Enhanced Whale Optimization Algorithm with Novel Strategies for 3D TSP Problem
Abstract
1. Introduction
- A Dynamic Cluster Center-guided Search Strategy Based on the K-means Clustering Algorithm: This method divides the population into multiple subgroups, with each subgroup conducting searches around its corresponding clustering center. Meanwhile, the clustering centers are recalculated in each iteration to dynamically adjust the centroids, enabling rapid adaptation to population changes and enhancing adaptability and robustness, thus avoiding premature convergence. Additionally, the position update strategy—which integrates both the position of the globally optimal individual and the centroid position of local clusters—demonstrates rapid environmental adaptability. It reduces redundant search operations while improving overall search efficiency, reliably converging to the globally optimal solution.
- Dual-Modal Population Diversity-Driven Adaptive Mutation Strategy: When individuals in the population exhibit excessive similarity, the algorithm tends to converge prematurely to a local optimum. Traditional methods primarily assess diversity by merely measuring the distances between individuals within the population, which fails to fully capture the diversity of the population. To more comprehensively depict the heterogeneous characteristics of the population, this strategy considers both spatial distribution diversity and fitness value diversity. Additionally, this strategy develops a dynamic mutation mechanism that adjusts the mutation probability in real time based on the population’s diversity state. When diversity is low, mutations are applied with a higher probability to enhance global exploration capabilities; conversely, when diversity is high, mutations are applied with a lower probability to maintain convergence efficiency. Compared to static parameter configurations, this adaptive adjustment mechanism demonstrates stronger robustness and adaptability to specific problems.
- Pattern Search Strategy Based on the GPSPositiveBasis2N Algorithm: WOA struggles to perform refined searches in certain complex spaces. This proposed strategy combines WOA with a pattern search method to leverage the strengths of both approaches, thereby enhancing optimization performance. Specifically, WOA can swiftly locate potential optimal regions within the global search space, while the pattern search strategy conducts refined searches within these regions, thus improving overall efficiency. Consequently, this strategy introduces a hybrid optimization framework that integrates the pattern search method, namely the “GPSPositiveBasis2N algorithm,” as a periodic optimization module within the workflow of the WOA. By combining the complementary advantages of global exploration (achieved by WOA) and local precise optimization (achieved by GPSPositiveBasis2N), this framework enhances the solution quality and convergence efficiency.
2. The Original WOA
2.1. Prey Encirclement
2.2. Bubble-Net Attack
2.3. Searching for Prey
3. Proposed ImWOA
3.1. A Dynamic Cluster Center-Guided Search Strategy Based on the K-Means Clustering Algorithm
3.2. Dual-Modal Population Diversity-Driven Adaptive Mutation Strategy
- Low-Diversity Regime ()
- Implies reduced population diversity:
- Higher activation probability:
- Promotes intensified exploration through frequent mutations.
- High-Diversity Regime ()
- Indicates sufficient population diversity:
- Lower activation probability:
- Prioritizes exploitation by suppressing unnecessary mutations.
3.3. Pattern Search Strategy Based on the GPSPositiveBasis2N Algorithm
- Direction Set Coverage:
- 2.
- Adaptability to Non-Smooth/Noisy Functions:
- 3.
- Global Exploration Capability:
- 4.
- Convergence Guarantee:
Algorithm 1 GPSPositiveBasis2N algorithm |
Require: Objective function Initial point Lower bound , upper bound Initial step size , tolerance Maximum iterations Ensure: Optimal solution , optimal value
|
3.4. Whole Framework for ImWOA
3.5. Computational Complexity Analysis of Algorithms
3.6. Convergence Analysis of ImWOA
- Global convergence guarantee of stochastic searchAccording to the Solís–Wets stochastic optimization convergence theorem, ImWOA satisfies two key conditions for probability-1 global convergence:
- Solution space denseness: Achieved through the diversity-guided mutation mechanism. When population diversity decreases, Gaussian mutation is triggered to ensure solution space coverage.
- Elitism preservation strategy: The strict historical best solution update mechanism ensures the objective function value is monotonically non-increasing:
- Convergence inheritance of local searchThe periodically invoked GPSPositiveBasis2N module conforms to the Torczon pattern search convergence framework:
- Positive basis search direction set generates a dense tangent cone.
- Step size adaptation rule () satisfies .
- A selection strategy that only accepts improved solutions guarantees continuous optimization.
- Convergence behavior of hybrid architectureBased on hybrid optimization theory, the periodic coupling of global exploration (WOA mechanism) and local exploitation (GPS) satisfies:
- for (Solís–Wets condition).
- during GPS phases (Torczon condition).
- Exponential convergence in probability: for .
4. Experimental Results and Discussions
4.1. Analysis of Results of CEC2017 Test Functions
4.2. Analysis of the Convergence Behavior of the Algorithms
4.3. Wilcoxon Rank-Sum Test
4.4. Friedman Test
4.5. Sensitivity of ImWOA to Parameter Variations
5. Three-Dimensional TSP
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Jin, Z. Comprehensive learning Jaya algorithm for engineering design optimization problems. J. Intell. Manuf. 2022, 33, 1229–1253. [Google Scholar] [CrossRef]
- Kalpana, P.; Nagendra Prabhu, S.; Polepally, V.; Rao, D.B.J. Exponentially-spider monkey optimization based allocation of resource in cloud. Int. J. Intell. Syst. 2022, 37, 2521–2542. [Google Scholar] [CrossRef]
- Nai, C. Energy finance risk warning model based on GABP algorithm. Front. Energy Res. 2023, 11, 1235412. [Google Scholar] [CrossRef]
- Rambabu, D.; Govardhan, A. Optimization assisted frequent pattern mining for data replication in cloud: Combining sealion and grey wolf algorithm. Adv. Eng. Softw. 2023, 176, 103401. [Google Scholar] [CrossRef]
- Phan, T.; Sell, D.; Wang, E.W.; Doshay, S.; Edee, K.; Yang, J.; Fan, J.A. High-efficiency, large-area, topology-optimized metasurfaces. Light Sci. Appl. 2019, 8, 48. [Google Scholar] [CrossRef]
- Berger, K.; Rivera Caicedo, J.P.; Martino, L.; Wocher, M.; Hank, T.; Verrelst, J. A survey of active learning for quantifying vegetation traits from terrestrial earth observation data. Remote Sens. 2021, 13, 287. [Google Scholar] [CrossRef]
- Lee, C.C.; Hussain, J.; Chen, Y. The optimal behavior of renewable energy resources and government’s energy consumption subsidy design from the perspective of green technology implementation. Renew. Energy 2022, 195, 670–680. [Google Scholar] [CrossRef]
- Zamir, M.; Abdeljawad, T.; Nadeem, F.; Wahid, A.; Yousef, A. An optimal control analysis of a COVID-19 model. Alex. Eng. J. 2021, 60, 2875–2884. [Google Scholar] [CrossRef]
- Wu, L.; Huang, X.; Cui, J.; Liu, C.; Xiao, W. Modified adaptive ant colony optimization algorithm and its application for solving path planning of mobile robot. Expert Syst. Appl. 2023, 215, 119410. [Google Scholar] [CrossRef]
- Taher, F.; Abdel-Salam, M.; Elhoseny, M.; El-Hasnony, I.M. Reliable machine learning model for IIoT botnet detection. IEEE Access 2023, 11, 49319–49336. [Google Scholar] [CrossRef]
- Llopis-Albert, C.; Rubio, F.; Zeng, S. Multiobjective optimization framework for designing a vehicle suspension system. A comparison of optimization algorithms. Adv. Eng. Softw. 2023, 176, 103375. [Google Scholar] [CrossRef]
- Elhoseny, M.; Abdel-Salam, M.; El-Hasnony, I.M. An improved multi-strategy Golden Jackal algorithm for real world engineering problems. Knowl.-Based Syst. 2024, 295, 111725. [Google Scholar] [CrossRef]
- Askr, H.; Abdel-Salam, M.; Hassanien, A.E. Copula entropy-based golden jackal optimization algorithm for high-dimensional feature selection problems. Expert Syst. Appl. 2024, 238, 121582. [Google Scholar] [CrossRef]
- Abdel-Salam, M.; Kumar, N.; Mahajan, S. A proposed framework for crop yield prediction using hybrid feature selection approach and optimized machine learning. Neural Comput. Appl. 2024, 36, 20723–20750. [Google Scholar] [CrossRef]
- Abdel-Salam, M.; Hassanien, A.E. A novel dynamic chaotic golden jackal optimization algorithm for sensor-based human activity recognition using smartphones for sustainable smart cities. In Artificial Intelligence for Environmental Sustainability and Green Initiatives; Springer: Cham, Switzerland, 2024; pp. 273–296. [Google Scholar] [CrossRef]
- Zhang, J.; Ning, Z.; Ali, R.H.; Waqas, M.; Tu, S.; Ahmad, I. A many-objective ensemble optimization algorithm for the edge cloud resource scheduling problem. IEEE Trans. Mob. Comput. 2023, 23, 1330–1346. [Google Scholar] [CrossRef]
- Sulaiman, M.H.; Mustaffa, Z.; Saari, M.M.; Daniyal, H. Barnacles mating optimizer: A new bio-inspired algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell. 2020, 87, 103330. [Google Scholar] [CrossRef]
- Wang, G.G.; Deb, S.; Coelho, L.D.S. Earthworm optimisation algorithm: A bio-inspired metaheuristic algorithm for global optimisation problems. Int. J. Bio-Inspired Comput. 2018, 12, 1–22. [Google Scholar] [CrossRef]
- Dhiman, G.; Kumar, V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl.-Based Syst. 2019, 165, 169–196. [Google Scholar] [CrossRef]
- Kaur, S.; Awasthi, L.K.; Sangal, A.L.; Dhiman, G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [Google Scholar] [CrossRef]
- Shi, Y. Brain storm optimization algorithm. In Proceedings of the International Conference in Swarm Intelligence, Chongqing, China, 12–15 June 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 303–309. [Google Scholar] [CrossRef]
- Askari, Q.; Saeed, M.; Younas, I. Heap-based optimizer inspired by corporate rank hierarchy for global optimization. Expert Syst. Appl. 2020, 161, 113702. [Google Scholar] [CrossRef]
- Dehghani, M.; Trojovský, P. Teamwork optimization algorithm: A new optimization approach for function minimization/maximization. Sensors 2021, 21, 4567. [Google Scholar] [CrossRef]
- Talatahari, S.; Azizi, M. Chaos game optimization: A novel metaheuristic algorithm. Artif. Intell. Rev. 2021, 54, 917–1004. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Abedinpourshotorban, H.; Shamsuddin, S.M.; Beheshti, Z.; Jawawi, D.N. Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm. Swarm Evol. Comput. 2016, 26, 8–22. [Google Scholar] [CrossRef]
- Karaboga, D. Artificial bee colony algorithm. Scholarpedia 2010, 5, 6915. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing, Coimbatore, India, 9–11 December 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 210–214. [Google Scholar] [CrossRef]
- Wang, G.G.; Deb, S.; Coelho, L.S. Elephant herding optimization. In Proceedings of the 2015 3rd International Symposium on Computational and Business Intelligence, Bali, Indonesia, 7–9 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Masadeh, R.; Mahafzah, B.A.; Sharieh, A. Sea lion optimization algorithm. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 388–395. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Liang, Z.; Shu, T.; Ding, Z. A novel improved whale optimization algorithm for global optimization and engineering applications. Mathematics 2024, 12, 636. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, R. Multistrategy improved whale optimization algorithm and its application. Comput. Intell. Neurosci. 2022, 2022, 3418269. [Google Scholar] [CrossRef]
- Chakraborty, S.; Sharma, S.; Saha, A.K.; Saha, A. A novel improved whale optimization algorithm to solve numerical optimization and real-world applications. Artif. Intell. Rev. 2022, 55, 4605–4716. [Google Scholar] [CrossRef]
- Sun, G.; Shang, Y.; Zhang, R. An efficient and robust improved whale optimization algorithm for large scale global optimization problems. Electronics 2022, 11, 1475. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, C.; Gharehchopogh, F.S.; Mirjalili, S. An improved whale optimization algorithm based on multi-population evolution for global optimization and engineering design problems. Expert Syst. Appl. 2023, 215, 119269. [Google Scholar] [CrossRef]
- Li, M.; Yu, X.; Fu, B.; Wang, X. A modified whale optimization algorithm with multi-strategy mechanism for global optimization problems. Neural Comput. Appl. 2023, 35, 1–14. [Google Scholar] [CrossRef]
- Wu, G.; Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization; Technical Report; National University of Defense Technology: Changsha, China; Kyungpook National University: Daegu, Republic of Korea; Nanyang Technological University: Singapore, 2017; Available online: https://www.researchgate.net/profile/Guohua-Wu-5/publication/317228117_Problem_Definitions_and_Evaluation_Criteria_for_the_CEC_2017_Competition_and_Special_Session_on_Constrained_Single_Objective_Real-Parameter_Optimization/links/5982cdbaa6fdcc8b56f59104/Problem-Definitions-and-Evaluation-Criteria-for-the-CEC-2017-Competition-and-Special-Session-on-Constrained-Single-Objective-Real-Parameter-Optimization.pdf (accessed on 1 January 2020).
