Coating Process of Oil and Gas Well Pipeline Preventive Repair Materials Inspired by Remora Suckerfish Structure
Abstract
1. Introduction
2. Materials and Methods
2.1. Structural Characteristics and Adsorption Mechanisms of Remora Suckerfish Remora Suckers
2.2. Study of Bionic Coating Mechanism of High-Strength Fiberboard Tape
2.3. Discrete Meta-Analytical Modeling of Nano-Polymer Materials for Epoxy Materials
2.3.1. Discrete Element Modeling Study
2.3.2. Simulation Model Parameter Testing and Calibration
2.4. Test and Simulation Verification
2.4.1. Simulation Model Validation Test
2.4.2. Optimization Test of Bionic Structure Combination
2.4.3. Curing Test
3. Results and Discussion
3.1. Simulation Model Validation Test Results and Discussion
3.2. Bionic Structure Combination Optimization Test Results and Discussion
3.3. Curing Test Results and Discussion
4. Conclusions
- Geometrical analysis of remora suckerfish based on bionic principle and combination of remora suckerfish with fiberboard tape to provide the bionic basis for novel structural design.
- Construction of the particle model of a polymer material without solvent epoxy reinforcement by discrete element model to determine the relevant parameters. The accuracy of the model is verified by solvent density test and drop test, and then the optimal combination of parameters of the bionic structure is obtained with the help of multi-factor test simulation analysis.
- The bionic coating structure, inspired by remora sucker geometry, was developed through three-dimensional scanning (0.02 mm accuracy) and proportional scaling. Optimization of longitudinal pleat parameters (height: 1.2 mm and spacing: 3.5 mm) achieved a 43.29% improvement in coating thickness uniformity. The gravitational segregation-induced density gradient was reduced from 0.12 g/cm3 to below 0.04 g/cm3, effectively addressing thickness inconsistency issues in traditional materials which are caused by gravitational effects.
- Multi-factor response surface analysis shows that the bionic structure decreased the standard deviation of interfacial bond strength from 0.21 MPa to 0.12 MPa, with the average strength increasing by 0.2 MPa (from 2.8 MPa to 3.0 MPa)—meeting the safety threshold of ≥2.5 MPa for pipeline repair. Drop tests confirmed that coating thickness unevenness was reduced from 7–10% to within 3%, validating the structure’s inhibition of fluid shear effects.
- Determined the bionic structure combination optimization results through a multi-factor test, determined that the longitudinal frequency, bar depth, and transverse frequency have a positive effect on the quality of the drop, and thus a longitudinal frequency of 2, a bar depth of 11.822 mm, and a transverse frequency of 2 were selected as the optimal combination of results.
- The comparison test between the bionic structure and the original structure confirms that the bionic structure has good stability and effectively avoids problems such as a lack of strength, and its stability is improved by about 43.29% compared to the original structure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, H.B.; Dai, C.; Ji, B.Y.; Zhang, H.W. Data assimilation of multi-stage fractured horizontal well in unconventional oil and gas reservoir: Field case study. Geoenergy Sci. Eng. 2025, 246, 213659. [Google Scholar] [CrossRef]
