacterial Activity by Magnesium Oxide Nanoparticles. J. Mater. Chem. B 2021, 9, 5329–5339. [Google Scholar] [CrossRef]
- Malham, G.M.; Louie, P.K.; Brazenor, G.A.; Mobbs, R.J.; Walsh, W.R.; Sethi, R.K. Recombinant Human Bone Morphogenetic Protein-2 in Spine Surgery: Recommendations for Use and Alternative Bone Substitutes-a Narrative Review. J. Spine Surg. 2022, 8, 477–490. [Google Scholar] [CrossRef]
- Hall, J.; Sorensen, R.G.; Wozney, J.M.; Wikesjö, U.M.E. Bone Formation at rhBMP-2-Coated Titanium Implants in the Rat Ectopic Model. J. Clin. Periodontol. 2007, 34, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Wikesjö, U.M.E.; Huang, Y.-H.; Xiropaidis, A.V.; Sorensen, R.G.; Rohrer, M.D.; Prasad, H.S.; Wozney, J.M.; Hall, J. Bone Formation at Recombinant Human Bone Morphogenetic Protein-2-Coated Titanium Implants in the Posterior Maxilla (Type IV Bone) in Non-Human Primates. J. Clin. Periodontol. 2008, 35, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Bhuller, Y.; Jeng, W.; Wells, P.G. Variable in Vivo Embryoprotective Role for Ataxia-Telangiectasia-Mutated against Constitutive and Phenytoin-Enhanced Oxidative Stress in Atm Knockout Mice. Toxicol. Sci. 2006, 93, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Zhang, J.; Tian, Y.; Huang, B.; Yuan, Y.; Liu, C. Magnesium Modification up-Regulates the Bioactivity of Bone Morphogenetic Protein-2 upon Calcium Phosphate Cement via Enhanced BMP Receptor Recognition and Smad Signaling Pathway. Colloids Surf. B Biointerfaces 2016, 145, 140–151. [Google Scholar] [CrossRef]
- Dec, P.; Modrzejewski, A.; Pawlik, A. Existing and Novel Biomaterials for Bone Tissue Engineering. Int. J. Mol. Sci. 2022, 24, 529. [Google Scholar] [CrossRef]
- Quade, M.; Vater, C.; Schlootz, S.; Bolte, J.; Langanke, R.; Bretschneider, H.; Gelinsky, M.; Goodman, S.B.; Zwingenberger, S. Strontium Enhances BMP-2 Mediated Bone Regeneration in a Femoral Murine Bone Defect Model. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 174–182. [Google Scholar] [CrossRef]
- Zare, E.N.; Jamaledin, R.; Naserzadeh, P.; Afjeh-Dana, E.; Ashtari, B.; Hosseinzadeh, M.; Vecchione, R.; Wu, A.; Tay, F.R.; Borzacchiello, A.; et al. Metal-Based Nanostructures/PLGA Nanocomposites: Antimicrobial Activity, Cytotoxicity, and Their Biomedical Applications. ACS Appl. Mater. Interfaces 2020, 12, 3279–3300. [Google Scholar] [CrossRef]
- Yuan, Z.; Wei, P.; Huang, Y.; Zhang, W.; Chen, F.; Zhang, X.; Mao, J.; Chen, D.; Cai, Q.; Yang, X. Injectable PLGA Microspheres with Tunable Magnesium Ion Release for Promoting Bone Regeneration. Acta Biomater. 2019, 85, 294–309. [Google Scholar] [CrossRef]
- Mao, Z.; Fang, Z.; Yang, Y.; Chen, X.; Wang, Y.; Kang, J.; Qu, X.; Yuan, W.; Dai, K. Strontium Ranelate-Loaded PLGA Porous Microspheres Enhancing the Osteogenesis of MC3T3-E1 Cells. RSC Adv. 2017, 7, 24607–24615. [Google Scholar] [CrossRef]
- Hassan, M.; Sulaiman, M.; Yuvaraju, P.D.; Galiwango, E.; Rehman, I.U.; Al-Marzouqi, A.H.; Khaleel, A.; Mohsin, S. Biomimetic PLGA/Strontium-Zinc Nano Hydroxyapatite Composite Scaffolds for Bone Regeneration. J. Funct. Biomater. 2022, 13, 13. [Google Scholar] [CrossRef]