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report-TR06; Erciyes University: Kayseri, Turkey, 2005. [Google Scholar]
- Nadimi-Shahraki, M.H.; Zamani, H.; Mirjalili, S. Enhanced whale optimization algorithm for medical feature selection: A COVID-19 case study. Comput. Biol. Med. 2022, 148, 105858. [Google Scholar] [CrossRef]
- Xiong, G.; Zhang, J.; Shi, D.; He, Y. Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm. Energy Convers. Manag. 2018, 174, 388–405. [Google Scholar] [CrossRef]
- Saafan, M.M.; El-Gendy, E.M. IWOSSA: An improved whale optimization salp swarm algorithm for solving optimization problems. Expert Syst. Appl. 2021, 176, 114901. [Google Scholar] [CrossRef]
- Ma, G.; Yue, X. An improved whale optimization algorithm based on multilevel threshold image segmentation using the Otsu method. Eng. Appl. Artif. Intell. 2022, 113, 104960. [Google Scholar] [CrossRef]
- Tang, J.; Wang, L. A whale optimization algorithm based on atom-like structure differential evolution for solving engineering design problems. Sci. Rep. 2024, 14, 795. [Google Scholar] [CrossRef]
Dim = 30 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Func. | Index | ImWOA | PSO | BBO | SMA | DE | GWO | SSA | HHO | ABC | WOA | E-WOA | IWOA | IWOSSA | RAV-WOA | WOAAD |
F1 | Min | 1.81 × 102 | 1.08 × 105 | 5.90 × 107 | 3.52 × 105 | 1.57 × 1010 | 2.87 × 107 | 2.85 × 108 | 2.51 × 109 | 4.05 × 109 | 7.62 × 109 | 7.80 × 107 | 6.89 × 106 | 5.13 × 103 | 2.26 × 107 | 2.30 × 107 |
Mean | 7.90 × 103 | 1.40 × 108 | 9.88 × 107 | 8.25 × 105 | 3.65 × 1010 | 1.57 × 109 | 1.37 × 109 | 4.89 × 109 | 6.17 × 109 | 1.80 × 1010 | 1.75 × 108 | 3.51 × 109 | 2.27 × 105 | 6.54 × 107 | 9.12 × 107 | |
Std | 7.00 × 103 | 2.03 × 108 | 2.98 × 107 | 3.39 × 105 | 1.21 × 1010 | 1.37 × 109 | 2.65 × 109 | 1.77 × 109 | 1.38 × 109 | 7.37 × 109 | 6.86 × 107 | 5.21 × 109 | 3.04 × 105 | 2.46 × 107 | 4.69 × 107 | |
Rank | 1 | 7 | 6 | 3 | 15 | 10 | 9 | 12 | 13 | 14 | 8 | 11 | 2 | 4 | 5 | |
F2 | Min | 2.00 × 102 | 2.00 × 102 | 8.77 × 103 | 2.03 × 102 | 3.60 × 104 | 7.38 × 102 | 1.43 × 104 | 1.60 × 104 | 6.31 × 104 | 3.34 × 104 | 2.81 × 103 | 2.22 × 103 | 4.97 × 102 | 6.97 × 102 | 1.56 × 103 |
Mean | 2.00 × 102 | 9.28 × 102 | 2.31 × 104 | 2.6 × 102 | 9.54 × 104 | 5.94 × 103 | 4.60 × 104 | 2.78 × 104 | 8.81 × 104 | 5.66 × 104 | 5.87 × 103 | 2.02 × 104 | 2.59 × 103 | 2.57 × 103 | 6.14 × 103 | |
Std | 1.50 × 10−9 | 1.49 × 103 | 9.67 × 103 | 2.83 × 101 | 2.53 × 104 | 3.27 × 103 | 2.77 × 104 | 5.78 × 103 | 1.08 × 104 | 1.30 × 104 | 2.32 × 103 | 1.82 × 104 | 1.80 × 103 | 1.27 × 103 | 2.62 × 103 | |
Rank | 1 | 3 | 10 | 2 | 15 | 7 | 12 | 11 | 14 | 13 | 6 | 9 | 5 | 4 | 8 | |
F3 | Min | 3.03 × 102 | 3.26 × 102 | 3.52 × 102 | 3.32 × 102 | 2.68 × 103 | 3.34 × 102 | 5.00 × 102 | 7.17 × 102 | 9.36 × 102 | 8.80 × 102 | 3.52 × 102 | 3.73 × 102 | 3.30 × 102 | 3.58 × 102 | 3.39 × 102 |
Mean | 3.45 × 102 | 4.29 × 102 | 4.33 × 102 | 3.62 × 102 | 8.80 × 103 | 4.54 × 102 | 3.04 × 103 | 1.20 × 103 | 1.33 × 103 | 2.57 × 103 | 5.63 × 102 | 9.51 × 102 | 4.07 × 102 | 4.62 × 102 | 4.46 × 102 | |
Std | 2.77 × 101 | 6.59 × 101 | 4.86 × 101 | 3.78 × 101 | 4.85 × 103 | 6.69 × 101 | 4.33 × 103 | 3.41 × 102 | 1.57 × 102 | 1.46 × 103 | 1.24 × 102 | 1.12 × 103 | 4.71 × 101 | 4.71 × 101 | 6.50 × 101 | |
Rank | 1 | 4 | 5 | 2 | 15 | 7 | 14 | 11 | 12 | 13 | 9 | 10 | 3 | 8 | 6 | |
F4 | Min | 4.54 × 102 | 7.37 × 102 | 6.62 × 102 | 5.28 × 102 | 1.87 × 104 | 6.93 × 102 | 1.05 × 104 | 4.30 × 103 | 5.16 × 103 | 1.08 × 104 | 1.19 × 103 | 1.33 × 103 | 5.39 × 102 | 7.85 × 102 | 8.14 × 102 |
Mean | 5.01 × 102 | 1.49 × 103 | 7.93 × 102 | 6.21 × 102 | 4.70 × 104 | 2.02 × 103 | 2.00 × 104 | 9.22 × 103 | 7.13 × 103 | 3.33 × 104 | 2.16 × 103 | 8.68 × 103 | 7.62 × 102 | 1.05 × 103 | 9.92 × 102 | |
Std | 2.91 × 101 | 6.62 × 102 | 7.58 × 101 | 4.70 × 101 | 1.72 × 104 | 1.45 × 103 | 6.00 × 103 | 2.70 × 103 | 1.10 × 103 | 1.00 × 104 | 3.92 × 102 | 6.78 × 103 | 1.12 × 102 | 1.41 × 102 | 1.18 × 102 | |
Rank | 1 | 7 | 4 | 2 | 15 | 8 | 13 | 12 | 10 | 14 | 9 | 11 | 3 | 6 | 5 | |
F5 | Min | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 |
Mean | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | |
Std | 8.52 × 10−4 | 1.07 × 10−3 | 9.55 × 10−4 | 8.79 × 10−3 | 2.71 × 10−3 | 4.12 × 10−3 | 1.12 × 10−2 | 5.98 × 10−3 | 4.23 × 10−3 | 6.47 × 10−3 | 5.15 × 10−3 | 2.14 × 10−3 | 3.24 × 10−3 | 1.24 × 10−3 | 1.19 × 10−3 | |
Rank | 1 | 3 | 2 | 15 | 9 | 6 | 12 | 11 | 14 | 13 | 10 | 7 | 8 | 5 | 4 | |
F6 | Min | 6.01 × 102 | 2.61 × 103 | 2.32 × 103 | 1.49 × 103 | 1.33 × 103 | 5.28 × 103 | 1.00 × 103 | 6.47 × 103 | 2.83 × 104 | 3.54 × 103 | 3.24 × 103 | 2.96 × 103 | 1.18 × 103 | 2.79 × 103 | 2.21 × 103 |
Mean | 1.71 × 103 | 3.76 × 104 | 6.60 × 103 | 7.07 × 103 | 7.79 × 103 | 2.07 × 104 | 8.15 × 103 | 2.41 × 104 | 4.75 × 104 | 1.25 × 104 | 1.80 × 104 | 9.72 × 103 | 7.23 × 103 | 1.06 × 104 | 1.84 × 104 | |
Std | 1.34 × 103 | 1.87 × 104 | 3.02 × 103 | 4.27 × 103 | 6.67 × 103 | 9.36 × 103 | 4.83 × 103 | 1.26 × 104 | 8.49 × 103 | 7.76 × 103 | 9.58 × 103 | 5.16 × 103 | 5.88 × 103 | 5.40 × 103 | 1.03 × 104 | |
Rank | 1 | 14 | 2 | 3 | 5 | 12 | 6 | 13 | 15 | 9 | 10 | 7 | 4 | 8 | 11 | |
F7 | Min | 7.00 × 102 | 7.00 × 102 | 7.00 × 102 | 7.00 × 102 | 7.00 × 102 | 7.00 × 102 | 7.00 × 102 | 7.00 × 102 | 7.01 × 102 | 7.00 × 102 | 7.00 × 102 | 7.00 × 102 | 7.00 × 102 | 7.00 × 102 | 7.00 × 102 |
Mean | 7.00 × 102 | 7.01 × 102 | 7.00 × 102 | 7.00 × 102 | 7.00 × 102 | 7.01 × 102 | 7.00 × 102 | 7.01 × 102 | 7.03 × 102 | 7.01 × 102 | 7.01 × 102 | 7.00 × 102 | 7.00 × 102 | 7.00 × 102 | 7.00 × 102 | |
Std | 2.74 × 10−1 | 6.81 × 10−1 | 1.23 × 10−1 | 1.37 × 10−1 | 1.73 × 10−1 | 7.91 × 10−1 | 3.88 × 10−1 | 5.00 × 10−1 | 8.15 × 10−1 | 5.03 × 10−1 | 6.00 × 10−1 | 4.40 × 10−1 | 2.00 × 10−1 | 1.34 × 10−1 | 2.17 × 10−1 | |
Rank | 1 | 10 | 4 | 3 | 7 | 13 | 8 | 11 | 15 | 12 | 14 | 9 | 5 | 2 | 6 | |
F8 | Min | 8.04 × 102 | 8.02 × 102 | 8.01 × 102 | 8.02 × 102 | 8.10 × 102 | 8.01 × 102 | 8.07 × 102 | 8.09 × 102 | 8.13 × 102 | 8.12 × 102 | 8.04 × 102 | 8.08 × 102 | 8.03 × 102 | 8.04 × 102 | 8.01 × 102 |
Mean | 8.18 × 102 | 8.10 × 102 | 8.05 × 102 | 8.09 × 102 | 8.21 × 102 | 8.04 × 102 | 8.14 × 102 | 8.15 × 102 | 8.21 × 102 | 8.25 × 102 | 8.20 × 102 | 8.20 × 102 | 8.14 × 102 | 8.09 × 102 | 8.05 × 102 | |
Std | 7.65 × 100 | 4.33 × 100 | 3.03 × 100 | 6.07 × 100 | 7.15 × 100 | 2.55 × 100 | 5.40 × 100 | 3.43 × 100 | 3.73 × 100 | 9.71 × 100 | 7.53 × 100 | 7.18 × 100 | 7.08 × 100 | 3.84 × 100 | 3.55 × 100 | |
Rank | 10 | 6 | 3 | 4 | 14 | 1 | 8 | 9 | 13 | 15 | 12 | 11 | 7 | 5 | 2 | |
F9 | Min | 3.62 × 103 | 2.85 × 103 | 3.03 × 103 | 2.45 × 103 | 4.30 × 103 | 2.53 × 103 | 4.41 × 103 | 4.85 × 103 | 7.16 × 103 | 5.09 × 103 | 4.49 × 103 | 3.93 × 103 | 4.13 × 103 | 3.23 × 103 | 4.03 × 103 |
Mean | 5.12 × 103 | 4.61 × 103 | 3.97 × 103 | 4.46 × 103 | 5.31 × 103 | 5.41 × 103 | 7.41 × 103 | 6.19 × 103 | 8.47 × 103 | 6.57 × 103 | 5.90 × 103 | 5.55 × 103 | 5.54 × 103 | 4.73 × 103 | 5.24 × 103 | |
Std | 7.45 × 102 | 1.35 × 103 | 4.37 × 102 | 6.95 × 102 | 4.78 × 102 | 1.92 × 103 | 1.44 × 103 | 9.51 × 102 | 3.59 × 102 | 1.07 × 103 | 7.88 × 102 | 9.94 × 102 | 8.71 × 102 | 9.30 × 102 | 6.92 × 102 | |
Rank | 5 | 3 | 1 | 2 | 7 | 8 | 14 | 12 | 15 | 13 | 11 | 10 | 9 | 4 | 6 | |
F10 | Min | 3.44 × 103 | 2.68 × 103 | 1.52 × 104 | 2.32 × 104 | 1.59 × 105 | 7.80 × 104 | 7.56 × 104 | 7.79 × 104 | 2.99 × 105 | 5.45 × 104 | 1.40 × 105 | 4.28 × 104 | 1.02 × 105 | 1.02 × 104 | 5.77 × 104 |
Mean | 3.91 × 104 | 3.22 × 104 | 1.43 × 105 | 7.08 × 104 | 3.65 × 107 | 1.44 × 105 | 4.05 × 106 | 2.39 × 105 | 5.52 × 105 | 1.59 × 105 | 3.01 × 105 | 6.86 × 105 | 2.17 × 105 | 5.36 × 104 | 1.01 × 105 | |
Std | 3.01 × 104 | 1.85 × 104 | 2.64 × 105 | 3.38 × 104 | 8.65 × 107 | 4.76 × 104 | 1.18 × 107 | 2.27 × 105 | 1.08 × 104 | 7.37 × 104 | 1.88 × 105 | 1.62 × 106 | 7.12 × 104 | 3.19 × 104 | 2.88 × 104 | |
