Assessment of Color Stability of Various Flowable Composite Resins with Different Viscosities
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Staining Procedures
- Red Wine Group: Specimens were immersed in 50 mL of red wine (Shiraz, Doluca, Türkiye; pH = 3.50).
- Coffee Group: A coffee solution was prepared by dissolving 3.6 g of instant coffee (Nescafe Classic, Nestlé Türkiye Gıda, Istanbul) in 300 mL of boiling distilled water. Specimens were immersed in 50 mL of this solution (pH = 4.50).
- Tea Group: Black tea solution was prepared by steeping one tea bag (Tek Dem Classic, Lipton, Istanbul, Türkiye) in 100 mL of hot water (approximately 95 °C) for 2 min. Each specimen was immersed in 50 mL of freshly prepared tea (pH = 5.30).
- Cola Group: Specimens were immersed in 50 mL of cola (Pepsi, PepsiCo, Istanbul, Türkiye). To maintain consistency, a freshly opened bottle was used daily (pH = 2.53).
- Distilled Water Group (Control): Specimens were stored in 50 mL of distilled water (pH = 7.55) and served as the control group.
2.3. Repolishing Procedure
2.4. Color Measurements
2.5. Statistical Analysis
3. Results
3.1. ΔE1 Findings
3.2. ΔE2 Findings
3.3. ΔE3 Findings
4. Discussion
5. Conclusions
- Red wine and coffee exhibit the highest staining potential, with red wine causing the most profound discoloration across all CRs.
- SDRP was consistently the most susceptible to color change in almost all immersed solutions, whereas EUFM demonstrated superior resistance, particularly in water immersion.
- The influence of filler content, monomer composition, and potential formulation-specific factors of filler may contribute to the tested CR differences.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CR | Composite Resin |
BisGMA | Bisphenol A glycidyl dimethacrylate |
TEGDMA | Triethylene glycol dimethacrylate |
BisEMA | Ethoxylated bisphenol A dimethacrylate |
Bis-MPEPP | 2,2-bis(4-methacryloxy poly-ethoxyphenyl)propane |
UDMA | Urethane dimethacrylate |
EBPADMA | Ethoxylated bisphenol A dimethacrylate |
STHV | Spectra ST HV |
EUFM | Estelite Universal Flow Medium |
EBF | Estelite Bulk-Fill Flow |
SDRP | SDR Plus |
EP | Estelite Posterior |
References
- Zafar, M.S.; Amin, F.; Fareed, M.A.; Ghabbani, H.; Riaz, S.; Khurshid, Z.; Kumar, N. Biomimetic aspects of restorative dentistry biomaterials. Biomimetics 2020, 5, 34. [Google Scholar] [CrossRef]
- Singer, L.; Fouda, A.; Bourauel, C. Biomimetic approaches and materials in restorative and regenerative dentistry. BMC Oral Health 2023, 23, 105. [Google Scholar] [CrossRef]
- Magne, P. Composite resins and bonded porcelain: The postamalgam era? J. Calif. Dent. Assoc. 2006, 34, 135–147. [Google Scholar] [CrossRef]
- Alleman, D.S.; Nejad, M.; Alleman, C. The protocols of biomimetic restorative dentistry: 2002 to 2017. Inside Dent. 2017, 13, 64–73. [Google Scholar]
- Dionysopoulos, D.; Gerasimidou, O. Biomimetic dentistry: Basic principles and protocols. ARC J. Dent. Sci. 2020, 5, 1–3. [Google Scholar] [CrossRef]
- Cho, K.; Rajan, G.; Farrar, P.; Prentice, L.; Prusty, B.G. Dental resin composites: A review on materials to product realizations. Compos. Part B Eng. 2022, 230, 109495. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, M.; Zhu, X.X. Functional fillers for dental resin composites. Acta Biomater. 2021, 122, 50–65. [Google Scholar] [CrossRef]
- Fugolin, A.P.P.; Pfeifer, C.S. New resins for dental composites. J. Dent. Res. 2017, 96, 1085–1091. [Google Scholar] [CrossRef]
- Fonseca, A.S.Q.; Moreira, A.D.L.; de Albuquerque, P.P.A.; de Menezes, L.R.; Pfeifer, C.S.; Schneider, L.F.J. Effect of monomer type on the CC degree of conversion, water sorption and solubility, and color stability of model dental composites. Dent. Mater. 2017, 33, 394–401. [Google Scholar] [CrossRef]
- Ferracane, J.L. A historical perspective on dental composite restorative materials. J. Funct. Biomater. 2024, 15, 173. [Google Scholar] [CrossRef]