- Wen, Z.; Wang, J.; Wang, Z.; He, Z.; Song, C.; Chen, R.; Liu, X.; Ji, T.; Li, Z. Analysis of the current status of global oil, gas, and associated resources exploration in 2023. Pet. Explor. Dev. 2024, 51, 1465–1479. [Google Scholar] [CrossRef]
- Kossenas, K.; Podilchak, S.K.; Beveridge, M. Wireless Propagation in a Metallic Pipe for the Transmission of Sensory Oil and Gas Well Data. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 1124–1128. [Google Scholar] [CrossRef]
- Liu, C.Z.; Dang, B.; Wang, H.Y.; Yang, L.; Dang, J.X.; Shen, X.H.; Dang, R.R. Synthesized Magnetic Field Focusing for the Non-Destructive Testing of Oil and Gas Well Casing Pipes Using Pulsed Eddy-Current Array. IEEE Trans. Magn. 2022, 58, 6201710. [Google Scholar] [CrossRef]
- Zhang, Q.T.; Taleghani, A.D.; Elsworth, D. Underground energy storage using abandoned oil & gas wells assisted by geothermal. J. Energy Storage 2025, 110, 115317. [Google Scholar] [CrossRef]
- Savenok, O.V.; Zharikova, N.K.; Chuykova, E.P.; Verisokin, A.E.; Hadid, M.; Povarova, L.V.; Domanova, A.S. Justification and selection of a method for restricting water inflow to horizontal wells in low-permeability terrigenous reservoir conditions using the example of the YuS2 formation of an oil and gas condensate field. Bull. Tomsk. Polytech. Univ.-Geo Assets Eng. 2025, 336. [Google Scholar] [CrossRef]
- Wang, Y.G.; Guo, W.J.; Sun, G.Z.; Zhou, X.; Lin, J.Z.; Ding, M.S.; Huang, Z.; Cao, Y.C. Remaining Oil Distribution and Enhanced Oil Recovery Mechanisms Through Multi-Well Water and Gas Injection in Weathered Crust Reservoirs. Processes 2025, 13, 241. [Google Scholar] [CrossRef]
- Yang, J.Z.; Yang, Y.F.; Tian, L.; Zhou, J.L.; Wang, Y. Risk and Pollutant Protective Concentration Levels of Drilling Waste Used to Pave Oil and Gas Field Well Sites. Water 2025, 17, 30. [Google Scholar] [CrossRef]
- Flammang, B.E.; Marras, S.; Anderson, E.J.; Lehmkuhl, O.; Mukherjee, A.; Cade, D.E.; Beckert, M.; Nadler, J.H.; Houzeaux, G.; Vázquez, M.; et al. Remoras pick where they stick on blue whales. J. Exp. Biol. 2020, 223, jeb226654. [Google Scholar] [CrossRef]
- Souto, L.R.A.; Ross, T.E.W.; Sampaio, C.L.S.; dos Reis, M.D.S.; Bortolotto, G.A. First record of sharksucker Echeneis naucrates (Perciformes, Echeneidae) associated with a young Guiana dolphin Sotalia guianensis (Cetartiodactyla, Delphinidae) in north-eastern Brazil. J. Mar. Biol. Assoc. UK 2022, 102, 386–389. [Google Scholar] [CrossRef]
- Wosnick, N.; Langlais, M.; Saunders, A. Behavioral dynamics and feeding strategies of sharksuckers in symbiosis with Atlantic Nurse sharks: Insights from a fish cleaning station in the Bahamas. Mar. Biol. 2024, 171, 155. [Google Scholar] [CrossRef]
- Wang, Y.P.; Yang, X.B.; Chen, Y.F.; Wainwright, D.K.; Kenaley, C.P.; Gong, Z.Y.; Liu, Z.; Liu, H.; Guan, J.; Wang, T.; et al. A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish. Sci. Robot. 2017, 2, eaan8072. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Q.; Li, L.; Zhao, W.; Zhang, Y.Y.; Wen, L. A biomimetic remora disc with tunable, reversible adhesion for surface sliding and skimming. Bioinspir. Biomim. 2022, 17, 036001. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Q.; Li, L.; Sun, W.G.; Wainwright, D.; Wang, H.; Zhao, W.; Chen, B.; Chen, Y.; Wen, L. Detachment of the remora suckerfish disc: Kinematics and a bio-inspired robotic model. Bioinspir. Biomim. 2020, 15, 056018. [Google Scholar] [CrossRef]
- Li, Q.Y.; Ning, Z.F.; Wu, S.H.; Wang, B.H.; Li, Q.; Li, H. A Multiphase and Multicomponent Model and Numerical Simulation Technology for CO Flooding and Storage. Energies 2024, 17, 3222. [Google Scholar] [CrossRef]