Rank | 2 | 1 | 6 | 4 | 15 | 7 | 14 | 10 | 14 | 8 | 11 | 13 | 9 | 3 | 5 | |
F11 | Min | 7.72 × 103 | 7.53 × 103 | 4.13 × 106 | 5.30 × 104 | 1.24 × 109 | 3.71 × 106 | 1.60 × 106 | 8.89 × 106 | 2.82 × 108 | 1.13 × 107 | 8.85 × 106 | 1.75 × 105 | 1.77 × 106 | 1.03 × 106 | 1.93 × 106 |
Mean | 4.91 × 104 | 1.22 × 105 | 1.37 × 107 | 1.57 × 106 | 4.35 × 109 | 2.75 × 107 | 1.50 × 109 | 1.89 × 108 | 4.15 × 108 | 3.39 × 108 | 1.04 × 108 | 3.84 × 108 | 3.03 × 107 | 5.55 × 106 | 1.87 × 107 | |
Std | 2.51 × 104 | 2.01 × 105 | 8.00 × 106 | 1.36 × 106 | 2.18 × 109 | 1.67 × 107 | 2.89 × 109 | 1.31 × 108 | 7.75 × 107 | 5.00 × 108 | 6.43 × 107 | 8.47 × 108 | 3.12 × 107 | 3.77 × 106 | 1.31 × 107 | |
Rank | 1 | 2 | 5 | 3 | 15 | 7 | 14 | 10 | 13 | 11 | 9 | 12 | 8 | 4 | 6 | |
F12 | Min | 1.31 × 103 | 2.10 × 103 | 1.38 × 106 | 4.43 × 104 | 4.26 × 108 | 6.91 × 105 | 1.08 × 105 | 1.77 × 107 | 5.83 × 106 | 4.13 × 107 | 1.58 × 106 | 3.09 × 104 | 5.92 × 105 | 3.42 × 105 | 6.02 × 105 |
Mean | 6.95 × 103 | 5.75 × 104 | 7.86 × 106 | 1.71 × 105 | 5.65 × 109 | 1.00 × 107 | 1.53 × 109 | 5.36 × 107 | 3.06 × 107 | 8.05 × 108 | 1.66 × 107 | 3.42 × 108 | 1.91 × 106 | 2.73 × 106 | 2.42 × 106 | |
Std | 5.63 × 103 | 1.10 × 105 | 5.13 × 106 | 1.31 × 105 | 4.35 × 109 | 1.94 × 107 | 3.75 × 109 | 3.06 × 107 | 1.68 × 107 | 8.45 × 108 | 6.96 × 106 | 7.43 × 108 | 8.41 × 105 | 1.74 × 106 | 2.06 × 106 | |
Rank | 1 | 2 | 7 | 3 | 15 | 8 | 14 | 11 | 10 | 13 | 9 | 12 | 4 | 6 | 5 | |
F13 | Min | 3.12 × 103 | 1.86 × 104 | 1.03 × 105 | 4.28 × 104 | 7.00 × 105 | 1.21 × 105 | 7.05 × 105 | 7.84 × 105 | 5.52 × 105 | 2.29 × 105 | 3.04 × 105 | 1.89 × 105 | 1.82 × 105 | 3.03 × 104 | 2.17 × 105 |
Mean | 6.45 × 105 | 2.22 × 105 | 4.85 × 106 | 5.00 × 105 | 7.84 × 106 | 6.24 × 105 | 1.17 × 107 | 4.02 × 106 | 2.44 × 106 | 1.92 × 106 | 3.85 × 106 | 1.19 × 106 | 1.55 × 106 | 8.26 × 105 | 5.62 × 105 | |
Std | 6.77 × 105 | 1.53 × 105 | 5.04 × 106 | 5.39 × 105 | 7.10 × 106 | 4.76 × 105 | 1.44 × 107 | 2.34 × 106 | 1.21 × 106 | 2.03 × 106 | 3.49 × 106 | 1.15 × 106 | 1.48 × 106 | 6.90 × 105 | 3.21 × 105 | |
Rank | 5 | 1 | 13 | 2 | 14 | 4 | 15 | 12 | 10 | 9 | 11 | 7 | 8 | 6 | 3 | |
F14 | Min | 4.88 × 103 | 4.37 × 103 | 5.99 × 105 | 7.26 × 104 | 1.27 × 108 | 1.30 × 105 | 1.01 × 105 | 2.93 × 106 | 1.75 × 107 | 6.27 × 105 | 1.53 × 106 | 6.60 × 104 | 2.27 × 105 | 3.53 × 104 | 1.09 × 105 |
Mean | 2.43 × 104 | 2.98 × 104 | 4.54 × 106 | 1.39 × 105 | 1.76 × 109 | 1.05 × 106 | 8.37 × 108 | 1.63 × 107 | 5.09 × 107 | 1.11 × 108 | 4.73 × 106 | 4.15 × 108 | 7.10 × 105 | 6.66 × 105 | 3.29 × 105 | |
Std | 1.39 × 104 | 1.48 × 104 | 3.56 × 106 | 5.12 × 104 | 1.09 × 109 | 2.33 × 106 | 1.34 × 109 | 1.07 × 107 | 2.51 × 107 | 2.31 × 108 | 1.60 × 106 | 1.65 × 109 | 3.41 × 105 | 1.07 × 106 | 1.51 × 105 | |
Rank | 1 | 2 | 8 | 3 | 15 | 7 | 14 | 10 | 11 | 12 | 9 | 13 | 6 | 5 | 4 | |
F15 | Min | 1.51 × 103 | 1.51 × 103 | 5.77 × 103 | 1.77 × 103 | 4.32 × 106 | 1.48 × 104 | 4.65 × 103 | 6.04 × 104 | 3.61 × 103 | 3.40 × 104 | 5.46 × 104 | 2.86 × 103 | 5.18 × 103 | 4.79 × 103 | 9.21 × 103 |
Mean | 2.10 × 103 | 6.59 × 103 | 1.55 × 106 | 9.60 × 103 | 4.23 × 108 | 8.52 × 105 | 8.86 × 106 | 1.48 × 106 | 2.26 × 104 | 2.90 × 106 | 1.11 × 106 | 7.30 × 106 | 4.47 × 105 | 7.32 × 105 | 6.19 × 105 | |
Std | 6.50 × 102 | 2.16 × 104 | 1.85 × 106 | 6.58 × 103 | 5.72 × 108 | 9.47 × 105 | 3.24 × 107 | 1.94 × 106 | 2.26 × 104 | 4.33 × 106 | 1.14 × 106 | 2.71 × 107 | 7.66 × 105 | 1.00 × 106 | 7.79 × 105 | |
Rank | 1 | 2 | 11 | 3 | 15 | 8 | 14 | 10 | 4 | 12 | 9 | 13 | 5 | 7 | 6 | |
F16 | Min | 1.65 × 103 | 2.44 × 103 | 2.54 × 103 | 2.07 × 103 | 4.74 × 104 | 2.76 × 104 | 3.34 × 104 | 5.53 × 104 | 2.07 × 106 | 2.76 × 104 | 3.54 × 104 | 4.05 × 103 | 2.29 × 104 | 2.71 × 103 | 6.07 × 103 |
Mean | 2.08 × 103 | 4.29 × 103 | 3.78 × 103 | 3.38 × 103 | 1.05 × 1012 | 6.03 × 104 | 1.14 × 1014 | 7.39 × 105 | 9.84 × 107 | 5.47 × 105 | 9.22 × 104 | 2.69 × 107 | 1.02 × 105 | 4.48 × 103 | 3.81 × 104 | |
Std | 3.95 × 102 | 3.35 × 103 | 7.61 × 102 | 4.42 × 102 | 3.41 × 1012 | 2.10 × 104 | 5.55 × 1014 | 2.89 × 106 | 1.22 × 108 | 1.62 × 106 | 3.01 × 104 | 1.42 × 108 | 4.95 × 104 | 1.17 × 103 | 2.25 × 104 | |
Rank | 1 | 4 | 3 | 2 | 14 | 7 | 15 | 11 | 13 | 10 | 8 | 12 | 9 | 5 | 6 | |
F17 | Min | 3.50 × 104 | 2.55 × 104 | 8.12 × 104 | 5.50 × 104 | 9.10 × 104 | 5.68 × 104 | 4.59 × 104 | 7.47 × 104 | 9.36 × 104 | 3.97 × 104 | 7.11 × 104 | 3.76 × 104 | 6.74 × 104 | 4.89 × 104 | 7.04 × 104 |
Mean | 7.94 × 104 | 6.06 × 105 | 4.19 × 106 | 3.32 × 105 | 2.33 × 106 | 2.31 × 105 | 2.45 × 106 | 1.89 × 105 | 5.02 × 105 | 1.22 × 105 | 1.77 × 105 | 2.96 × 106 | 2.17 × 105 | 1.06 × 105 | 1.55 × 105 | |
Std | 2.63 × 104 | 1.18 × 106 | 4.06 × 106 | 6.84 × 105 | 4.23 × 106 | 3.33 × 105 | 5.84 × 106 | 2.22 × 105 | 2.19 × 105 | 7.59 × 104 | 1.42 × 105 | 1.51 × 107 | 9.71 × 104 | 4.89 × 104 | 6.92 × 104 | |
Rank | 1 | 11 | 15 | 9 | 12 | 8 | 13 | 6 | 10 | 3 | 5 | 14 | 7 | 2 | 4 | |
F18 | Min | 1.86 × 103 | 2.06 × 103 | 2.29 × 106 | 8.58 × 103 | 2.68 × 1010 | 3.39 × 104 | 6.40 × 104 | 4.95 × 105 | 2.81 × 105 | 5.28 × 105 | 1.13 × 105 | 5.02 × 104 | 2.58 × 104 | 3.28 × 104 | 5.00 × 104 |
Mean | 1.96 × 104 | 1.88 × 104 | 1.10 × 108 | 6.27 × 104 | 4.39 × 1013 | 4.88 × 107 | 1.65 × 108 | 1.32 × 1010 | 3.63 × 106 | 4.25 × 109 | 7.23 × 106 | 4.98 × 1011 | 9.26 × 104 | 7.41 × 105 | 2.39 × 105 | |
Std | 2.26 × 104 | 1.91 × 104 | 2.00 × 108 | 2.80 × 104 | 1.01 × 1014 | 1.44 × 108 | 5.26 × 108 | 1.82 × 1010 | 3.67 × 106 | 8.43 × 109 | 1.92 × 107 | 1.71 × 1012 | 3.18 × 104 | 8.62 × 105 | 1.94 × 105 | |
Rank | 2 | 1 | 10 | 3 | 15 | 9 | 11 | 13 | 7 | 12 | 8 | 14 | 4 | 6 | 5 | |
F19 | Min | 1.93 × 103 | 2.10 × 103 | 2.00 × 103 | 1.96 × 103 | 4.10 × 103 | 2.08 × 103 | 5.81 × 103 | 5.16 × 103 | 3.85 × 103 | 6.79 × 103 | 3.17 × 103 | 2.55 × 103 | 3.09 × 103 | 2.44 × 103 | 2.10 × 103 |
Mean | 2.33 × 103 | 3.47 × 103 | 2.27 × 103 | 2.36 × 103 | 7.09 × 103 | 2.64 × 103 | 1.40 × 104 | 8.60 × 103 | 4.69 × 103 | 1.09 × 104 | 5.86 × 103 | 3.97 × 103 | 4.68 × 103 | 3.20 × 103 | 2.60 × 103 | |
Std | 2.82 × 102 | 1.03 × 103 | 1.90 × 102 | 2.62 × 102 | 2.04 × 103 | 3.64 × 102 | 5.38 × 103 | 1.95 × 103 | 4.58 × 102 | 3.17 × 103 | 1.57 × 103 | 2.20 × 103 | 1.12 × 103 | 5.83 × 102 | 3.26 × 102 | |
Rank | 2 | 7 | 1 | 3 | 12 | 5 | 15 | 13 | 10 | 14 | 11 | 8 | 9 | 6 | 4 | |
F20 | Min | 2.10 × 103 | 2.10 × 103 | 2.27 × 103 | 2.12 × 103 | 5.32 × 103 | 2.47 × 103 | 3.91 × 103 | 3.34 × 103 | 4.98 × 103 | 4.80 × 103 | 2.27 × 103 | 2.86 × 103 | 2.10 × 103 | 2.27 × 103 | 2.31 × 103 |
Mean | 2.26 × 103 | 3.08 × 103 | 2.54 × 103 | 2.27 × 103 | 3.06 × 104 | 3.41 × 103 | 1.75 × 104 | 6.88 × 103 | 7.17 × 103 | 2.06 × 104 | 3.36 × 103 | 4.87 × 103 | 2.42 × 103 | 2.65 × 103 | 2.64 × 103 | |
Std | 9.98 × 101 | 6.18 × 102 | 7.75 × 101 | 1.56 × 102 | 1.07 × 104 | 8.96 × 102 | 1.01 × 104 | 2.09 × 103 | 9.47 × 102 | 1.06 × 104 | 6.71 × 102 | 2.11 × 103 | 3.11 × 102 | 2.68 × 102 | 2.03 × 102 | |
Rank | 1 | 7 | 4 | 2 | 15 | 9 | 13 | 11 | 12 | 14 | 8 | 10 | 3 | 6 | 5 | |
F21 | Min | 2.20 × 103 | 2.31 × 103 | 2.26 × 103 | 2.26 × 103 | 2.55 × 103 | 2.28 × 103 | 2.67 × 103 | 2.91 × 103 | 2.35 × 103 | 2.74 × 103 | 2.38 × 103 | 2.31 × 103 | 2.29 × 103 | 2.27 × 103 | 2.28 × 103 |
Mean | 2.28 × 103 | 2.38 × 103 | 2.27 × 103 | 2.27 × 103 | 2.88 × 103 | 2.30 × 103 | 4.68 × 103 | 4.10 × 103 | 2.38 × 103 | 4.27 × 103 | 2.52 × 103 | 2.42 × 103 | 2.35 × 103 | 2.29 × 103 | 2.29 × 103 | |
Std | 4.20 × 101 | 6.07 × 101 | 2.86 × 100 | 4.29 × 100 | 2.84 × 102 | 1.43 × 101 | 1.45 × 103 | 7.21 × 102 | 1.25 × 101 | 1.16 × 103 | 1.18 × 102 | 9.06 × 101 | 4.01 × 101 | 1.24 × 101 | 9.60 × 100 | |
Rank | 3 | 9 | 1 | 2 | 12 | 6 | 15 | 13 | 8 | 14 | 11 | 10 | 7 | 5 | 4 | |