- Francois, P.; Izart, M.; Fasham, T.; Smail, Y.; Jannot, M.; Le Goff, S.; Attal, J.P. Proposal of a Modular Classification System for Direct Dental Resin Composites Based on Clinical Applications. Polymers 2025, 17, 564. [Google Scholar] [CrossRef]
- Ferracane, J.L. Resin composite—State of the art. Dent. Mater. 2021, 27, 29–38. [Google Scholar] [CrossRef]
- Yu, B.; Lee, Y.K. Differences in color, translucency and fluorescence between flowable and universal resin composites. J. Dent. 2008, 36, 840–846. [Google Scholar] [CrossRef]
- Ilie, N.; Hickel, R. Resin composite restorative materials. Aust. Dent. J. 2011, 56, 59–66. [Google Scholar] [CrossRef]
- Lopez, C.; Nizami, B.; Robles, A.; Gummadi, S.; Lawson, N.C. Correlation between Dental Composite Filler Percentage and Strength, Modulus, Shrinkage Stress, Translucency, Depth of Cure and Radiopacity. Materials 2024, 17, 3901. [Google Scholar] [CrossRef] [PubMed]
- Sideridou, I.; Tserki, V.; Papanastasiou, G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials 2003, 24, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.B.; Son, H.H.; Um, C.M. Rheologic properties of flowable, conventional hybrid, and condensable composite resins. Dent. Mater. 2003, 19, 298e307. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, I.; Otsuki, M.; Sadr, A.; Nomura, T.; Kishikawa, R.; Tagami, J. Effect of filler content of flowable composites on resin-cavity interface. Dent. Mater. J. 2009, 28, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Huang, X.; Li, M.; Peng, X.; Wang, S.; Zhou, X.; Cheng, L. Development and status of resin composite as dental restorative materials. J. Appl. Polym. Sci. 2019, 136, 48180. [Google Scholar] [CrossRef]
- Baroudi, K.; Rodrigues, J.C. Flowable resin composites: A systematic review and clinical considerations. J. Clin. Diagn. Res. 2015, 9, ZE18. [Google Scholar] [CrossRef]
- Attar, N.; Tam, L.E.; McComb, D. Flow, strength, stiffness and radiopacity of flowable resin composites. J. Can. Dent. Assoc. 2003, 69, 516–521. [Google Scholar]
- Rego, G.F.; Schneider, L.F.J.; Vianna-de-Pinho, M.G.; Vidal, M.L.; Alonso, R.C.B.; Cavalcante, L.M. Clinical time required and internal adaptation in cavities restored with bulk-fill composites. J. Contemp. Dent. Pract. 2017, 18, 1107–1111. [Google Scholar] [CrossRef]
- Parra Gatica, E.; Duran Ojeda, G.; Wendler, M. Contemporary flowable bulk-fill resin-based composites: A systematic review. Biomater. Investig. Dent. 2023, 10, 2175685. [Google Scholar] [CrossRef]
- Corral Núñez, C.; Vildósola Grez, P.; Bersezio Miranda, C.; Alves Dos Campos, E.; Fernández Godoy, E. State of the art of bulk-fill resin-based composites: A review. Rev. Fac. Odontol. 2015, 27, 177–196. [Google Scholar]
- Hirata, R.; Kabbach, W.; De Andrade, O.S.; Bonfante, E.A.; Giannini, M.; Coelho, P.G. Bulk fill composites: An anatomic sculpting technique. J. Esthet. Restor. Dent. 2015, 27, 335–343. [Google Scholar] [CrossRef]
- Paolone, G.; Formiga, S.; De Palma, F.; Abbruzzese, L.; Chirico, L.; Scolavino, S.; Vichi, A. Color stability of resin-based composites: Staining procedures with liquids—A narrative review. J. Esthet. Restor. Dent. 2022, 34, 865–887. [Google Scholar] [CrossRef] [PubMed]
- Hickel, R.; Peschke, A.; Tyas, M.; Mjör, I.; Bayne, S.; Peters, M.; Heintze, S.D. FDI World Dental Federation: Clinical criteria for the evaluation of direct and indirect restorations—Update and clinical examples. Clin. Oral Investig. 2010, 14, 349–366. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L.; Berge, H.X.; Condon, J.R. In vitro aging of dental composites in water—Effect of degree of conversion, filler volume, and filler/matrix coupling. J. Biomed. Mater. Res. 1998, 42, 465–472. [Google Scholar] [CrossRef]