- Saha, N.; Klinger, J.; Bhattacharjee, T.; Xia, Y.D.; Thompson, V.; Oyedeji, O.A.; Parks, J.; Shahnam, M.; Xu, Y.P. The effect of air separations on fast pyrolysis products for forest residue feedstocks. Fuel 2024, 375, 132572. [Google Scholar] [CrossRef]
- Song, Y.Q.; Zhang, D.C.; Ranjith, P.G.; Huang, Y.X.; Wu, B.L.; Zhang, F.S.; Kong, L.; Perera, M.S.A. Critical review of DEM simulation for sand production during geo-energy development: Models, parameters, and future directions. Powder Technol. 2024, 444, 119977. [Google Scholar] [CrossRef]
- Wei, Y.R.; Feng, Y.C.; Tan, Z.L.; Yang, T.Y.; Yan, S.; Li, X.R.; Deng, J.E. Simultaneously improving ROP and maintaining wellbore stability in shale gas well: A case study of Luzhou shale gas reservoirs. Rock Mech. Bull. 2024, 3, 100124. [Google Scholar] [CrossRef]
- Jin, Y.F.; Liu, F.Y.; Zeng, W.X.; Zhang, S.X. Test and DEM study on the dynamic behaviours of granite residual soil under combined bidirectional cyclic loading. Int. J. Pavement Eng. 2025, 26, 2477763. [Google Scholar] [CrossRef]
- Hao, M.; Xing, X.L. Three-dimensional CFD-DEM investigation of dynamic characteristics of biomass particles in a conical spouted bed. Particuology 2025, 97, 207–218. [Google Scholar] [CrossRef]
- Sun, M.Y.; Deng, J.G.; Feng, Y.C. CFD-DEM study on the blocking conformation of pre-filled sand control screen by layering method. Geoenergy Sci. Eng. 2025, 244, 213412. [Google Scholar] [CrossRef]
- Eom, G.W.; Hur, M.; Shim, H.C.; Hyun, S.; So, H.M.; Oh, M.; Lee, J.Y. Development of industrial-scale L-shaped dielectric barrier discharge reactor for improving capacity retention of graphite anode using plasma pretreatment. J. Phys. D-Appl. Phys. 2025, 58, 155203. [Google Scholar] [CrossRef]
- Riaz, M.H.; Zhou, Y.W.; Guo, M.H.; Xi, B.; Xiang, S. Development of LC3-ECC incorporating recycled fine aggregate: A novel sustainable and ductile material. Case Stud. Constr. Mater. 2025, 22, e04547. [Google Scholar] [CrossRef]
- Bang, T.S.; Shin, D.H.; Kim, Y.H. Enhancing Bonding Performance in Cf/Epoxy Composites through Cnt-Reinforced Adhesive and Process Optimization. Surf. Rev. Lett. 2025, 32, 2540004. [Google Scholar] [CrossRef]
- Tao, S.Q.; Yu, Q.J.; Yu, Y.; Appuhamy, J.M.R.S.; Zhang, D.L.; Gao, P.; Jiang, Q.; Chu, Y.; Xiao, Y.; Zhan, B.G. Improvement of the performance of recycled concrete powder-based artificial aggregates through the acceleration carbonation effect induced by polyethyleneimine admixture. Constr. Build. Mater. 2025, 479, 141503. [Google Scholar] [CrossRef]
- Zhang, J.R.; Wang, Y.F.; Guo, W.Q.; Zhao, H.G.; Zhi, A.T.; Robin, M.A.H. Mechanism of interfacial crack initiation in 3D TBCs and the influence of substrate curvature on failure behavior. J. Am. Ceram. Soc. 2025; ahead of print. [Google Scholar] [CrossRef]
- Johnson, K.L.; Kendall, K.; Roberts, A.D. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 1971, 324, 301–313. [Google Scholar]
- Thornton, C. Granular Dynamics, Contact Mechanics and Particle System Simulations: A DEM Study; Springer: Berlin/Heidelberg, Germany, 2015; Volume 24. [Google Scholar]
- Coskun, M.B.; Yalcin, I.; Ozarslan, C. Physical properties of sweet corn grain (Zea mays saccharata sturt.). J. Food Eng. 2006, 74, 523–528. [Google Scholar] [CrossRef]
- ASABE S368; Compression Test of Food Materials of Convex Shape. USA American Society of Agricultural Engineers: St. Joseph, MI, USA, 2002.