F22 | Min | 2.40 × 103 | 2.42 × 103 | 2.87 × 103 | 2.49 × 103 | 2.16 × 104 | 3.19 × 103 | 6.78 × 103 | 7.18 × 103 | 9.13 × 103 | 1.69 × 104 | 2.94 × 103 | 3.31 × 103 | 2.31 × 103 | 2.98 × 103 | 2.91 × 103 |
Mean | 2.47 × 103 | 4.17 × 103 | 3.40 × 103 | 2.59 × 103 | 3.96 × 104 | 6.14 × 103 | 2.92 × 104 | 1.61 × 104 | 1.09 × 104 | 2.94 × 104 | 3.73 × 103 | 1.38 × 104 | 2.62 × 103 | 3.36 × 103 | 3.45 × 103 | |
Std | 9.63 × 101 | 1.25 × 103 | 2.99 × 102 | 1.11 × 102 | 9.90 × 103 | 1.99 × 103 | 1.39 × 104 | 6.52 × 103 | 6.76 × 102 | 8.22 × 103 | 5.00 × 102 | 7.20 × 103 | 3.43 × 102 | 2.17 × 102 | 3.42 × 102 | |
Rank | 1 | 8 | 5 | 2 | 15 | 9 | 13 | 12 | 10 | 14 | 7 | 11 | 3 | 4 | 6 | |
F23 | Min | 2.40 × 103 | 2.54 × 103 | 2.93 × 103 | 2.45 × 103 | 1.30 × 104 | 2.75 × 103 | 4.69 × 103 | 5.12 × 103 | 7.17 × 103 | 1.27 × 104 | 2.88 × 103 | 3.36 × 103 | 2.40 × 103 | 2.98 × 103 | 2.87 × 103 |
Mean | 2.60 × 103 | 3.17 × 103 | 3.19 × 103 | 2.58 × 103 | 2.28 × 104 | 4.45 × 103 | 1.79 × 104 | 7.88 × 103 | 7.92 × 103 | 2.41 × 104 | 3.21 × 103 | 6.41 × 103 | 2.53 × 103 | 3.13 × 103 | 3.06 × 103 | |
Std | 2.87 × 102 | 7.32 × 102 | 1.36 × 102 | 2.83 × 101 | 5.28 × 103 | 1.66 × 103 | 9.15 × 103 | 1.89 × 103 | 4.52 × 102 | 5.59 × 103 | 2.70 × 102 | 2.93 × 103 | 9.09 × 101 | 1.06 × 102 | 1.30 × 102 | |
Rank | 3 | 6 | 7 | 2 | 14 | 9 | 13 | 11 | 12 | 15 | 8 | 10 | 1 | 5 | 4 | |
F24 | Min | 2.82 × 103 | 2.84 × 103 | 2.84 × 103 | 2.82 × 103 | 3.69 × 103 | 2.85 × 103 | 3.04 × 103 | 3.06 × 103 | 3.09 × 103 | 3.22 × 103 | 2.91 × 103 | 2.84 × 103 | 2.84 × 103 | 2.84 × 103 | 2.83 × 103 |
Mean | 2.83 × 103 | 2.88 × 103 | 2.89 × 103 | 2.84 × 103 | 5.02 × 103 | 2.92 × 103 | 4.28 × 103 | 3.30 × 103 | 3.28 × 103 | 3.72 × 103 | 3.04 × 103 | 3.00 × 103 | 2.93 × 103 | 2.88 × 103 | 2.87 × 103 | |
Std | 9.14 × 100 | 3.85 × 101 | 3.37 × 101 | 2.87 × 101 | 8.43 × 102 | 7.88 × 101 | 1.11 × 103 | 1.43 × 102 | 8.57 × 101 | 3.46 × 102 | 8.30 × 101 | 1.86 × 102 | 4.97 × 101 | 2.15 × 101 | 2.80 × 101 | |
Rank | 1 | 5 | 6 | 2 | 15 | 7 | 14 | 12 | 11 | 13 | 10 | 9 | 8 | 4 | 3 | |
F25 | Min | 3.33 × 103 | 3.33 × 103 | 3.34 × 103 | 3.33 × 103 | 3.94 × 103 | 3.34 × 103 | 5.52 × 103 | 3.81 × 103 | 3.34 × 103 | 3.43 × 103 | 3.34 × 103 | 3.34 × 103 | 3.34 × 103 | 3.39 × 103 | 3.34 × 103 |
Mean | 3.33 × 103 | 3.56 × 103 | 3.35 × 103 | 3.37 × 103 | 5.59 × 103 | 3.40 × 103 | 1.06 × 104 | 5.06 × 103 | 3.37 × 103 | 4.31 × 103 | 3.42 × 103 | 3.74 × 103 | 3.55 × 103 | 3.40 × 103 | 3.37 × 103 | |
Std | 1.35 × 10−1 | 1.50 × 102 | 1.28 × 101 | 1.66 × 101 | 1.01 × 103 | 5.05 × 101 | 3.81 × 103 | 1.22 × 103 | 1.10 × 101 | 7.87 × 102 | 4.78 × 101 | 3.66 × 102 | 2.53 × 102 | 7.71 × 100 | 1.76 × 101 | |
Rank | 1 | 10 | 2 | 5 | 14 | 6 | 15 | 13 | 3 | 12 | 8 | 11 | 9 | 7 | 4 | |
F26 | Min | 3.11 × 103 | 3.18 × 103 | 3.12 × 103 | 3.11 × 103 | 3.26 × 103 | 3.11 × 103 | 3.54 × 103 | 3.24 × 103 | 3.16 × 103 | 3.24 × 103 | 3.15 × 103 | 3.15 × 103 | 3.13 × 103 | 3.11 × 103 | 3.12 × 103 |
Mean | 3.17 × 103 | 3.27 × 103 | 3.15 × 103 | 3.14 × 103 | 3.60 × 103 | 3.15 × 103 | 4.18 × 103 | 3.82 × 103 | 3.19 × 103 | 3.78 × 103 | 3.32 × 103 | 3.27 × 103 | 3.28 × 103 | 3.20 × 103 | 3.14 × 103 | |
Std | 3.70 × 101 | 5.37 × 101 | 1.53 × 101 | 1.93 × 101 | 2.68 × 102 | 1.76 × 101 | 4.07 × 102 | 3.19 × 102 | 1.40 × 101 | 3.21 × 102 | 9.85 × 101 | 1.34 × 102 | 9.92 × 101 | 4.18 × 101 | 1.60 × 101 | |
Rank | 5 | 9 | 4 | 1 | 12 | 3 | 15 | 14 | 6 | 13 | 11 | 8 | 10 | 7 | 2 | |
F27 | Min | 2.70 × 103 | 2.84 × 103 | 2.79 × 103 | 2.74 × 103 | 3.69 × 103 | 3.10 × 103 | 3.35 × 103 | 3.31 × 103 | 3.25 × 103 | 3.31 × 103 | 3.16 × 103 | 3.25 × 103 | 2.98 × 103 | 2.80 × 103 | 2.89 × 103 |
Mean | 2.71 × 103 | 3.01 × 103 | 2.96 × 103 | 3.08 × 103 | 4.79 × 103 | 3.17 × 103 | 6.24 × 103 | 3.51 × 103 | 3.33 × 103 | 3.73 × 103 | 3.22 × 103 | 3.76 × 103 | 3.18 × 103 | 3.06 × 103 | 3.15 × 103 | |
Std | 9.01 × 100 | 1.30 × 102 | 1.56 × 102 | 1.57 × 102 | 8.50 × 102 | 3.14 × 101 | 1.68 × 103 | 2.13 × 102 | 3.25 × 101 | 6.14 × 102 | 3.59 × 101 | 5.16 × 102 | 4.27 × 101 | 1.45 × 102 | 6.22 × 101 | |
Rank | 1 | 3 | 2 | 5 | 14 | 7 | 15 | 11 | 10 | 12 | 9 | 13 | 8 | 4 | 6 | |
F28 | Min | 6.26 × 103 | 1.35 × 104 | 7.23 × 104 | 1.07 × 104 | 8.08 × 108 | 3.59 × 104 | 2.16 × 109 | 6.46 × 106 | 1.80 × 108 | 6.11 × 105 | 5.49 × 104 | 6.06 × 104 | 3.88 × 104 | 1.49 × 104 | 5.91 × 104 |
Mean | 3.45 × 104 | 3.56 × 107 | 1.77 × 107 | 2.46 × 105 | 1.07 × 1012 | 2.28 × 107 | 1.36 × 1013 | 1.49 × 109 | 2.14 × 109 | 5.11 × 108 | 1.78 × 108 | 1.88 × 108 | 3.26 × 107 | 1.08 × 107 | 2.10 × 106 | |
Std | 3.41 × 104 | 5.62 × 107 | 2.64 × 107 | 2.52 × 105 | 4.32 × 1012 | 3.23 × 107 | 5.98 × 1013 | 2.70 × 109 | 1.14 × 109 | 5.90 × 108 | 5.20 × 108 | 3.14 × 108 | 7.70 × 107 | 3.14 × 107 | 4.56 × 106 | |
Rank | 1 | 8 | 5 | 2 | 14 | 6 | 15 | 12 | 13 | 11 | 9 | 10 | 7 | 4 | 3 | |
F29 | Min | 7.62 × 103 | 1.99 × 104 | 9.16 × 105 | 6.14 × 104 | 1.76 × 109 | 1.99 × 105 | 1.53 × 106 | 1.85 × 107 | 2.17 × 107 | 9.81 × 107 | 1.44 × 106 | 2.10 × 104 | 2.12 × 105 | 1.01 × 105 | 2.12 × 105 |
Mean | 3.62 × 104 | 1.29 × 107 | 8.60 × 106 | 3.84 × 106 | 3.56 × 1010 | 7.56 × 107 | 3.59 × 1011 | 1.15 × 109 | 1.44 × 108 | 1.23 × 109 | 2.51 × 108 | 5.97 × 1010 | 3.24 × 107 | 2.97 × 106 | 8.31 × 106 | |
Std | 3.22 × 104 | 2.48 × 107 | 1.86 × 107 | 7.05 × 106 | 6.26 × 1010 | 1.64 × 108 | 1.91 × 1012 | 1.77 × 109 | 7.59 × 107 | 1.19 × 109 | 3.08 × 108 | 3.09 × 1011 | 4.17 × 107 | 4.15 × 106 | 1.24 × 107 | |
Rank | 1 | 6 | 5 | 3 | 13 | 8 | 15 | 11 | 9 | 12 | 10 | 14 | 7 | 2 | 4 | |
Total | 20 | 3 | 3 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
Dim = 100 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Func. | Index | ImWOA | PSO | BBO | SMA | DE | GWO | SSA | HHO | ABC | WOA | E-WOA | IWOA | IWOSSA | RAV-WOA | WOAAD |
F1 | Min | 5.95 × 102 | 1.49 × 1010 | 1.37 × 109 | 4.97 × 108 | 1.99 × 1011 | 2.39 × 1010 | 7.33 × 1010 | 8.70 × 1010 | 1.86 × 1011 | 1.53 × 1011 | 1.95 × 1010 | 4.59 × 1010 | 1.61 × 1010 | 7.53 × 109 | 4.78 × 109 |
Mean | 1.37 × 104 | 4.45 × 1010 | 1.92 × 109 | 7.54 × 108 | 2.95 × 1011 | 3.73 × 1010 | 1.02 × 1011 | 1.11 × 1011 | 2.21 × 1011 | 1.88 × 1011 | 2.82 × 1010 | 7.29 × 1010 | 2.68 × 1010 | 1.05 × 1010 | 1.22 × 1010 | |
Std | 1.14 × 104 | 1.67 × 1010 | 3.74 × 108 | 1.70 × 108 | 5.46 × 1010 | 8.97 × 109 | 1.36 × 1010 | 1.16 × 1010 | 1.53 × 1010 | 1.88 × 1010 | 4.65 × 109 | 2.11 × 1010 | 6.69 × 109 | 2.45 × 109 | 4.03 × 109 | |
Rank | 1 | 9 | 3 | 2 | 15 | 8 | 11 | 12 | 14 | 13 | 7 | 10 | 6 | 4 | 5 | |
F2 | Min | 2.75 × 102 | 1.65 × 105 | 5.87 × 104 | 4.22 × 103 | 3.02 × 105 | 5.51 × 104 | 2.87 × 105 | 1.76 × 105 | 5.22 × 105 | 2.32 × 105 | 3.37 × 105 | 2.25 × 105 | 1.24 × 105 | 5.19 × 104 | 1.54 × 105 |
Mean | 3.70 × 103 | 2.45 × 105 | 9.88 × 104 | 6.93 × 103 | 3.78 × 105 | 8.05 × 104 | 3.78 × 105 | 2.19 × 105 | 5.93 × 105 | 3.27 × 105 | 4.60 × 105 | 3.40 × 105 | 2.06 × 105 | 7.68 × 104 | 2.10 × 105 | |
Std | 3.67 × 103 | 4.22 × 104 | 2.41 × 104 | 1.65 × 103 | 5.38 × 104 | 1.59 × 104 | 5.37 × 104 | 1.85 × 104 | 3.44 × 104 | 3.92 × 104 | 5.90 × 104 | 9.27 × 104 | 3.87 × 104 | 1.16 × 104 | 3.07 × 104 | |
Rank | 1 | 9 | 5 | 2 | 13 | 4 | 12 | 8 | 15 | 10 | 14 | 11 | 6 | 3 | 7 | |
F3 | Min | 4.35 × 102 | 2.91 × 103 | 9.10 × 102 | 7.77 × 102 | 4.46 × 104 | 1.92 × 103 | 1.38 × 104 | 1.31 × 104 | 3.92 × 104 | 2.67 × 104 | 3.33 × 103 | 4.90 × 103 | 2.15 × 103 | 1.65 × 103 | 1.70 × 103 |
Mean | 5.48 × 102 | 8.36 × 103 | 1.09 × 103 | 9.20 × 102 | 8.71 × 104 | 4.56 × 103 | 4.22 × 104 | 2.57 × 104 | 5.09 × 104 | 4.51 × 104 | 4.73 × 103 | 1.37 × 104 | 3.26 × 103 | 2.49 × 103 | 2.50 × 103 | |
Std | 5.78 × 101 | 4.01 × 103 | 9.94 × 101 | 9.03 × 101 | 2.29 × 104 | 1.38 × 103 | 2.82 × 104 | 4.37 × 103 | 6.00 × 103 | 1.27 × 104 | 9.21 × 102 | 5.72 × 103 | 6.97 × 102 | 4.70 × 102 | 3.89 × 102 | |