- Mansouri, S.A.; Zidan, A.Z. Effect of Water Sorption and Solubility on Color Stability of Bulk-Fill Resin Composite. J. Contemp. Dent. Pract. 2018, 19, 1129–1134. [Google Scholar]
- Albuquerque, P.P.A.C.; Moreira, A.D.L.; Moraes, R.R.; Cavalcante, L.M.; Schneider, L.F.J. Color stability, conversion, water sorption and solubility of dental composites formulated with different photoinitiator systems. J. Dent. 2013, 41, e67–e72. [Google Scholar] [CrossRef]
- Barutcugil, C.; Yildiz, M. Intrinsic and extrinsic discoloration of dimethacrylate and silorane based composites. J. Dent. 2012, 40, 57–63. [Google Scholar] [CrossRef]
- Garoushi, S.; Lassila, L.; Hatem, M.; Shembesh, M.; Baady, L.; Salim, Z.; Vallittu, P. Influence of staining solutions and whitening procedures on discoloration of hybrid composite resins. Acta Odontol. Scand. 2013, 71, 144–150. [Google Scholar] [CrossRef]
- Demarco, F.F.; Collares, K.; Coelho-de-Souza, F.H.; Correa, M.B.; Cenci, M.S.; Moraes, R.R.; Opdam, N.J. Anterior composite restorations: A systematic review on long-term survival and reasons for failure. Dent. Mater. 2015, 31, 1214–1224. [Google Scholar] [CrossRef]
- Ardu, S.; Duc, O.; Di Bella, E.; Krejci, I.; Daher, R. Color stability of different composite resins after polishing. Odontology 2018, 106, 328–333. [Google Scholar] [CrossRef]
- Dumitrescu, R.; Anghel, I.M.; Opris, C.; Vlase, T.; Vlase, G.; Jumanca, D.; Balean, O. Investigating the Effect of Staining Beverages on the Structural and Mechanical Integrity of Dental Composites Using Raman, Fourier Transform Infrared (FTIR) Spectroscopy, and Microhardness Analysis. Medicina 2025, 61, 590. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.F.; Dias, M.F.; Lins-Filho, P.C.; Silva, C.H.V.; Guimarães, R.P. Color stability of Bulk-Fill composite restorations. J. Clin. Exp. Dent. 2020, 12, e1086. [Google Scholar] [CrossRef] [PubMed]
- Arregui, M.; Giner, L.; Ferrari, M.; Vallés, M.; Mercadé, M. Six-month color change and water sorption of 9 new-generation flowable composites in 6 staining solutions. Braz. Oral Res. 2016, 30, e123. [Google Scholar] [CrossRef] [PubMed]
- Spigno-Paco, B.; Tozo-Burgos, J.G.; Calla-Poma, R.; Sánchez-Tito, M. Comparisonof Color Stability of a Monochromatic Resin Versus Bulk-Fill and Micro-Hybrid Resins. J. Clin. Exp. Dent. 2025, 17, e521. [Google Scholar] [CrossRef]
- Bahbishi, N.; Mzain, W.; Badeeb, B.; Nassar, H.M. Color stability and micro-hardness of bulk-fill composite materials after exposure to common beverages. Materials 2020, 13, 787. [Google Scholar] [CrossRef]
- Şişmanoğlu, S.; Sengez, G. Effects of acidic beverages on color stability of bulk-fill composites with different viscosities. Odovtos Int. J. Dent. Sci. 2022, 24, 90–99. [Google Scholar] [CrossRef]
- Korkut, B.; Hacıalı, C. Color stability of flowable composites in different viscosities. Clin. Exp. Health Sci. 2020, 10, 454–461. [Google Scholar] [CrossRef]
- Uctasli, M.B.; Garoushi, S.; Uctasli, M.; Vallittu, P.K.; Lassila, L. A comparative assessment of color stability among various commercial resin composites. BMC Oral Health 2023, 23, 789. [Google Scholar] [CrossRef] [PubMed]
- Paolone, G.; Mandurino, M.; Scotti, N.; Cantatore, G.; Blatz, M.B. Color stability of bulk-fill compared to conventional resin-based composites: A scoping review. J. Esth. Restor. Dent. 2023, 35, 657–676. [Google Scholar] [CrossRef] [PubMed]
- Powers, J.M.; Sakaguchi, R.L.; Craig, R.G. Craig’s Restorative Dental Materials, 13th ed.; Elsevier/Mosby: Philadelphia, PA, USA, 2012; p. 176. [Google Scholar]
- Çeliksöz, Ö.; Tepe, H.; Yaman, B. Evaluation of color stability of bulk-fill restorative materials with different properties. J. Health Sci. Med. 2023, 6, 1360–1365. [Google Scholar] [CrossRef]
- Dentsply Sirona Website. Available online: https://www.dentsplysirona.com/en-us/discover/discover-by-brand/sdr-flow-plus.html (accessed on 5 March 2025).