- Yu, S.; Sun, T.; Liu, W.; Yang, L.; Gong, H.; Chen, X.; Li, J.; Weng, J. PLGA Cage-Like Structures Loaded with Sr/Mg-Doped Hydroxyapatite for Repairing Osteoporotic Bone Defects. Macromol. Biosci. 2022, 22, e2200092. [Google Scholar] [CrossRef]
- Valizadeh, R.; Amirazad, H.; Fayeghi, T.; Mousazadeh, H.; Zarghami, N.; Ebrahimi-Kalan, A.; Alizadeh, E. An Update on the Effect of Metals on Stemness Properties of Mesenchymal Stem Cells. J. Mater. Sci. Mater. Med. 2025, 36, 44. [Google Scholar] [CrossRef] [PubMed]
- Geng, Z.; Wang, R.; Zhuo, X.; Li, Z.; Huang, Y.; Ma, L.; Cui, Z.; Zhu, S.; Liang, Y.; Liu, Y.; et al. Incorporation of Silver and Strontium in Hydroxyapatite Coating on Titanium Surface for Enhanced Antibacterial and Biological Properties. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 852–861. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.H.; Liu, Y.J.; Wang, W.; Zhang, Y.Z. Improved Biological Performance of Magnesium by Micro-Arc Oxidation. Braz. J. Med. Biol. Res. 2015, 48, 214–225. [Google Scholar] [CrossRef]
- Bosetti, M.; Massè, A.; Tobin, E.; Cannas, M. Silver Coated Materials for External Fixation Devices: In Vitro Biocompatibility and Genotoxicity. Biomaterials 2002, 23, 887–892. [Google Scholar] [CrossRef]
- Eto, S.; Miyamoto, H.; Shobuike, T.; Noda, I.; Akiyama, T.; Tsukamoto, M.; Ueno, M.; Someya, S.; Kawano, S.; Sonohata, M.; et al. Silver Oxide-Containing Hydroxyapatite Coating Supports Osteoblast Function and Enhances Implant Anchorage Strength in Rat Femur. J. Orthop. Res. 2015, 33, 1391–1397. [Google Scholar] [CrossRef]
- Fazel Anvari-Yazdi, A.; Tahermanesh, K.; Hadavi, S.M.M.; Talaei-Khozani, T.; Razmkhah, M.; Abed, S.M.; Mohtasebi, M.S. Cytotoxicity Assessment of Adipose-Derived Mesenchymal Stem Cells on Synthesized Biodegradable Mg-Zn-Ca Alloys. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 69, 584–597. [Google Scholar] [CrossRef]
- Norambuena, G.A.; Patel, R.; Karau, M.; Wyles, C.C.; Jannetto, P.J.; Bennet, K.E.; Hanssen, A.D.; Sierra, R.J. Antibacterial and Biocompatible Titanium-Copper Oxide Coating May Be a Potential Strategy to Reduce Periprosthetic Infection: An In Vitro Study. Clin. Orthop. Relat. Res. 2017, 475, 722–732. [Google Scholar] [CrossRef]
- Matassi, F.; Botti, A.; Sirleo, L.; Carulli, C.; Innocenti, M. Porous Metal for Orthopedics Implants. Clin. Cases Miner. Bone Metab. 2013, 10, 111–115. [Google Scholar]
- Wei, J.; Jia, J.; Wu, F.; Wei, S.; Zhou, H.; Zhang, H.; Shin, J.-W.; Liu, C. Hierarchically Microporous/macroporous Scaffold of Magnesium-Calcium Phosphate for Bone Tissue Regeneration. Biomaterials 2010, 31, 1260–1269. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Huan, Y.; Zhu, B.; Chen, H.; Tang, M.; Yan, Y.; Wang, C.; Ouyang, Z.; Li, X.; Xue, J.; et al. Research Progress on the Biological Modifications of Implant Materials in 3D Printed Intervertebral Fusion Cages. J. Mater. Sci. Mater. Med. 2021, 33, 2. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yeung, K.W.K. Bone Grafts and Biomaterials Substitutes for Bone Defect Repair: A Review. Bioact. Mater. 2017, 2, 224–247. [Google Scholar] [CrossRef]