Rank | 1 | 9 | 3 | 2 | 15 | 7 | 12 | 11 | 14 | 13 | 8 | 10 | 6 | 4 | 5 | |
F4 | Min | 7.16 × 102 | 2.40 × 104 | 3.07 × 103 | 2.72 × 103 | 1.80 × 105 | 1.41 × 104 | 1.53 × 105 | 1.11 × 105 | 1.82 × 105 | 1.73 × 105 | 2.70 × 104 | 5.65 × 104 | 1.65 × 104 | 1.03 × 104 | 8.70 × 103 |
Mean | 8.62 × 102 | 4.49 × 104 | 3.72 × 103 | 3.33 × 103 | 3.16 × 105 | 3.37 × 104 | 2.27 × 105 | 1.39 × 105 | 2.17 × 105 | 2.43 × 105 | 4.06 × 104 | 9.28 × 104 | 3.19 × 104 | 1.50 × 104 | 1.47 × 104 | |
Std | 5.91 × 101 | 1.62 × 104 | 3.57 × 102 | 3.77 × 102 | 5.37 × 104 | 9.55 × 103 | 4.40 × 104 | 1.36 × 104 | 1.26 × 104 | 2.69 × 104 | 6.09 × 103 | 2.54 × 104 | 7.31 × 103 | 3.00 × 103 | 3.30 × 103 | |
Rank | 1 | 9 | 3 | 2 | 15 | 7 | 13 | 11 | 12 | 14 | 8 | 10 | 6 | 5 | 4 | |
F5 | Min | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 |
Mean | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | 5.00 × 102 | |
Std | 1.10 × 10−3 | 1.58 × 10−2 | 1.60 × 10−3 | 7.66 × 10−3 | 8.27 × 10−3 | 1.56 × 10−2 | 1.66 × 10−2 | 6.06 × 10−3 | 9.15 × 10−3 | 9.28 × 10−3 | 1.18 × 10−2 | 7.48 × 10−3 | 5.24 × 10−3 | 1.51 × 10−3 | 8.59 × 10−3 | |
Rank | 1 | 6 | 2 | 14 | 12 | 4 | 10 | 8 | 15 | 13 | 11 | 9 | 5 | 3 | 7 | |
F6 | Min | 7.72 × 102 | 3.94 × 104 | 1.49 × 104 | 2.15 × 104 | 2.53 × 104 | 4.85 × 104 | 2.02 × 104 | 2.15 × 104 | 1.62 × 105 | 2.24 × 104 | 5.19 × 104 | 2.35 × 104 | 9.58 × 103 | 1.45 × 104 | 4.58 × 104 |
Mean | 1.88 × 103 | 1.32 × 105 | 2.96 × 104 | 3.81 × 104 | 6.78 × 104 | 8.28 × 104 | 3.47 × 104 | 5.38 × 104 | 1.79 × 105 | 6.64 × 104 | 8.53 × 104 | 4.46 × 104 | 2.12 × 104 | 3.33 × 104 | 9.39 × 104 | |
Std | 9.55 × 102 | 2.80 × 104 | 8.38 × 103 | 1.32 × 104 | 2.37 × 104 | 2.03 × 104 | 1.13 × 104 | 1.24 × 104 | 9.28 × 103 | 1.81 × 104 | 2.46 × 104 | 1.28 × 104 | 9.01 × 103 | 1.07 × 104 | 2.84 × 104 | |
Rank | 1 | 14 | 3 | 6 | 10 | 11 | 5 | 8 | 15 | 9 | 12 | 7 | 2 | 4 | 13 | |
F7 | Min | 7.00 × 102 | 7.01 × 102 | 7.01 × 102 | 7.01 × 102 | 7.02 × 102 | 7.00 × 102 | 7.01 × 102 | 7.01 × 102 | 7.11 × 102 | 7.02 × 102 | 7.02 × 102 | 7.01 × 102 | 7.01 × 102 | 7.01 × 102 | 7.01 × 102 |
Mean | 7.00 × 102 | 7.05 × 102 | 7.01 × 102 | 7.02 × 102 | 7.03 × 102 | 7.03 × 102 | 7.02 × 102 | 7.02 × 102 | 7.13 × 102 | 7.04 × 102 | 7.04 × 102 | 7.02 × 102 | 7.01 × 102 | 7.01 × 102 | 7.03 × 102 | |
Std | 1.73 × 10−1 | 2.76 × 100 | 3.42 × 10−1 | 8.00 × 10−1 | 7.01 × 10−1 | 2.47 × 100 | 1.13 × 100 | 7.02 × 10−1 | 8.93 × 10−1 | 1.21 × 100 | 1.19 × 100 | 6.87 × 10−1 | 5.05 × 10−1 | 4.63 × 10−1 | 1.06 × 100 | |
Rank | 1 | 14 | 2 | 5 | 10 | 9 | 7 | 6 | 15 | 13 | 12 | 8 | 4 | 3 | 11 | |
F8 | Min | 8.72 × 102 | 8.69 × 102 | 8.22 × 102 | 8.60 × 102 | 9.61 × 102 | 8.28 × 102 | 9.17 × 102 | 9.20 × 102 | 1.09 × 103 | 9.60 × 102 | 9.24 × 102 | 9.31 × 102 | 8.83 × 102 | 8.81 × 102 | 8.43 × 102 |
Mean | 9.01 × 102 | 9.07 × 102 | 8.70 × 102 | 9.05 × 102 | 1.03 × 103 | 8.60 × 102 | 9.57 × 102 | 9.53 × 102 | 1.14 × 103 | 1.04 × 103 | 1.02 × 103 | 9.84 × 102 | 9.34 × 102 | 8.97 × 102 | 8.84 × 102 | |
Std | 2.15 × 101 | 2.38 × 101 | 2.50 × 101 | 1.91 × 101 | 3.53 × 101 | 1.21 × 101 | 4.61 × 101 | 2.26 × 101 | 2.26 × 101 | 4.71 × 101 | 4.40 × 101 | 3.41 × 101 | 3.26 × 101 | 1.12 × 101 | 2.21 × 101 | |
Rank | 5 | 7 | 2 | 6 | 13 | 1 | 10 | 9 | 15 | 14 | 12 | 11 | 8 | 4 | 3 | |
F9 | Min | 1.51 × 104 | 1.80 × 104 | 1.58 × 104 | 1.78 × 104 | 2.13 × 104 | 1.62 × 104 | 2.68 × 104 | 2.47 × 104 | 3.21 × 104 | 2.51 × 104 | 2.21 × 104 | 2.10 × 104 | 1.92 × 104 | 1.96 × 104 | 2.41 × 104 |
Mean | 1.80 × 104 | 2.87 × 104 | 1.77 × 104 | 2.02 × 104 | 2.45 × 104 | 2.79 × 104 | 3.08 × 104 | 2.79 × 104 | 3.32 × 104 | 3.07 × 104 | 2.60 × 104 | 2.31 × 104 | 2.25 × 104 | 2.38 × 104 | 2.89 × 104 | |
Std | 1.53 × 103 | 4.55 × 103 | 1.02 × 103 | 1.36 × 103 | 1.62 × 103 | 6.81 × 103 | 1.88 × 103 | 1.92 × 103 | 4.86 × 102 | 2.27 × 103 | 2.02 × 103 | 1.39 × 103 | 1.98 × 103 | 1.95 × 103 | 1.78 × 103 | |
Rank | 2 | 11 | 1 | 3 | 7 | 9 | 14 | 10 | 15 | 13 | 8 | 5 | 4 | 6 | 12 | |
F10 | Min | 2.56 × 103 | 1.90 × 105 | 9.63 × 104 | 3.38 × 105 | 9.79 × 108 | 4.83 × 105 | 7.83 × 105 | 7.21 × 106 | 5.08 × 107 | 9.43 × 106 | 5.26 × 105 | 6.77 × 105 | 3.62 × 105 | 2.31 × 105 | 4.72 × 105 |
Mean | 2.54 × 104 | 4.19 × 105 | 6.64 × 105 | 4.35 × 105 | 4.51 × 109 | 4.02 × 106 | 8.11 × 108 | 7.83 × 107 | 1.32 × 108 | 7.40 × 108 | 1.24 × 106 | 4.50 × 108 | 7.13 × 105 | 1.38 × 106 | 7.26 × 105 | |
Std | 3.75 × 104 | 1.89 × 105 | 1.46 × 106 | 6.89 × 104 | 2.67 × 109 | 5.01 × 106 | 1.87 × 109 | 6.32 × 107 | 3.66 × 107 | 8.36 × 108 | 9.33 × 105 | 1.40 × 109 | 4.71 × 105 | 1.82 × 106 | 2.22 × 105 | |
Rank | 1 | 2 | 4 | 3 | 15 | 9 | 14 | 10 | 11 | 13 | 7 | 12 | 5 | 8 | 6 | |
F11 | Min | 6.43 × 105 | 1.66 × 109 | 2.93 × 108 | 1.46 × 108 | 6.73 × 1010 | 1.08 × 109 | 1.03 × 1010 | 2.58 × 1010 | 3.62 × 1010 | 6.28 × 1010 | 2.33 × 109 | 2.68 × 109 | 7.27 × 108 | 1.07 × 109 | 9.71 × 108 |
Mean | 2.15 × 106 | 4.89 × 109 | 5.50 × 108 | 3.46 × 108 | 1.21 × 1011 | 6.42 × 109 | 5.45 × 1010 | 4.24 × 1010 | 4.58 × 1010 | 8.97 × 1010 | 4.63 × 109 | 1.76 × 1010 | 1.73 × 109 | 2.00 × 109 | 1.90 × 109 | |
Std | 1.06 × 106 | 4.29 × 109 | 2.01 × 108 | 1.41 × 108 | 3.35 × 1010 | 3.56 × 109 | 4.34 × 1010 | 9.78 × 109 | 3.99 × 109 | 1.85 × 1010 | 1.60 × 109 | 1.58 × 1010 | 6.31 × 108 | 6.96 × 108 | 6.23 × 108 | |
Rank | 1 | 8 | 3 | 2 | 15 | 9 | 13 | 11 | 12 | 14 | 7 | 10 | 4 | 6 | 5 | |
F12 | Min | 2.28 × 103 | 2.21 × 108 | 9.52 × 107 | 1.98 × 107 | 1.06 × 1011 | 1.34 × 109 | 1.05 × 1010 | 3.09 × 1010 | 6.82 × 1010 | 8.77 × 1010 | 1.44 × 109 | 3.09 × 109 | 2.19 × 108 | 6.82 × 108 | 4.67 × 108 |
Mean | 2.17 × 104 | 4.09 × 109 | 2.92 × 108 | 5.67 × 107 | 2.11 × 1011 | 7.57 × 109 | 4.28 × 1010 | 7.68 × 1010 | 8.05 × 1010 | 1.48 × 1011 | 2.85 × 109 | 3.12 × 1010 | 6.69 × 108 | 1.70 × 109 | 1.15 × 109 | |
Std | 2.48 × 104 | 4.23 × 109 | 1.01 × 108 | 3.93 × 107 | 6.12 × 1010 | 4.22 × 109 | 4.57 × 1010 | 2.53 × 1010 | 7.74 × 109 | 3.55 × 1010 | 9.45 × 108 | 4.77 × 1010 | 2.87 × 108 | 9.45 × 108 | 5.15 × 108 | |
Rank | 1 | 8 | 3 | 2 | 15 | 9 | 11 | 12 | 13 | 14 | 7 | 10 | 4 | 6 | 5 | |
F13 | Min | 5.85 × 105 | 4.95 × 105 | 3.14 × 106 | 8.99 × 105 | 2.73 × 107 | 1.17 × 106 | 4.68 × 106 | 1.43 × 107 | 5.45 × 107 | 6.13 × 106 | 2.80 × 106 | 2.57 × 106 | 1.25 × 106 | 4.90 × 106 | 1.49 × 106 |
Mean | 3.09 × 106 | 7.65 × 106 | 2.24 × 107 | 6.77 × 106 | 7.48 × 107 | 4.75 × 106 | 2.59 × 108 | 4.87 × 107 | 1.04 × 108 | 3.28 × 107 | 1.84 × 107 | 1.42 × 107 | 9.83 × 106 | 1.63 × 107 | 9.58 × 106 | |
Std | 2.63 × 106 | 5.03 × 106 | 9.62 × 106 | 3.17 × 106 | 3.82 × 107 | 2.43 × 106 | 1.95 × 108 | 2.51 × 107 | 2.36 × 107 | 2.23 × 107 | 9.59 × 106 | 8.47 × 106 | 5.46 × 106 | 7.61 × 106 | 4.19 × 106 | |
Rank | 1 | 4 | 10 | 3 | 13 | 2 | 15 | 12 | 14 | 11 | 9 | 7 | 6 | 8 | 5 | |
F14 | Min | 7.14 × 103 | 2.89 × 106 | 2.01 × 107 | 8.75 × 105 | 2.52 × 1010 | 3.71 × 107 | 6.33 × 108 | 2.40 × 109 | 1.61 × 1010 | 7.37 × 109 | 1.80 × 108 | 7.04 × 107 | 3.44 × 107 | 2.89 × 107 | 2.30 × 107 |
Mean | 1.53 × 105 | 1.69 × 108 | 4.39 × 107 | 5.41 × 106 | 3.92 × 1010 | 7.92 × 108 | 1.04 × 1010 | 6.87 × 109 | 2.06 × 1010 | 2.08 × 1010 | 3.62 × 108 | 1.97 × 109 | 7.38 × 107 | 1.61 × 108 | 9.70 × 107 | |
Std | 1.51 × 105 | 3.20 × 108 | 1.52 × 107 | 5.49 × 106 | 9.55 × 109 | 9.27 × 108 | 1.14 × 1010 | 2.09 × 109 | 2.55 × 109 | 7.78 × 109 | 1.04 × 108 | 3.33 × 109 | 2.93 × 107 | 8.56 × 107 | 4.06 × 107 | |
Rank | 1 | 7 | 3 | 2 | 15 | 9 | 12 | 11 | 13 | 14 | 8 | 10 | 4 | 6 | 5 | |
F15 | Min | 1.54 × 103 | 7.54 × 103 | 2.94 × 104 | 5.46 × 104 | 1.69 × 109 | 9.96 × 104 | 6.41 × 105 | 1.72 × 107 | 1.35 × 108 | 3.64 × 108 | 3.00 × 105 | 1.35 × 105 | 7.63 × 104 | 9.25 × 104 | 7.47 × 104 |