- Wang, X.M.; Yu, J.Q.; Lv, F.Y.; Wang, Y.; Fu, W. A multi-sphere based modelling method for maize grain assemblies. Adv. Powder Technol. 2017, 28, 584–595. [Google Scholar] [CrossRef]
- Wang, L.J.; Zhou, W.X.; Ding, Z.J.; Li, X.X.; Zhang, C.G. Experimental determination of parameter effects on the coefficient of restitution of differently shaped maize in three-dimensions. Powder Technol. 2015, 284, 187–194. [Google Scholar] [CrossRef]
- Hlosta, J.; Zurovec, D.; Rozbroj, J.; Ramirez-Gomez, A.; Necas, J.; Zegzulka, J. Experimental determination of particle-particle restitution coefficient via double pendulum method. Chem. Eng. Res. Des. 2018, 135, 222–233. [Google Scholar] [CrossRef]
- Gonzalez-Montellano, C.; Fuentes, J.M.; Ayuga-Tellez, E.; Ayuga, F. Determination of the mechanical properties of maize grains and olives required for use in dem simulations. J. Food Eng. 2012, 111, 553–562. [Google Scholar] [CrossRef]
- Yan, D.X.; Yu, J.Q.; Wang, Y.; Zhou, L.; Yu, Y.J. A general modelling method for soybean grains based on the discrete element method. Powder Technol. 2020, 372, 212–226. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, J.Q.; Wang, Y.; Yan, D.X.; Yu, Y.J. A study on the modelling method of maize-grain particles based on the discrete element method. Powder Technol. 2020, 374, 353–376. [Google Scholar] [CrossRef]
Parameters | Value | Parameters | Value |
---|---|---|---|
Density kg/m3 | Polymer material–galvanized steel | 0.020 | |
Polymer material | 1677 | Polymer material–fiberboard tape | 0.050 |
Galvanized steel | 7865 | Coefficient of static friction | |
Fiberboard tape | 1073 | Polymer material–polymer material | 0.947 |
Poisson’s ratio | Polymer material–galvanized steel | 0.976 | |
Polymer material | 0.31 | Polymer material–fiberboard tape | 0.903 |
Galvanized steel | 0.30 | Coefficient of rolling friction | |
Fiberboard tape | 0.41 | Polymer material–polymer material | 0.477 |
Shear modulus Pa | Polymer material–galvanized steel | 0.498 | |
Polymer material | 1.773 × 106 | Polymer material–fiberboard tape | 0.406 |
Galvanized steel | 7.900 × 1010 | JKR Energy Density J/m2 | |
Fiberboard tape | 1.210 × 108 | Polymer material–polymer material | 4.57 |
Coefficient of restitution | Polymer material–galvanized steel | 3.81 | |
Polymer material–polymer material | 0.030 | Polymer material–fiberboard tape | 2.11 |
Level | −1 | 0 | 1 |
---|---|---|---|
Longitudinal frequency | 1 | 2 | 3 |
Strip depth | 10 | 14 | 18 |
Transverse frequency | 2 | 4 | 6 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 2.97 | 9 | 0.3296 | 3.87 | 0.0441 | Significant |
A—Longitudinal frequency | 0.6317 | 1 | 0.6317 | 7.41 | 0.0297 | Effective |
B—Strip depth | 0.7037 | 1 | 0.7037 | 8.26 | 0.0239 | Effective |
C—Transverse frequency | 0.5250 | 1 | 0.5250 | 6.16 | 0.0421 | Effective |
AB | 0.0410 | 1 | 0.0410 | 0.4814 | 0.5102 | - |
AC | 0.0076 | 1 | 0.0076 | 0.0895 | 0.7735 | - |
BC | 0.0028 | 1 | 0.0028 | 0.0327 | 0.8616 | - |
A2 | 0.1622 | 1 | 0.1622 | 1.90 | 0.2102 | - |
B2 | 0.7359 | 1 | 0.7359 | 8.63 | 0.0218 | Effective |
C2 | 0.0736 | 1 | 0.0736 | 0.8636 | 0.3837 | - |
Residual | 0.5966 | 7 | 0.0852 | |||
Lack of fit | 0.3036 | 3 | 0.1012 | 1.38 | 0.3694 | Not significant |
Pure error | 0.2929 | 4 | 0.0732 | |||
Cor total | 3.56 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Liu, D.; Song, J.; Xiao, Q.; Du, K.; Wei, X.; Dang, L.; Yu, Y.; Zhao, H. Coating Process of Oil and Gas Well Pipeline Preventive Repair Materials Inspired by Remora Suckerfish Structure. Biomimetics 2025, 10, 436. https://doi.org/10.3390/biomimetics10070436
Lu Y, Liu D, Song J, Xiao Q, Du K, Wei X, Dang L, Yu Y, Zhao H. Coating Process of Oil and Gas Well Pipeline Preventive Repair Materials Inspired by Remora Suckerfish Structure. Biomimetics. 2025; 10(7):436. https://doi.org/10.3390/biomimetics10070436
Chicago/Turabian StyleLu, Yuliang, Dongtao Liu, Jiming Song, Qiaogang Xiao, Kezheng Du, Xinjie Wei, Lifeng Dang, Yajun Yu, and Huiyan Zhao. 2025. "Coating Process of Oil and Gas Well Pipeline Preventive Repair Materials Inspired by Remora Suckerfish Structure" Biomimetics 10, no. 7: 436. https://doi.org/10.3390/biomimetics10070436
APA StyleLu, Y., Liu, D., Song, J., Xiao, Q., Du, K., Wei, X., Dang, L., Yu, Y., & Zhao, H. (2025). Coating Process of Oil and Gas Well Pipeline Preventive Repair Materials Inspired by Remora Suckerfish Structure. Biomimetics, 10(7), 436. https://doi.org/10.3390/biomimetics10070436