- Kang, Y.; Liu, C.; Wang, M.; Wang, C.; Yan, Y.-G.; Wang, W.-J. A Novel Rat Model of Interbody Fusion Based on Anterior Lumbar Corpectomy and Fusion (ALCF). BMC Musculoskelet. Disord. 2021, 22, 965. [Google Scholar] [CrossRef] [PubMed]
- Lindley, E.M.; Barton, C.; Blount, T.; Burger, E.L.; Cain, C.M.J.; Seim, H.B., 3rd; Turner, A.S.; Patel, V.V. An Analysis of Spine Fusion Outcomes in Sheep Pre-Clinical Models. Eur. Spine J. 2017, 26, 228–239. [Google Scholar] [CrossRef]
- Riordan, A.M.; Rangarajan, R.; Balts, J.W.; Hsu, W.K.; Anderson, P.A. Reliability of the Rabbit Postero-Lateral Spinal Fusion Model: A Meta-Analysis. J. Orthop. Res. 2013, 31, 1261–1269. [Google Scholar] [CrossRef]
Ref | Animal Model | Procedure | Levels Fused | Graft Composition | Graft Size | Sample Size (n) | Latest Follow-Up (Weeks) | Animals Fused at Latest Follow-Up (%) | Average (± SD) BV% | AE (n) | Histology of Fusion Masses |
---|---|---|---|---|---|---|---|---|---|---|---|
[24] | Goat | ACDF | C4–C5 | (1) Porous Ta | 10 mm × 10 mm | 4 | 12 | 0 | 2.5 ± 4.6 | 1 | Fibrous tissue only |
(2) Porous Ta + rhBMP-2 | 10 mm × 10 mm | 4 | 12 | 25 | 11.0 ± 11.0 | 0 | Bone deposition at implant site with metallic debris | ||||
[25] | Rabbit | PLF | L5–L6 | (1) AG | 2.0 g AG | 15 | 8 | 60 | NR | 2 | Trabecular bone deposition at implant site with fibrous interspace |
(2) Ti + AG | 2.0 g AG + 200 mg Ti | 15 | 8 | 60 | NR | 2 | Bone deposition at implant site with dense fibrous tissue, inflammation, metallic debris, and apoptosis of tissue | ||||
[22,23] | Sheep | PLF + Discectomy | L3–L4 (n = 16) L4–L5 (n = 16) | (1) TiAlV Cage + AG | 11 mm × 20 mm | 16 | 52 | 25 | 37.6 | 0 | Trabecular bone deposition with marked angiogenesis |
(2) Porous Ti-Ni | 11 mm × 20 mm | 16 | 52 | 81.25 | 25.4 (p = 0.052) | 1 | Trabecular bone deposition with dense fibrous tissue | ||||
[26] | Dog | ALIF | L5–L6 | (1) Porous Ti | 8 mm × 24 mm | 5 | 12 | 60 | 40.8 ± 23.6 | 0 | Incomplete bone deposition at implant site with dense fibrous tissue and marked angiogenesis |
(2) Porous Ti + NaOH-HCl | 8 mm × 24 mm | 5 | 12 | 100 | 81.9 ± 7.7 (p = 0.01) | 0 | Lamellar bone deposition at implant site with marked angiogenesis | ||||
[27] | Sheep | PLF | L2–L3 L5–L6 | (1) AG | 5 cm3 AG | 16 | 24 | 62.5 | NR | 0 | Bone deposition at implant site with sparse fibrous tissue |
(2) AG + Mg | 5 cm3 AG + 1 cm3 Mg | 16 | 24 | 81.25 (p = 0.119) | NR | 0 | Cortical and trabecular bone deposition with large marrow spaces | ||||
[28] | Sheep | PLF | T12–T13 L2–L3 | (1) AG | 5 cm3 | 18 | 24 | “Partial” | 55.9 ± 4.7 | 0 | Trabecular bone deposition at implant site |
(2) MgHA | 5 cm3 | 9 | 24 | “Complete” | 53.1 ± 5.6 | 0 | Trabecular bone deposition at implant site | ||||
(3) MgHA + DBM | 5 cm3 | 9 | 24 | “Partial” | 44.3 ± 3.3 (p < 0.05 vs. AG) | 0 | Trabecular bone deposition at implant site | ||||