Mean | 6.80 × 103 | 5.68 × 106 | 2.36 × 105 | 1.89 × 105 | 6.43 × 109 | 1.12 × 107 | 1.34 × 107 | 2.07 × 108 | 2.89 × 108 | 2.18 × 109 | 1.21 × 106 | 1.79 × 108 | 1.29 × 105 | 8.99 × 105 | 2.98 × 105 | |
Std | 5.14 × 103 | 1.58 × 107 | 2.16 × 105 | 1.64 × 105 | 3.95 × 109 | 2.12 × 107 | 1.73 × 107 | 1.74 × 108 | 7.90 × 107 | 1.41 × 109 | 1.18 × 106 | 6.25 × 108 | 5.89 × 104 | 5.96 × 105 | 2.41 × 105 | |
Rank | 1 | 8 | 4 | 3 | 15 | 9 | 10 | 12 | 13 | 14 | 7 | 11 | 2 | 6 | 5 | |
F16 | Min | 2.66 × 103 | 1.52 × 104 | 6.91 × 103 | 9.66 × 104 | 4.39 × 1011 | 8.64 × 104 | 3.42 × 1011 | 5.70 × 1010 | 4.76 × 1012 | 3.98 × 1011 | 1.93 × 108 | 1.79 × 105 | 1.07 × 105 | 2.31 × 105 | 1.26 × 105 |
Mean | 3.94 × 103 | 7.23 × 109 | 7.29 × 106 | 1.47 × 105 | 8.93 × 1014 | 3.26 × 107 | 4.14 × 1015 | 1.05 × 1013 | 5.74 × 1013 | 3.45 × 1013 | 6.48 × 1010 | 1.01 × 109 | 3.61 × 106 | 3.59 × 108 | 3.61 × 105 | |
Std | 7.76 × 102 | 3.38 × 1010 | 2.81 × 107 | 3.24 × 104 | 2.82 × 1015 | 1.63 × 108 | 9.79 × 1015 | 1.72 × 1013 | 3.79 × 1013 | 3.47 × 1013 | 1.14 × 1011 | 3.66 × 109 | 1.71 × 107 | 8.33 × 108 | 5.74 × 105 | |
Rank | 1 | 9 | 5 | 2 | 14 | 6 | 15 | 11 | 13 | 12 | 10 | 8 | 4 | 7 | 3 | |
F17 | Min | 6.85 × 105 | 1.91 × 106 | 6.19 × 106 | 2.55 × 106 | 2.49 × 106 | 9.50 × 105 | 3.23 × 106 | 3.84 × 106 | 1.30 × 107 | 5.01 × 106 | 7.46 × 106 | 1.42 × 106 | 2.53 × 106 | 2.24 × 106 | 2.84 × 106 |
Mean | 4.82 × 106 | 1.41 × 107 | 3.57 × 107 | 9.07 × 106 | 7.30 × 107 | 4.98 × 106 | 3.89 × 108 | 6.16 × 107 | 5.53 × 107 | 4.24 × 107 | 3.48 × 107 | 3.43 × 107 | 1.11 × 107 | 1.89 × 107 | 1.04 × 107 | |
Std | 3.63 × 106 | 9.78 × 106 | 2.52 × 107 | 6.16 × 106 | 8.13 × 107 | 3.69 × 106 | 4.48 × 108 | 4.92 × 107 | 1.98 × 107 | 8.44 × 107 | 2.16 × 107 | 1.08 × 108 | 8.92 × 106 | 1.56 × 107 | 6.33 × 106 | |
Rank | 1 | 6 | 10 | 3 | 14 | 2 | 15 | 13 | 12 | 11 | 9 | 8 | 5 | 7 | 4 | |
F18 | Min | 2.10 × 103 | 1.55 × 105 | 2.11 × 107 | 3.73 × 105 | 1.25 × 1013 | 7.18 × 109 | 3.01 × 1010 | 5.90 × 1010 | 5.55 × 1010 | 3.15 × 1011 | 3.08 × 1010 | 9.37 × 109 | 8.97 × 109 | 4.61 × 108 | 3.76 × 108 |
Mean | 8.39 × 103 | 1.03 × 109 | 1.25 × 108 | 7.47 × 105 | 1.02 × 1015 | 4.26 × 1010 | 1.06 × 1014 | 3.72 × 1012 | 9.66 × 1010 | 1.33 × 1014 | 9.38 × 1010 | 3.42 × 1012 | 3.17 × 1010 | 1.61 × 1010 | 3.03 × 109 | |
Std | 6.64 × 103 | 1.28 × 109 | 1.41 × 108 | 5.87 × 105 | 1.50 × 1015 | 7.58 × 1010 | 5.43 × 1014 | 9.98 × 1012 | 2.63 × 1010 | 2.70 × 1014 | 6.03 × 1010 | 1.60 × 1013 | 1.34 × 1010 | 2.56 × 1010 | 2.14 × 109 | |
Rank | 1 | 4 | 3 | 2 | 15 | 8 | 13 | 12 | 10 | 14 | 9 | 11 | 7 | 6 | 5 | |
F19 | Min | 2.04 × 103 | 3.35 × 103 | 2.26 × 103 | 4.02 × 103 | 1.06 × 104 | 3.77 × 103 | 2.71 × 104 | 2.14 × 104 | 1.24 × 104 | 2.61 × 104 | 1.30 × 104 | 6.67 × 103 | 7.99 × 103 | 7.02 × 103 | 5.00 × 103 |
Mean | 2.48 × 103 | 1.14 × 104 | 2.87 × 103 | 6.29 × 103 | 2.22 × 104 | 5.47 × 103 | 4.42 × 104 | 2.82 × 104 | 1.45 × 104 | 3.66 × 104 | 2.19 × 104 | 1.25 × 104 | 1.27 × 104 | 9.45 × 103 | 6.27 × 103 | |
Std | 3.81 × 102 | 4.28 × 103 | 3.43 × 102 | 1.12 × 103 | 6.91 × 103 | 1.11 × 103 | 5.65 × 103 | 4.27 × 103 | 1.00 × 103 | 5.15 × 103 | 6.27 × 103 | 3.56 × 103 | 2.64 × 103 | 1.68 × 103 | 9.96 × 102 | |
Rank | 1 | 7 | 2 | 5 | 12 | 3 | 15 | 13 | 10 | 14 | 11 | 8 | 9 | 6 | 4 | |
F20 | Min | 2.10 × 103 | 1.93 × 104 | 4.64 × 103 | 4.18 × 103 | 1.78 × 105 | 2.44 × 104 | 1.36 × 105 | 9.25 × 104 | 1.84 × 105 | 1.87 × 105 | 1.04 × 104 | 6.43 × 104 | 2.14 × 104 | 9.06 × 103 | 1.03 × 104 |
Mean | 2.66 × 103 | 4.77 × 104 | 5.33 × 103 | 4.95 × 103 | 2.97 × 105 | 3.66 × 104 | 1.85 × 105 | 1.14 × 105 | 2.28 × 105 | 2.13 × 105 | 3.32 × 104 | 1.04 × 105 | 3.15 × 104 | 1.65 × 104 | 1.50 × 104 | |
Std | 1.25 × 102 | 1.47 × 104 | 3.28 × 102 | 3.62 × 102 | 4.83 × 104 | 7.91 × 103 | 2.39 × 104 | 1.11 × 104 | 1.49 × 104 | 1.44 × 104 | 9.59 × 103 | 3.46 × 104 | 4.57 × 103 | 3.30 × 103 | 2.76 × 103 | |
Rank | 1 | 9 | 3 | 2 | 15 | 8 | 12 | 11 | 14 | 13 | 7 | 10 | 6 | 5 | 4 | |
F21 | Min | 2.20 × 103 | 2.89 × 103 | 2.33 × 103 | 2.34 × 103 | 7.39 × 103 | 2.54 × 103 | 2.09 × 104 | 1.69 × 104 | 3.64 × 103 | 2.05 × 104 | 4.39 × 103 | 3.24 × 103 | 2.91 × 103 | 2.67 × 103 | 2.51 × 103 |
Mean | 2.79 × 103 | 4.69 × 103 | 2.36 × 103 | 4.34 × 103 | 1.46 × 104 | 2.71 × 103 | 2.71 × 104 | 2.09 × 104 | 4.40 × 103 | 2.81 × 104 | 1.89 × 104 | 1.44 × 104 | 1.21 × 104 | 6.67 × 103 | 2.59 × 103 | |
Std | 2.57 × 103 | 2.08 × 103 | 7.91 × 100 | 4.98 × 103 | 3.18 × 103 | 1.04 × 102 | 3.36 × 103 | 1.69 × 103 | 1.03 × 103 | 3.31 × 103 | 6.88 × 103 | 8.45 × 103 | 6.98 × 103 | 5.24 × 103 | 4.82 × 102 | |
Rank | 4 | 7 | 1 | 5 | 11 | 3 | 14 | 13 | 6 | 15 | 12 | 10 | 9 | 8 | 2 | |
F22 | Min | 2.30 × 103 | 2.25 × 104 | 4.58 × 103 | 4.38 × 103 | 1.25 × 105 | 1.97 × 104 | 1.07 × 105 | 6.67 × 104 | 6.55 × 104 | 1.16 × 105 | 1.99 × 104 | 3.22 × 104 | 2.82 × 104 | 1.22 × 104 | 1.08 × 104 |
Mean | 2.49 × 103 | 3.85 × 104 | 7.59 × 103 | 5.45 × 103 | 1.73 × 105 | 3.21 × 104 | 1.18 × 105 | 9.11 × 104 | 8.35 × 104 | 1.21 × 105 | 3.13 × 104 | 4.73 × 104 | 4.63 × 104 | 2.10 × 104 | 1.68 × 104 | |
Std | 1.81 × 102 | 1.66 × 104 | 1.30 × 103 | 5.73 × 102 | 2.31 × 104 | 6.98 × 103 | 4.41 × 103 | 7.49 × 103 | 7.49 × 103 | 3.38 × 103 | 1.61 × 104 | 9.81 × 103 | 1.43 × 104 | 1.33 × 104 | 5.23 × 103 | |
Rank | 1 | 8 | 3 | 2 | 15 | 7 | 13 | 12 | 11 | 14 | 6 | 10 | 9 | 5 | 4 | |
F23 | Min | 2.50 × 103 | 2.98 × 104 | 5.76 × 103 | 5.28 × 103 | 1.32 × 105 | 3.01 × 104 | 1.04 × 105 | 9.39 × 104 | 9.15 × 104 | 1.44 × 105 | 3.38 × 104 | 3.77 × 104 | 3.39 × 104 | 2.10 × 104 | 1.83 × 104 |
Mean | 2.59 × 103 | 5.87 × 104 | 1.14 × 104 | 7.58 × 103 | 2.35 × 105 | 4.56 × 104 | 1.49 × 105 | 1.15 × 105 | 1.06 × 105 | 1.60 × 105 | 5.66 × 104 | 6.92 × 104 | 5.94 × 104 | 3.40 × 104 | 2.46 × 104 | |
Std | 2.13 × 102 | 1.67 × 104 | 1.78 × 103 | 1.08 × 103 | 3.57 × 104 | 7.39 × 103 | 1.49 × 104 | 7.57 × 103 | 7.61 × 103 | 7.79 × 103 | 1.92 × 104 | 2.75 × 104 | 1.60 × 104 | 1.06 × 104 | 3.80 × 103 | |
Rank | 1 | 8 | 3 | 2 | 15 | 6 | 13 | 12 | 11 | 14 | 7 | 10 | 9 | 5 | 4 | |
F24 | Min | 3.28 × 103 | 5.15 × 103 | 3.65 × 103 | 3.47 × 103 | 2.37 × 104 | 4.41 × 103 | 8.79 × 103 | 9.45 × 103 | 2.08 × 104 | 1.23 × 104 | 5.17 × 103 | 6.19 × 103 | 4.69 × 103 | 4.61 × 103 | 4.33 × 103 |
Mean | 3.31 × 103 | 7.32 × 103 | 3.93 × 103 | 3.65 × 103 | 3.65 × 104 | 5.60 × 103 | 1.67 × 104 | 1.22 × 104 | 2.78 × 104 | 1.90 × 104 | 6.22 × 103 | 9.22 × 103 | 5.73 × 103 | 5.13 × 103 | 4.83 × 103 | |
Std | 2.29 × 101 | 1.68 × 103 | 1.77 × 102 | 9.45 × 101 | 6.95 × 103 | 5.10 × 102 | 7.92 × 103 | 1.50 × 103 | 2.79 × 103 | 2.78 × 103 | 5.61 × 102 | 2.03 × 103 | 7.05 × 102 | 3.17 × 102 | 3.10 × 102 | |
Rank | 1 | 9 | 3 | 2 | 15 | 6 | 12 | 11 | 14 | 13 | 8 | 10 | 7 | 5 | 4 | |
F25 | Min | 5.83 × 103 | 1.93 × 104 | 6.10 × 103 | 6.17 × 103 | 4.77 × 104 | 7.86 × 103 | 1.02 × 105 | 3.94 × 104 | 8.39 × 103 | 3.24 × 104 | 1.04 × 104 | 9.76 × 103 | 1.50 × 104 | 6.53 × 103 | 6.83 × 103 |
Mean | 5.97 × 103 | 3.45 × 104 | 6.30 × 103 | 6.52 × 103 | 1.02 × 105 | 9.70 × 103 | 2.52 × 105 | 1.08 × 105 | 9.13 × 103 | 8.44 × 104 | 2.13 × 104 | 3.07 × 104 | 2.74 × 104 | 7.15 × 103 | 7.47 × 103 | |
Std | 5.21 × 101 | 1.21 × 104 | 9.86 × 101 | 1.51 × 102 | 3.16 × 104 | 1.05 × 103 | 6.74 × 104 | 4.37 × 104 | 4.05 × 102 | 5.01 × 104 | 7.03 × 103 | 1.71 × 104 | 9.09 × 103 | 4.06 × 102 | 3.51 × 102 | |
Rank | 1 | 11 | 2 | 3 | 13 | 7 | 15 | 14 | 6 | 12 | 8 | 10 | 9 | 4 | 5 | |
F26 | Min | 3.31 × 103 | 4.36 × 103 | 3.38 × 103 | 3.38 × 103 | 5.54 × 103 | 3.57 × 103 | 7.67 × 103 | 5.70 × 103 | 5.01 × 103 | 6.52 × 103 | 4.36 × 103 | 3.59 × 103 | 3.73 × 103 | 3.77 × 103 | 3.56 × 103 |
Mean | 3.44 × 103 | 5.30 × 103 | 3.55 × 103 | 3.59 × 103 | 6.94 × 103 | 3.84 × 103 | 1.01 × 104 | 8.74 × 103 | 5.30 × 103 | 9.38 × 103 | 5.43 × 103 | 4.14 × 103 | 4.31 × 103 | 4.06 × 103 | 3.88 × 103 | |