- Ferracane, J.L. Hygroscopic and hydrolytic effects in dental polymer networks. Dent. Mater. 2006, 22, 211–222. [Google Scholar] [CrossRef]
- Kazak, M.; Akalin, T.T.; Esen, F. Comparison of Water Sorption and Water Solubility Properties of Current Restorative Materials with Different Contents. Eur. J. Dent. 2025, 19, 248–254. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Rodgers, B.; Suliman, A.A.; Johnston, W.M. Color and translucency stability of contemporary resin-based restorative materials. J. Esthet. Restor. Dent. 2021, 33, 899–905. [Google Scholar] [CrossRef]
- Bociong, K.; Szczesio, A.; Sokolowski, K.; Domarecka, M.; Sokolowski, J.; Krasowski, M.; Lukomska-Szymanska, M. The influence of water sorption of dental light-cured composites on shrinkage stress. Materials 2017, 10, 1142. [Google Scholar] [CrossRef] [PubMed]
- Kalachandra, S.; Turner, D.T. Water sorption of polymethacrylate networks: Bis-GMA/TEGDM copolymers. J. Biomed. Mater. Res. 1987, 21, 329–338. [Google Scholar] [CrossRef]
- Ilie, N. Resin-Based Bulk-Fill Composites: Tried and Tested, New Trends, and Evaluation Compared to Human Dentin. Materials 2022, 15, 8095. [Google Scholar] [CrossRef]
- Dietschi, D.; Campanile, G.; Holz, J.; Meyer, J.M. Comparison of the color stability of ten new-generation composites: An in vitro study. Dent. Mater. 1994, 10, 353–362. [Google Scholar] [CrossRef] [PubMed]
Material, Manufacturer, Lot Number | Content | The Filler Weight/Volume% |
---|---|---|
Spectra STHV SSTHV Dentsply, Milford, DE, USA Lot: 0593 | Urethane-modified Bis-GMA; TEGDMA Pre-polymerized SphereTEC fillers, non-agglomerated barium glass, ytterbium fluoride. | 78–80/60–62 |
SDR Plus SDRP Dentsply, Milford, DE, USA Lot: 6955 | Modified urethane dimethacrylate resin, EBPADMA, TEGDMA, Camphorquinone, Photoinitiator, BHT, UV Stabilizer, Titanium dioxide, Iron oxide pigments, Barium-alumino-fluoro-borosilicate glass, Strontium alumino-fluoro-silicate glass | 70.5/47.4 |
Estelite Universal Flow Medium EUFM Tokuyama Dental Co., Tokyo, Japan Lot: 1545 | Bis-GMA, Bis-MPEPP, TEGDMA, UDMA, Spherical silica-zirconia filler, Camphorquinone, Radical amplifying agent | 71/57 |
Estelite Bulk-Fill Flow EBF Tokuyama Dental Co., Tokyo, Japan Lot: 0784 | Bis-GMA, TEGDMA, Bis-MPEPP, Mequinol, Dibutyl hydroxyl toluene and UV absorber, Spherical silica-zirconia filler | 70/56 |
Estelite Posterior EP Tokuyama Dental Co., Tokyo, Japan Lot: W2171 | Bis-GMA, TEGDMA, Bis-MPEPP, Spherical silica-zirconia filler | 84/70 |
∆E1 | ∆E2 | ∆E3 | ||||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
Composite resin | 12.084 | 0.001 * | 12.393 | 0.001 * | 18.391 | 0.001 * |
Solution | 600.069 | 0.001 * | 69.163 | 0.001 * | 155.005 | 0.001 * |
Composite resin * Solution | 6.609 | 0.001 * | 9.769 | 0.001 * | 6.036 | 0.001 * |
SSTHV | SDRP | EUFM | EBF | EP | ||
---|---|---|---|---|---|---|
