Wordline Input Bias Scheme for Neural Network Implementation in 3D-NAND Flash
Abstract
:1. Introduction
2. Device Fabrication and Electrical Characteristics
3. Wordline Input Bias Scheme for Neural Network Implementation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Backus, J. Can programming be liberated from the von Neumann style? A functional style and its algebra of programs. Commun. ACM 1978, 21, 613–641. [Google Scholar] [CrossRef]
- Yu, S.; Jiang, H.; Huang, S.; Peng, X.; Lu, A. Compute-in-memory chips for deep learning: Recent trends and prospects. IEEE Circuits Syst. Mag. 2021, 21, 31–56. [Google Scholar] [CrossRef]
- Wouters, D.; Brackmann, L.; Jafari, A.; Bengel, C.; Mayahinia, M.; Waser, R.; Menzel, S.; Tahoori, M. Reliability of Computing-In-Memory Concepts Based on Memristive Arrays. In Proceedings of the 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2022; pp. 5.3.1–5.3.4. [Google Scholar]
- Kim, K.; Song, M.S.; Hwang, H.; Hwang, S.; Kim, H. A comprehensive review of advanced trends: From artificial synapses to neuromorphic systems with consideration of non-ideal effects. Front. Neurosci. 2024, 18, 1279708. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Lee, G.; Na, T. High-performance Sum Operation with Charge Saving and Sharing Circuit for MRAM-based In-memory Computing. J. Semicond. Technol. Sci. 2024, 24, 111–121. [Google Scholar] [CrossRef]
- Chen, L.; Huang, W.; Zhang, K.; Li, B.; Zhang, Z.; Feng, X.; Lin, K.; He, Y.; Zhao, W.; Zhang, Y. Orthogonal-Bulk-Spin-Orbit-Torque Device for All-Electrical In-Memory Computing. IEEE Electron Device Lett. 2024, 45, 504–507. [Google Scholar] [CrossRef]
- Liu, N.; Zhou, J.; Zheng, S.; Jin, F.; Fang, C.; Chen, B.; Liu, Y.; Hao, Y.; Han, G. Photoelectric In-memory Logic and Computing Achieved in HfO 2-based Ferroelectric Optoelectronic Memcapacitors. IEEE Electron Device Lett. 2024, 45, 1357–1360. [Google Scholar] [CrossRef]
- Wu, B.; Liu, K.; Yu, T.; Zhu, H.; Chen, K.; Yan, C.; Deng, E.; Liu, W. High-performance STT-MRAM-based computing-in-memory scheme utilizing data read feature. IEEE Trans. Nanotechnol. 2023, 22, 817–826. [Google Scholar] [CrossRef]
- Kim, C.-K.; Phadke, O.; Kim, T.-H.; Kim, M.-S.; Yu, J.-M.; Yoo, M.-S.; Choi, Y.-K.; Yu, S. Capacitive Synaptor with Overturned Charge Injection for Compute-in-Memory. IEEE Electron Device Lett. 2024, 45, 929–932. [Google Scholar] [CrossRef]
- Vasilopoulos, A.; Büchel, J.; Kersting, B.; Lammie, C.; Brew, K.; Choi, S.; Philip, T.; Saulnier, N.; Narayanan, V.; Le Gallo, M. Exploiting the state dependency of conductance variations in memristive devices for accurate in-memory computing. IEEE Trans. Electron Devices 2023, 70, 6279–6285. [Google Scholar] [CrossRef]
- Ling, Y.; Wang, Z.; Yu, Z.; Bao, S.; Yang, Y.; Bao, L.; Sun, Y.; Cai, Y.; Huang, R. Temperature-dependent accuracy analysis and resistance temperature correction in RRAM-based in-memory computing. IEEE Trans. Electron Devices 2023, 71, 294–300. [Google Scholar] [CrossRef]
- Quesada, E.P.-B.; Mahadevaiah, M.K.; Rizzi, T.; Wen, J.; Ulbricht, M.; Krstic, M.; Wenger, C.; Perez, E. Experimental assessment of multilevel rram-based vector-matrix multiplication operations for in-memory computing. IEEE Trans. Electron Devices 2023, 70, 2009–2014. [Google Scholar] [CrossRef]
- Shen, Z.; Zhao, C.; Qi, Y.; Xu, W.; Liu, Y.; Mitrovic, I.Z.; Yang, L.; Zhao, C. Advances of RRAM devices: Resistive switching mechanisms, materials and bionic synaptic application. Nanomaterials 2020, 10, 1437. [Google Scholar] [CrossRef]