Std | 9.82 × 101 | 5.01 × 102 | 1.05 × 102 | 1.04 × 102 | 1.06 × 103 | 1.41 × 102 | 1.11 × 103 | 1.52 × 103 | 1.78 × 102 | 1.23 × 103 | 5.47 × 102 | 3.57 × 102 | 3.74 × 102 | 3.17 × 102 | 1.41 × 102 | |
Rank | 1 | 10 | 2 | 3 | 12 | 4 | 15 | 13 | 9 | 14 | 11 | 7 | 8 | 6 | 5 | |
F27 | Min | 2.70 × 103 | 4.19 × 103 | 3.28 × 103 | 3.21 × 103 | 8.43 × 103 | 3.68 × 103 | 7.18 × 103 | 7.62 × 103 | 8.15 × 103 | 9.09 × 103 | 3.89 × 103 | 4.37 × 103 | 3.57 × 103 | 3.50 × 103 | 3.43 × 103 |
Mean | 2.72 × 103 | 6.15 × 103 | 3.33 × 103 | 3.28 × 103 | 1.64 × 104 | 4.09 × 103 | 1.86 × 104 | 9.50 × 103 | 9.12 × 103 | 1.32 × 104 | 4.69 × 103 | 6.49 × 103 | 4.04 × 103 | 3.66 × 103 | 3.73 × 103 | |
Std | 9.62 × 100 | 1.40 × 103 | 2.43 × 101 | 3.10 × 101 | 4.31 × 103 | 2.15 × 102 | 6.90 × 103 | 9.31 × 102 | 5.97 × 102 | 2.11 × 103 | 4.12 × 102 | 1.44 × 103 | 2.97 × 102 | 9.54 × 101 | 1.59 × 102 | |
Rank | 1 | 9 | 3 | 2 | 14 | 7 | 15 | 12 | 11 | 13 | 8 | 10 | 6 | 4 | 5 | |
F28 | Min | 1.06 × 104 | 1.63 × 108 | 2.45 × 106 | 3.31 × 106 | 2.65 × 1013 | 3.73 × 109 | 3.63 × 1010 | 2.58 × 1010 | 7.58 × 1011 | 8.01 × 1011 | 1.53 × 1010 | 6.95 × 108 | 3.45 × 109 | 1.91 × 108 | 1.03 × 109 |
Mean | 1.98 × 105 | 4.47 × 109 | 1.81 × 1010 | 7.54 × 107 | 2.11 × 1015 | 1.16 × 1010 | 7.82 × 1013 | 3.55 × 1012 | 8.75 × 1012 | 4.30 × 1014 | 7.78 × 1010 | 2.98 × 1013 | 1.61 × 1010 | 4.48 × 1010 | 3.21 × 109 | |
Std | 2.06 × 105 | 5.13 × 109 | 5.95 × 1010 | 1.25 × 108 | 2.73 × 1015 | 6.13 × 109 | 2.70 × 1014 | 4.89 × 1012 | 7.20 × 1012 | 8.98 × 1014 | 6.56 × 1010 | 1.35 × 1014 | 7.38 × 109 | 1.73 × 1011 | 2.41 × 109 | |
Rank | 1 | 4 | 7 | 2 | 15 | 5 | 13 | 10 | 11 | 14 | 9 | 12 | 6 | 8 | 3 | |
F29 | Min | 4.44 × 105 | 2.10 × 108 | 9.36 × 107 | 5.01 × 106 | 4.73 × 1013 | 7.80 × 109 | 2.40 × 1010 | 6.44 × 1010 | 1.19 × 1012 | 2.24 × 1012 | 3.93 × 1010 | 2.05 × 1010 | 1.44 × 1010 | 1.11 × 109 | 2.16 × 109 |
Mean | 9.96 × 105 | 5.61 × 109 | 3.55 × 108 | 5.60 × 107 | 1.47 × 1015 | 2.39 × 1010 | 4.05 × 1013 | 1.73 × 1012 | 4.20 × 1012 | 1.52 × 1014 | 1.37 × 1011 | 3.73 × 1014 | 3.51 × 1010 | 1.17 × 1010 | 7.37 × 109 | |
Std | 4.32 × 105 | 6.72 × 109 | 2.37 × 108 | 4.76 × 107 | 1.83 × 1015 | 1.25 × 1010 | 1.70 × 1014 | 4.64 × 1012 | 2.10 × 1012 | 1.85 × 1014 | 9.89 × 1010 | 1.99 × 1015 | 1.26 × 1010 | 7.04 × 109 | 4.84 × 109 | |
Rank | 1 | 4 | 3 | 2 | 15 | 7 | 12 | 10 | 11 | 13 | 9 | 14 | 8 | 6 | 5 | |
Total | 26 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Dim = 30 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Func. | PSO | BBO | SMA | DE | GWO | SSA | HHO | ABC | WOA | E-WOA | IWOA | IWOSSA | RAV-WOA | WOAAD |
F1 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 1.41 × 10−9 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F2 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F3 | 4.31 × 10−8 | 2.23 × 10−9 | 3.67 × 10−3 | 3.02 × 10−11 | 6.72 × 10−10 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 6.69 × 10−11 | 1.20 × 10−10 | 1.19 × 10−6 | 1.96 × 10−10 | 1.41 × 10−9 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F4 | 3.02 × 10−11 | 3.02 × 10−11 | 6.70 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 4.50 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F5 | 3.56 × 10−4 | 5.26 × 10−4 | 3.02 × 10−11 | 1.21 × 10−10 | 5.01 × 100 | 2.44 × 10−9 | 3.47 × 10−10 | 3.02 × 10−11 | 6.70 × 10−11 | 8.89 × 10−10 | 7.60 × 10−7 | 9.21 × 10−5 | 1.02 × 10−5 | 1.89 × 10−4 |
+ | + | + | + | = | + | + | + | + | + | + | + | + | + | |
F6 | 6.70 × 10−11 | 1.41 × 10−9 | 3.08 × 10−8 | 1.31 × 10−8 | 3.02 × 10−11 | 4.57 × 10−9 | 3.02 × 10−11 | 3.02 × 10−11 | 6.70 × 10−11 | 4.98 × 10−11 | 1.78 × 10−10 | 1.87 × 10−7 | 2.87 × 10−10 | 8.15 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F7 | 6.91 × 10−4 | 1.68 × 10−3 | 2.75 × 10−3 | 4.74 × 10−6 | 1.68 × 10−4 | 6.74 × 10−6 | 1.07 × 10−7 | 3.34 × 10−11 | 3.35 × 10−8 | 1.43 × 10−8 | 9.51 × 10−6 | 2.05 × 10−3 | 2.42 × 10−2 | 8.15 × 10−5 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F8 | 1.09 × 10−5 | 2.87 × 10−10 | 2.96 × 10−5 | 5.94 × 100 | 1.78 × 10−10 | 8.31 × 10−3 | 1.76 × 10−1 | 4.64 × 10−3 | 3.85 × 10−3 | 1.45 × 10−1 | 2.01 × 10−1 | 5.08 × 10−3 | 5.19 × 10−7 | 5.07 × 10−10 |
− | − | − | = | − | − | = | + | + | = | = | − | − | − | |
F9 | 2.05 × 10−3 | 6.53 × 10−8 | 1.44 × 10−3 | 3.11 × 10−1 | 5.30 × 10−1 | 1.25 × 10−7 | 4.64 × 10−5 | 3.02 × 10−11 | 1.29 × 10−6 | 5.87 × 10−4 | 1.02 × 10−1 | 1.05 × 10−1 | 9.33 × 10−2 | 5.49 × 10−1 |
− | − | − | = | = | + | + | + | + | + | = | = | = | = | |
F10 | 6.41 × 100 | 8.31 × 10−3 | 2.68 × 10−4 | 3.02 × 10−11 | 3.16 × 10−10 | 1.78 × 10−10 | 6.70 × 10−11 | 3.02 × 10−11 | 9.76 × 10−10 | 3.02 × 10−11 | 1.86 × 10−9 | 4.08 × 10−11 | 6.35 × 10−2 | 9.26 × 10−9 |
= | + | + | + | + | + | + | + | + | + | + | + | = | + | |
F11 | 9.82 × 100 | 3.02 × 10−11 | 9.92 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
= | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F12 | 3.09 × 10−6 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F13 | 2.42 × 10−2 | 1.53 × 10−5 | 7.96 × 10−1 | 2.23 × 10−9 | 4.92 × 10−1 | 9.76 × 10−10 | 1.55 × 10−9 | 2.19 × 10−8 | 1.24 × 10−3 | 7.04 × 10−7 | 7.96 × 10−3 | 1.30 × 10−3 | 1.96 × 10−1 | 3.87 × 10−1 |
− | + | = | + | = | + | + | + | + | + | + | + | = | = | |
F14 | 1.22 × 10−1 | 3.02 × 10−11 | 3.34 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.69 × 10−11 | 3.02 × 10−11 | 5.49 × 10−11 | 3.02 × 10−11 |
= | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F15 | 2.12 × 10−1 | 3.02 × 10−11 | 1.29 × 10−9 | 3.02 × 10−11 | 3.02 × 10−11 | 3.34 × 10−11 | 3.02 × 10−11 | 4.50 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.69 × 10−11 | 3.02 × 10−11 | 3.34 × 10−11 | 3.02 × 10−11 |
= | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F16 | 2.87 × 10−10 | 8.99 × 10−11 | 3.16 × 10−10 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.69 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F17 | 2.75 × 10−3 | 7.38 × 10−10 | 3.32 × 10−6 | 6.52 × 10−9 | 1.75 × 10−5 | 1.37 × 10−3 | 3.65 × 10−8 | 8.15 × 10−11 | 9.03 × 10−4 | 4.18 × 10−9 | 5.61 × 10−5 | 5.07 × 10−10 | 3.27 × 10−2 | 1.16 × 10−7 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F18 | 6.00 × 100 | 3.02 × 10−11 | 8.84 × 10−7 | 3.02 × 10−11 | 9.76 × 10−10 | 4.50 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 5.49 × 10−11 | 8.89 × 10−10 | 1.46 × 10−10 | 5.49 × 10−11 |
= | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F19 | 6.53 × 10−8 | 4.55 × 100 | 4.46 × 100 | 3.02 × 10−11 | 1.00 × 10−3 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 5.07 × 10−10 | 3.02 × 10−11 | 4.57 × 10−9 | 2.38 × 10−3 |
+ | = | = | + | + | + | + | + | + | + | + | + | + | + | |
F20 | 4.11 × 10−7 | 2.37 × 10−10 | 2.97 × 100 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 2.61 × 10−10 | 3.02 × 10−11 | 1.56 × 10−2 | 2.15 × 10−6 | 7.38 × 10−10 |
+ | + | = | + | + | + | + | + | + | + | + | + | + | + | |
F21 | 1.70 × 10−8 | 1.71 × 10−1 | 5.01 × 10−2 | 3.02 × 10−11 | 2.89 × 10−3 | 3.02 × 10−11 | 3.02 × 10−11 | 9.76 × 10−10 | 3.02 × 10−11 | 3.69 × 10−11 | 3.20 × 10−9 | 9.53 × 10−7 | 4.03 × 10−3 | 5.32 × 10−3 |
+ | = | = | + | + | + | + | + | + | + | + | + | + | + | |
F22 | 1.09 × 10−10 | 3.02 × 10−11 | 1.24 × 10−3 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.18 × 10−3 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F23 | 3.96 × 10−8 | 1.31 × 10−8 | 6.74 × 10−6 | 3.02 × 10−11 | 8.10 × 10−10 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 7.12 × 10−9 | 5.49 × 10−11 | 6.28 × 10−6 | 1.56 × 10−8 | 2.60 × 10−8 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F24 | 2.15 × 10−10 | 1.33 × 10−10 | 4.55 × 100 | 3.02 × 10−11 | 3.34 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 4.08 × 10−11 | 4.50 × 10−11 | 2.61 × 10−10 | 4.20 × 10−10 |