[29] | Rat | PLF | L4–L6 | (1) Sr-TCP | NR | 5 | 8 | NR | 25.6 (9.2) * | 0 | Trabecular bone deposition at implant site |
(2) Sr-TCP + BMSCs | NR | 5 | 8 | NR | 24.0 (6.9) * | 0 | Trabecular bone deposition at implant site | ||||
(3) Sr-TCP + ADSCs | NR | 5 | 8 | NR | 26.0 (3.2) * | 0 | Poor bone deposition with dense fibrous tissue | ||||
[30] | Rat | PLF | L4–L5 | (1) HA | NR | 5 | 8 | 0 | 38.3 | 0 | Bone deposition at implant site |
(2) HA + 7 mM ALN | NR | 5 | 8 | 100 | 36.1 | 0 | Bone deposition at implant site | ||||
(3) HA + 28 mM ALN | NR | 5 | 8 | 100 | 34.3 | 0 | Trabecular bone deposition at implant site | ||||
(4) SrHA 5% | NR | 5 | 8 | 100 | 37.8 | 0 | Trabecular bone deposition at implant site | ||||
(5) SrHA 10% | NR | 5 | 8 | 100 | 37.8 | 0 | Trabecular bone deposition at implant site with marked endochondral ossification | ||||
[31] | Rabbit | PLF | L5–L6 | (1) MgHA + Collagen | 4 cm × 1 cm | 12 | 6 | NR | NR | 0 | Bone deposition at implant site with incomplete remodeling |
[32] | Rabbit | PLF | L5–L6 | (1) MgHA + Collagen | 4 cm × 1 cm | 8 | 6 | 12.5 | NR | 5 | Trabecular bone deposition at implant site |
(2) MgHA + Collagen + PRP | 4 cm × 1 cm | 8 | 6 | 75 | NR | 0 | Dense trabecular bone deposition at implant site | ||||
[33] | Rabbit | PLF | L5–L6 | (1) AG | 1.25 g | 24 | 12 | 100 | 33.8 ± 1.6 | 0 | Trabecular bone deposition at implant site with marked angiogenesis |
(2) Si-CaP | 1.25 g | 24 | 12 | 37.5 | 16.7 ± 0.8 | 0 | Bone deposition at implant site with dense fibrous tissue and woven bone | ||||
(3) Si-CaP + AG | 0.625 g Si-CaP + 0.625 g AG | 24 | 12 | 62.5 | 29.5 ± 1.4 (p < 0.05 vs. Si-CaP and Si-CaP + AG) | 0 | Trabecular bone deposition at implant site with marked angiogenesis | ||||
(4) Si-CaP + AG + BMSCs | 0.625 g Si-CaP + 0.625 g AG | 24 | 12 | 100 | 32.5 ± 1.5 | 4 | Trabecular bone deposition at implant site with marked angiogenesis; trace remnant Si-CaP | ||||
[34] | Rabbit | PLF | L4–L5 | (1) AG | 2 cc | 18 | 26 | 87.5 | 68 | 0 | Bone deposition at implant site with marked chondroblast tissue |
(2) Si-CaP + Hydrogel + AG | 1 cm3 Si-CaP/Hydrogel + 1 cm3 AG | 23 | 26 | 100 | 67 | 0 | Trabecular bone deposition at implant site with marked endochondral ossification | ||||
(3) Biphasic CaP + Collagen + AG | 1 cm3 Biphasic CaP/Collagen + 1 cm3 AG | 23 | 26 | 0 (p < 0.05 vs. AG and Si-CaP) | 62 | 0 | Bone deposition at implant site with dense fibrous tissue and autograft remnant | ||||
[35] | Rat | PLF | L4–L5 | (1) AG | 12 mm × 4 mm | 20 | 8 | 100 | 49 ± 0.6 | 0 | Bone deposition at implant site |
(2) AG + PLGA | 12 mm × 4 mm | 20 | 8 | 100 | 50.7 ± 0.5 | 0 | Bone deposition at implant site | ||||
(3) AG + PLGA + Mg | 12 mm × 4 mm | 25 | 8 | 100 | 51.1 ± 0.8 | 0 | Bone deposition at implant site | ||||
(4) AG + PLGA + Mg + DBM | 12 mm × 4 mm | 25 | 8 | 100 | 52 ± 0.6 | 0 | Bone deposition at implant site | ||||
(5) AG + PLGA + Mg + DBM + PDRN | 12 mm × 4 mm | 25 | 8 | 100 | 54.7 ± 1.2 | 0 | Bone deposition at implant site with marked bone mineralization, calcium, and angiogenesis | ||||