- Wong, H.-S.P.; Lee, H.-Y.; Yu, S.; Chen, Y.-S.; Wu, Y.; Chen, P.-S.; Lee, B.; Chen, F.T.; Tsai, M.-J. Metal–oxide RRAM. Proc. IEEE 2012, 100, 1951–1970. [Google Scholar] [CrossRef]
- Zahoor, F.; Azni Zulkifli, T.Z.; Khanday, F.A. Resistive random access memory (RRAM): An overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications. Nanoscale Res. Lett. 2020, 15, 90. [Google Scholar] [CrossRef]
- Youn, S.; Lee, J.; Kim, S.; Park, J.; Kim, K.; Kim, H. Programmable Threshold Logic Implementations in a Memristor Crossbar Array. Nano Lett. 2024, 24, 3581–3589. [Google Scholar] [CrossRef]
- Pan, F.; Gao, S.; Chen, C.; Song, C.; Zeng, F. Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Mater. Sci. Eng. R-Rep. 2014, 83, 1–59. [Google Scholar] [CrossRef]
- Park, J.; Kim, S.; Song, M.S.; Youn, S.; Kim, K.; Kim, T.-H.; Kim, H. Implementation of Convolutional Neural Networks in Memristor Crossbar Arrays with Binary Activation and Weight Quantization. ACS Appl. Mater. Interfaces 2024, 16, 1054–1065. [Google Scholar] [CrossRef]
- Duan, S.; Hu, X.; Dong, Z.; Wang, L.; Mazumder, P. Memristor-based cellular nonlinear/neural network: Design, analysis, and applications. IEEE Trans. Neural Netw. Learn. Syst. 2014, 26, 1202–1213. [Google Scholar] [CrossRef]
- Kim, T.-H.; Kim, S.; Park, J.; Youn, S.; Kim, H. Memristor Crossbar Array with Enhanced Device Yield for In-Memory Vector–Matrix Multiplication. ACS Appl. Electron. Mater. 2024, 6, 4099–4107. [Google Scholar] [CrossRef]
- Akinaga, H.; Shima, H. Resistive random access memory (ReRAM) based on metal oxides. Proc. IEEE 2010, 98, 2237–2251. [Google Scholar] [CrossRef]
- Kumar, A.; Krishnaiah, M.; Park, J.; Mishra, D.; Dash, B.; Jo, H.B.; Lee, G.; Youn, S.; Kim, H.; Jin, S.H. Multibit, Lead-Free Cs2SnI6 Resistive Random Access Memory with Self-Compliance for Improved Accuracy in Binary Neural Network Application. Adv. Funct. Mater. 2024, 34, 2310780. [Google Scholar] [CrossRef]
- Cai, F.; Correll, J.M.; Lee, S.H.; Lim, Y.; Bothra, V.; Zhang, Z.; Flynn, M.P.; Lu, W.D. A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations. Nat. Electron. 2019, 2, 290–299. [Google Scholar] [CrossRef]
- Kim, S.; Park, K.; Hong, K.; Kim, T.H.; Park, J.; Youn, S.; Kim, H.; Choi, W.Y. Overshoot-Suppressed Memristor Crossbar Array with High Yield by AlOx Oxidation for Neuromorphic System. Adv. Mater. Technol. 2024, 9, 2400063. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Midya, R.; Xia, Q.; Yang, J.J. Review of memristor devices in neuromorphic computing: Materials sciences and device challenges. J. Phys. D Appl. Phys. 2018, 51, 503002. [Google Scholar] [CrossRef]
- Yu, D.; Ahn, S.; Youn, S.; Park, J.; Kim, H. True random number generator using stochastic noise signal of memristor with variation tolerance. Chaos Solitons Fractals 2024, 189, 115708. [Google Scholar] [CrossRef]
- Sarwat, S.G.; Kersting, B.; Moraitis, T.; Jonnalagadda, V.P.; Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nat. Nanotechnol. 2022, 17, 507–513. [Google Scholar] [CrossRef]
- Wang, L.; Ma, G.; Yan, S.; Cheng, X.; Miao, X. Reconfigurable Multilevel Storage and Neuromorphic Computing Based on Multilayer Phase-Change Memory. ACS Appl. Mater. Interfaces 2024, 16, 54829–54836. [Google Scholar] [CrossRef]
- Chen, X.; Xue, Y.; Sun, Y.; Shen, J.; Song, S.; Zhu, M.; Song, Z.; Cheng, Z.; Zhou, P. Neuromorphic Photonic Memory Devices Using Ultrafast, Non-Volatile Phase-Change Materials. Adv. Mater. 2023, 35, 2203909. [Google Scholar] [CrossRef]