+ | + | = | + | + | + | + | + | + | + | + | + | + | + | |
F25 | 5.57 × 10−10 | 3.02 × 10−11 | 3.69 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F26 | 7.12 × 10−9 | 2.51 × 10−2 | 3.18 × 10−3 | 3.02 × 10−11 | 1.56 × 10−2 | 3.02 × 10−11 | 3.02 × 10−11 | 4.06 × 10−2 | 3.02 × 10−11 | 8.48 × 10−9 | 2.53 × 10−4 | 1.43 × 10−5 | 1.91 × 10−2 | 7.96 × 10−3 |
+ | − | − | + | − | + | + | + | + | + | + | + | + | − | |
F27 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F28 | 1.20 × 10−8 | 5.49 × 10−11 | 1.86 × 10−6 | 3.02 × 10−11 | 1.17 × 10−9 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 9.92 × 10−11 | 8.15 × 10−11 | 2.61 × 10−10 | 2.44 × 10−9 | 3.82 × 10−9 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F29 | 6.05 × 10−7 | 3.02 × 10−11 | 2.37 × 10−10 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 2.87 × 10−10 | 3.02 × 10−11 | 3.69 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + |
Dim = 100 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Func. | PSO | BBO | SMA | DE | GWO | SSA | HHO | ABC | WOA | E-WOA | IWOA | IWOSSA | RAV-WOA | WOAAD |
F1 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F2 | 3.02 × 10−11 | 3.02 × 10−11 | 1.87 × 10−5 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F3 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F4 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F5 | 2.37 × 10−10 | 2.03 × 10−9 | 3.02 × 10−11 | 3.02 × 10−11 | 2.20 × 10−7 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 6.70 × 10−11 | 3.82 × 10−10 | 3.69 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F6 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F7 | 3.34 × 10−11 | 1.61 × 10−10 | 3.69 × 10−11 | 3.02 × 10−11 | 1.96 × 10−10 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 1.09 × 10−10 | 1.46 × 10−10 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F8 | 3.87 × 100 | 2.49 × 10−6 | 3.63 × 100 | 3.02 × 10−11 | 2.15 × 10−10 | 1.86 × 10−9 | 1.55 × 10−9 | 3.02 × 10−11 | 3.02 × 10−11 | 4.98 × 10−11 | 1.61 × 10−10 | 9.21 × 10−5 | 6.41 × 100 | 6.97 × 10−3 |
= | − | = | + | − | + | + | + | + | + | + | + | = | − | |
F9 | 1.78 × 10−10 | 3.79 × 100 | 3.83 × 10−6 | 3.02 × 10−11 | 4.44 × 10−7 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 2.87 × 10−10 | 6.07 × 10−11 | 3.02 × 10−11 |
+ | = | + | + | + | + | + | + | + | + | + | + | + | + | |
F10 | 3.02 × 10−11 | 8.99 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F12 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F13 | 2.60 × 10−5 | 1.46 × 10−10 | 1.02 × 10−5 | 3.02 × 10−11 | 2.05 × 10−3 | 7.39 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 6.07 × 10−11 | 5.57 × 10−10 | 2.44 × 10−9 | 1.47 × 10−7 | 3.82 × 10−10 | 3.96 × 10−8 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F14 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F15 | 3.16 × 10−10 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F16 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F17 | 3.02 × 10−11 | 3.82 × 10−10 | 5.87 × 10−04 | 5.97 × 10−09 | 7.51 × 1000 | 1.69 × 10−09 | 1.46 × 10−10 | 3.34 × 10−11 | 1.20 × 10−08 | 2.37 × 10−10 | 1.78 × 10−04 | 2.84 × 10−04 | 1.39 × 10−06 | 4.94 × 10−05 |
+ | + | + | + | = | + | + | + | + | + | + | + | + | + | |
F18 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F19 | 3.02 × 10−11 | 5.87 × 10−04 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F20 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F21 | 6.72 × 10−10 | 3.99 × 10−04 | 7.66 × 10−05 | 2.15 × 10−10 | 9.06 × 10−08 | 3.02 × 10−11 | 3.02 × 10−11 | 5.57 × 10−10 | 3.02 × 10−11 | 8.99 × 10−11 | 9.92 × 10−11 | 1.96 × 10−10 | 7.12 × 10−09 | 1.07 × 10−07 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F22 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F23 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F24 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F25 | 3.02 × 10−11 | 3.34 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F26 | 3.02 × 10−11 | 2.43 × 10−05 | 1.39 × 10−06 | 3.02 × 10−11 | 9.92 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 5.49 × 10−11 | 3.34 × 10−11 | 3.02 × 10−11 | 6.07 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F27 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F28 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | |
F29 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+ | + | + | + | + | + | + | + | + | + | + | + | + | + |
Dim = 100 | ||||
---|---|---|---|---|
Func. | Index | : = 1:1 | : = 2:1 | : = 3:1 |
F1 | Mean | 4.18 × 105 | 1.37 × 104 | 7.88 × 106 |
rank | 2 | 1 | 3 | |
F2 | Mean | 9.02 × 105 | 3.70 × 103 | 6.12 × 104 |
rank | 3 | 1 | 2 | |
F3 | Mean | 3.33 × 104 | 5.48 × 102 | 1.25 × 103 |
rank | 3 | 1 | 2 | |
F4 | Mean | 3.24 × 103 | 8.62 × 102 | 5.14 × 104 |
rank | 2 | 1 | 3 | |
F5 | Mean | 2.13 × 102 | 5.00 × 102 | 9.45 × 103 |
rank | 1 | 2 | 3 | |
F6 | Mean | 3.22 × 104 | 1.88 × 103 | 5.64 × 105 |
rank | 2 | 1 | 3 | |
F7 | Mean | 3.25 × 104 | 7.00 × 102 | 9.52 × 103 |
rank | 3 | 1 | 2 | |
F8 | Mean | 2.56 × 103 | 9.01 × 102 | 7.33 × 104 |
rank | 2 | 1 | 3 | |
F9 | Mean | 3.25 × 105 | 1.80 × 104 | 9.22 × 107 |
rank | 2 | 1 | 3 | |
F10 | Mean | 6.66 × 106 | 2.54 × 104 | 1.22 × 103 |
rank | 3 | 2 | 1 | |
F11 | Mean | 3.56 × 107 | 2.15 × 106 | 4.98 × 108 |
rank | 2 | 1 | 3 | |
F12 | Mean | 3.45 × 106 | 2.17 × 104 | 6.78 × 105 |
rank | 3 | 1 | 2 | |
F13 | Mean | 4.65 × 107 | 3.09 × 106 | 7.42 × 108 |
rank | 2 | 1 | 3 | |
F14 | Mean | 6.82 × 107 | 1.53 × 105 | 2.81 × 106 |
rank | 3 | 1 | 2 | |
F15 | Mean | 2.56 × 105 | 6.80 × 103 | 8.61 × 104 |
rank | 3 | 1 | 2 | |
F16 | Mean | 2.56 × 104 | 3.94 × 103 | 7.42 × 105 |
rank | 2 | 1 | 3 | |
F17 | Mean | 1.25 × 107 | 4.82 × 106 | 6.42 × 108 |
rank | 2 | 1 | 3 | |
F18 | Mean | 9.42 × 105 | 8.39 × 103 | 2.16 × 104 |
rank | 3 | 1 | 2 | |
F19 | Mean | 1.23 × 103 | 2.48 × 103 | 3.78 × 105 |
rank | 1 | 2 | 3 | |
F20 | Mean | 5.32 × 104 | 2.66 × 103 | 6.48 × 105 |
rank | 2 | 1 | 3 | |
F21 | Mean | 4.25 × 105 | 2.79 × 103 | 6.94 × 104 |
rank | 3 | 1 | 2 | |
F22 | Mean | 8.53 × 105 | 2.49 × 103 | 5.32 × 104 |
rank | 3 | 1 | 2 | |
F23 | Mean | 6.32 × 104 | 2.59 × 103 | 6.31 × 105 |
rank | 2 | 1 | 3 | |
F24 | Mean | 2.68 × 102 | 3.31 × 103 | 7.42 × 104 |
rank | 1 | 2 | 3 | |
F25 | Mean | 9.72 × 104 | 5.97 × 103 | 9.75 × 102 |
rank | 3 | 2 | 1 | |
F26 | Mean | 6.32 × 104 | 3.44 × 103 | 5.31 × 105 |
rank | 2 | 1 | 3 | |
F27 | Mean | 5.32 × 104 | 2.72 × 103 | 8.72 × 105 |
rank | 2 | 1 | 3 | |
F28 | Mean | 5.33 × 104 | 1.98 × 105 | 8.62 × 106 |
rank | 1 | 2 | 3 | |
F29 | Mean | 9.96 × 106 | 9.96 × 105 | 9.96 × 104 |
rank | 3 | 2 | 1 | |
Average Rank | 2.276 | 1.241 | 2.483 | |
Combined Rank | 2 | 1 | 3 |
Algorithms | ImWOA | WOA | E-WOA | IWOA | IWOSSA | RAV-WOA | WOAAD |
---|---|---|---|---|---|---|---|
Mean | 147,041.24 | 241,639.96 | 249,941.32 | 239,785.64 | 237,602.55 | 167,897.84 | 251,044.01 |
rank | 1 | 5 | 6 | 4 | 3 | 2 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Hao, Z. Enhanced Whale Optimization Algorithm with Novel Strategies for 3D TSP Problem. Biomimetics 2025, 10, 560. https://doi.org/10.3390/biomimetics10090560
Zhou Y, Hao Z. Enhanced Whale Optimization Algorithm with Novel Strategies for 3D TSP Problem. Biomimetics. 2025; 10(9):560. https://doi.org/10.3390/biomimetics10090560
Chicago/Turabian StyleZhou, Yu, and Zijun Hao. 2025. "Enhanced Whale Optimization Algorithm with Novel Strategies for 3D TSP Problem" Biomimetics 10, no. 9: 560. https://doi.org/10.3390/biomimetics10090560
APA StyleZhou, Y., & Hao, Z. (2025). Enhanced Whale Optimization Algorithm with Novel Strategies for 3D TSP Problem. Biomimetics, 10(9), 560. https://doi.org/10.3390/biomimetics10090560