Solution | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | p |
Coffee | 6.76 ± 1.75 Aa | 15.18 ± 1.79 Ba | 6.56 ± 0.74 Aa | 8.89 ± 1.0 Aa | 7.01 ± 1.21 Aa | 0.001 * |
Tea | 2.3 ± 0.45 Aa | 8.79 ± 2.34 Bb | 1.35 ± 0.55 Ab | 1.96 ± 0.85 Ab | 2.71 ± 0.49 Ab | 0.001 * |
Cola | 1.3 ± 0.59 Aa | 5.59 ± 2.53 Bbd | 1.57 ± 0.51 Ab | 1.48 ± 0.92 Ab | 1.52 ± 0.27 Ab | 0.001 * |
Wine | 30.66 ± 6.72 Ab | 22.83 ± 3.01 Ac | 24.98 ± 1.02 Ac | 27.79 ± 3.63 Ac | 26.99 ± 4.32 Ac | 0.075 |
Water | 2.19 ± 1.35 Aa | 2.52 ± 0.99 Ad | 0.43 ± 0.2 Bb | 1.85 ± 0.55 ABb | 1.11 ± 0.64 ABb | 0.006 * |
p | 0.001 * | 0.001 * | 0.001 * | 0.001 * | 0.001 * |
SSTHV | SDRP | EUFM | EBF | EP | ||
---|---|---|---|---|---|---|
Solution | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | p |
Coffee | 3.68 ± 1.33 Aa | 8.12 ± 1.69 Ba | 4.16 ± 0.46 Aab | 5 ± 2.21 Aa | 4.6 ± 1.19 Aa | 0.001 * |
Tea | 1.42 ± 1.29 Aa | 6.27 ± 1.17 Bab | 0.97 ± 0.49 Aa | 2.29 ± 1.37 Ab | 2.76 ± 2.13 Aa | 0.001 * |
Cola | 1.84 ± 0.94 Aa | 6.7 ± 1.63 Bab | 0.77 ± 0.39 Aa | 1.35 ± 0.51 Ab | 1.74 ± 0.79 Aa | 0.001 * |
Wine | 13.65 ± 5.01 ACb | 6.24 ± 1.62 ABab | 9.28 ± 6.61 ABb | 5.2 ± 1.1 Ba | 19.74 ± 4.11 Cb | 0.001 * |
Water | 1.58 ± 0.67 Aa | 3.9 ± 2.11 Bb | 0.49 ± 0.21 Aa | 1.52 ± 1.06 Ab | 2.04 ± 1.16 ABa | 0.005 * |
p | 0.001 * | 0.013 * | 0.001 * | 0.001 * | 0.001 * |
SSTHV | SDRP | EUFM | EBF | EP | ||
---|---|---|---|---|---|---|
Solution | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | p |
Coffee | 5.73 ± 1.37 Aa | 9.83 ± 0.93 Ba | 2.56 ± 0.97 Aa | 11.29 ± 2.36 Ba | 3.49 ± 0.87 Aa | 0.001 * |
Tea | 3.01 ± 1.39 Aba | 5.53 ± 2.34 Ab | 0.81 ± 0.23 Ba | 3.91 ± 2.32 ABb | 3.65 ± 1.06 Aba | 0.005 * |
Cola | 2.03 ± 1.08 Aa | 4.4 ± 2.06 Bb | 1.76 ± 0.72 Aa | 1 ± 0.33 Ab | 1.71 ± 0.95 Aa | 0.002 * |
Wine | 19.29 ± 6.36 Ab | 17.83 ± 1.92 Ac | 16.23 ± 7.46 Ab | 22.46 ± 0.9 Ac | 7.95 ± 3.69 Bb | 0.002 * |
Water | 2.69 ± 1.11 Aa | 4.86 ± 1.65 Bb | 0.49 ± 0.21 Ca | 1.59 ± 0.59 ACb | 2.27 ± 1.38 ACa | 0.001 * |
p | 0.001 * | 0.001 * | 0.001 * | 0.001 * | 0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yenier Yurdagüven, G. Assessment of Color Stability of Various Flowable Composite Resins with Different Viscosities. Biomimetics 2025, 10, 550. https://doi.org/10.3390/biomimetics10080550
Yenier Yurdagüven G. Assessment of Color Stability of Various Flowable Composite Resins with Different Viscosities. Biomimetics. 2025; 10(8):550. https://doi.org/10.3390/biomimetics10080550
Chicago/Turabian StyleYenier Yurdagüven, Gülşah. 2025. "Assessment of Color Stability of Various Flowable Composite Resins with Different Viscosities" Biomimetics 10, no. 8: 550. https://doi.org/10.3390/biomimetics10080550
APA StyleYenier Yurdagüven, G. (2025). Assessment of Color Stability of Various Flowable Composite Resins with Different Viscosities. Biomimetics, 10(8), 550. https://doi.org/10.3390/biomimetics10080550