- Hamid, S.B.; Khan, A.I.; Zhang, H.; Davydov, A.V.; Pop, E. Low-Energy Spiking Neural Network using Ge4Sb6Te7 Phase Change Memory Synapses. IEEE Electron Device Lett. 2024, 45, 1819–1822. [Google Scholar] [CrossRef]
- Kang, Y.G.; Ishii, M.; Park, J.; Shin, U.; Jang, S.; Yoon, S.; Kim, M.; Okazaki, A.; Ito, M.; Nomura, A. Solving Max-Cut Problem Using Spiking Boltzmann Machine Based on Neuromorphic Hardware with Phase Change Memory. Adv. Sci. 2024, 11, 2406433. [Google Scholar] [CrossRef]
- Boniardi, M.; Baldo, M.; Allegra, M.; Redaelli, A. Phase Change Memory: A Review on Electrical Behavior and Use in Analog In-Memory-Computing (A-IMC) Applications. Adv. Electron. Mater. 2024, 10, 2400599. [Google Scholar] [CrossRef]
- Pistolesi, L.; Ravelli, L.; Glukhov, A.; de Gracia Herranz, A.; Lopez-Vallejo, M.; Carissimi, M.; Pasotti, M.; Rolandi, P.; Redaelli, A.; Martín, I.M. Differential Phase Change Memory (PCM) Cell for Drift-Compensated In-Memory Computing. IEEE Trans. Electron Devices 2024, 71, 7447–7453. [Google Scholar] [CrossRef]
- Choi, S.; Kim, S. In-Series Phase-Change Memory Pair for Enhanced Data Retention and Large Window in Automotive Application. IEEE Electron Device Lett. 2024, 45, 2363–2366. [Google Scholar] [CrossRef]
- Li, N.; Mackin, C.; Chen, A.; Brew, K.; Philip, T.; Simon, A.; Saraf, I.; Han, J.P.; Sarwat, S.G.; Burr, G.W. Optimization of Projected Phase Change Memory for Analog In-Memory Computing Inference. Adv. Electron. Mater. 2023, 9, 2201190. [Google Scholar] [CrossRef]
- Rasch, M.J.; Mackin, C.; Le Gallo, M.; Chen, A.; Fasoli, A.; Odermatt, F.; Li, N.; Nandakumar, S.; Narayanan, P.; Tsai, H. Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators. Nat. Commun. 2023, 14, 5282. [Google Scholar] [CrossRef]
- Zhou, Z.; Jiao, L.; Zhou, J.; Zheng, Z.; Chen, Y.; Han, K.; Kang, Y.; Gong, X. Inversion-Type Ferroelectric Capacitive Memory and Its 1-Kbit Crossbar Array. IEEE Trans. Electron Devices 2023, 70, 1641–1647. [Google Scholar] [CrossRef]
- Soliman, M.; Maity, K.; Gloppe, A.; Mahmoudi, A.; Ouerghi, A.; Doudin, B.; Kundys, B.; Dayen, J.-F. Photoferroelectric all-van-der-Waals heterostructure for multimode neuromorphic ferroelectric transistors. ACS Appl. Mater. Interfaces 2023, 15, 15732–15744. [Google Scholar] [CrossRef]
- Dang, Z.; Guo, F.; Wang, Z.; Jie, W.; Jin, K.; Chai, Y.; Hao, J. Object motion detection enabled by reconfigurable neuromorphic vision sensor under ferroelectric modulation. ACS Nano 2024, 18, 27727–27737. [Google Scholar] [CrossRef]
- Xiang, H.; Chien, Y.C.; Li, L.; Zheng, H.; Li, S.; Duong, N.T.; Shi, Y.; Ang, K.W. Enhancing Memory Window Efficiency of Ferroelectric Transistor for Neuromorphic Computing via Two-Dimensional Materials Integration. Adv. Funct. Mater. 2023, 33, 2304657. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.; Kim, D.; Kim, J.; Kim, S. Neuromorphic synaptic applications of HfAlOx-based ferroelectric tunnel junction annealed at high temperatures to achieve high polarization. APL Mater. 2023, 11, 101102. [Google Scholar] [CrossRef]
- Koo, R.H.; Shin, W.; Kim, J.; Yim, J.; Ko, J.; Jung, G.; Im, J.; Park, S.H.; Kim, J.J.; Cheema, S.S. Polarization Pruning: Reliability Enhancement of Hafnia-Based Ferroelectric Devices for Memory and Neuromorphic Computing. Adv. Sci. 2024, 11, 2407729. [Google Scholar] [CrossRef]