[36] | Sheep | ACDF | C2–C3 C4–C6 | (1) Valeo ceramic cage + AG | 12 mm × 16 mm | 8 | 6 | 100 | NR | 0 | Implant-related histopathologic changes |
(2) Sr-Hardystonite- Gahnite | 14 mm × 17 mm | 8 | 6 | 100 | NR | 0 | Implant-related histopathologic changes |
Ref | Selection Bias | Performance Bias | Detection Bias | Attrition Bias | Reporting Bias | Was the Study Apparently Free of Other Problems that Could Result in High Risk of Bias | ||||
---|---|---|---|---|---|---|---|---|---|---|
Were Animals Randomly Assigned to Groups? | Were Groups Similar at Baseline? | Was Group Allocation Blinded? | Were the Animals Randomly Housed During the Experiment? | Were the Caregivers and/or Investigators Blinded from Knowledge of Which Intervention Each Animal Received During the Experiment? | Were Animals Selected at Random for Outcome Assessment? | Was the Outcome Assessor Blinded? | Were Incomplete Outcome Data Adequately Addressed? | Are Reports of the Study Free of Selective Outcome Reporting? | ||
[24] | Unclear | Yes | No | Yes | No | Yes | No | Yes | Yes | Yes |
[25] | Yes | Yes | No | Yes | No | Yes | Yes | Yes | Yes | Yes |
[22,23] | Unclear | Yes | No | Yes | No | Yes | No | Yes | Yes | Yes |
[26] | Yes | Yes | No | Yes | No | Yes | No | Yes | Yes | Yes |
[27] | Unclear | Yes | No | Unclear | No | Yes | Yes | Yes | Yes | Yes |
[28] | Unclear | Yes | No | Yes | No | Unclear | No | Yes | No | Yes |
[29] | Yes | Yes | No | Yes | No | Yes | Yes | Yes | Yes | Yes |
[30] | Unclear | Yes | No | Yes | No | Yes | No | Yes | Yes | Yes |
[31] | Yes | Yes | No | Yes | No | Yes | No | Yes | Yes | Yes |
[32] | Unclear | Yes | No | Yes | No | Yes | Yes | Yes | Yes | Yes |
[33] | Yes | Yes | No | Yes | No | Unclear | Yes | Yes | No | Yes |
[34] | Unclear | Yes | No | Yes | No | Unclear | Yes | Yes | No | Yes |
[35] | Unclear | Yes | No | Yes | No | Yes | No | Yes | Yes | Yes |
[36] | Unclear | Yes | No | Yes | No | Unclear | No | Yes | No | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajkovic, C.; Shafi, M.; Sarkar, N.; Hernandez, V.; Yang, L.; Witham, T.F. A Systematic Review of Metal Composite Bone Grafts in Preclinical Spinal Fusion Models. Biomimetics 2025, 10, 594. https://doi.org/10.3390/biomimetics10090594
Rajkovic C, Shafi M, Sarkar N, Hernandez V, Yang L, Witham TF. A Systematic Review of Metal Composite Bone Grafts in Preclinical Spinal Fusion Models. Biomimetics. 2025; 10(9):594. https://doi.org/10.3390/biomimetics10090594
Chicago/Turabian StyleRajkovic, Christian, Mahnoor Shafi, Naboneeta Sarkar, Vaughn Hernandez, Liwen Yang, and Timothy F. Witham. 2025. "A Systematic Review of Metal Composite Bone Grafts in Preclinical Spinal Fusion Models" Biomimetics 10, no. 9: 594. https://doi.org/10.3390/biomimetics10090594
APA StyleRajkovic, C., Shafi, M., Sarkar, N., Hernandez, V., Yang, L., & Witham, T. F. (2025). A Systematic Review of Metal Composite Bone Grafts in Preclinical Spinal Fusion Models. Biomimetics, 10(9), 594. https://doi.org/10.3390/biomimetics10090594