- Li, Z.; Meng, J.; Yu, J.; Liu, Y.; Wang, T.; Liu, P.; Chen, S.; Zhu, H.; Sun, Q.; Zhang, D.W. CMOS compatible low power consumption ferroelectric synapse for neuromorphic computing. IEEE Electron Device Lett. 2023, 44, 532–535. [Google Scholar] [CrossRef]
- Huang, W.-Y.; Nie, L.-H.; Lai, X.-C.; Fang, J.-L.; Chen, Z.-L.; Chen, J.-Y.; Jiang, Y.-P.; Tang, X.-G. Synaptic Properties of a PbHfO3 Ferroelectric Memristor for Neuromorphic Computing. ACS Appl. Mater. Interfaces 2024, 16, 23615–23624. [Google Scholar] [CrossRef]
- Gao, J.; Chien, Y.C.; Li, L.; Lee, H.K.; Samanta, S.; Varghese, B.; Xiang, H.; Li, M.; Liu, C.; Zhu, Y. Ferroelectric Aluminum Scandium Nitride Transistors with Intrinsic Switching Characteristics and Artificial Synaptic Functions for Neuromorphic Computing. Small 2024, 20, 2404711. [Google Scholar] [CrossRef]
- Lu, T.; Zhao, X.; Liu, H.; Yan, Z.; Zhao, R.; Shao, M.; Yan, J.; Yang, M.; Yang, Y.; Ren, T.-L. Optimal Weight Models for Ferroelectric Synapses Toward Neuromorphic Computing. IEEE Trans. Electron Devices 2023, 70, 2297–2303. [Google Scholar] [CrossRef]
- Lee, S.-T.; Lee, J.-H. Review of neuromorphic computing based on NAND flash memory. Nanoscale Horiz. 2024, 9, 1475–1492. [Google Scholar] [CrossRef]
- Kim, J.P.; Kim, S.K.; Park, S.; Kuk, S.-H.; Kim, T.; Kim, B.H.; Ahn, S.-H.; Cho, Y.-H.; Jeong, Y.; Choi, S.-Y. Dielectric-engineered high-speed, low-power, highly reliable charge trap flash-based synaptic device for neuromorphic computing beyond inference. Nano Lett. 2023, 23, 451–461. [Google Scholar] [CrossRef]
- Park, E.; Jang, S.; Noh, G.; Jo, Y.; Lee, D.K.; Kim, I.S.; Song, H.-C.; Kim, S.; Kwak, J.Y. Indium–Gallium–Zinc Oxide-Based Synaptic Charge Trap Flash for Spiking Neural Network-Restricted Boltzmann Machine. Nano Lett. 2023, 23, 9626–9633. [Google Scholar] [CrossRef]
- Hwang, S.; Yu, J.; Song, M.S.; Hwang, H.; Kim, H. Memcapacitor crossbar array with charge trap NAND flash structure for neuromorphic computing. Adv. Sci. 2023, 10, 2303817. [Google Scholar] [CrossRef]
- Zhu, A.; Jin, L.; Jia, J.; Ye, T.; Zeng, M.; Huo, Z. HCMS: A Hybrid Conductance Modulation Scheme Based on Cell-to-Cell Z-Interference for 3D NAND Neuromorphic Computing. IEEE J. Electron Devices Soc. 2024. [Google Scholar] [CrossRef]
- Xiang, Y.; Huang, P.; Han, R.; Li, C.; Wang, K.; Liu, X.; Kang, J. Efficient and robust spike-driven deep convolutional neural networks based on NOR flash computing array. IEEE Trans. Electron Devices 2020, 67, 2329–2335. [Google Scholar] [CrossRef]
- Feng, Y.; Tang, M.; Sun, Z.; Qi, Y.; Zhan, X.; Liu, J.; Zhang, J.; Wu, J.; Chen, J. Fully flash-based reservoir computing network with low power and rich states. IEEE Trans. Electron Devices 2023, 70, 4972–4975. [Google Scholar] [CrossRef]
- Wang, H.; Lu, Y.; Liu, S.; Yu, J.; Hu, M.; Li, S.; Yang, R.; Watanabe, K.; Taniguchi, T.; Ma, Y. Adaptive Neural Activation and Neuromorphic Processing via Drain-Injection Threshold-Switching Float Gate Transistor Memory. Adv. Mater. 2023, 35, 2309099. [Google Scholar] [CrossRef]
- Hwang, H.; Song, M.S.; Youn, S.; Kim, H. True Random Number Generator using Memcapacitor with Charge Trapping Layer. IEEE Electron Device Lett. 2024, 45, 1464–1467. [Google Scholar] [CrossRef]
- Ansari, M.H.R.; El-Atab, N. Efficient Implementation of Boolean Logic Functions Using Double Gate Charge-Trapping Memory for In-Memory Computing. IEEE Trans. Electron Devices 2024, 71, 1879–1885. [Google Scholar] [CrossRef]
- Wang, P.; Xu, F.; Wang, B.; Gao, B.; Wu, H.; Qian, H.; Yu, S. Three-dimensional NAND flash for vector–matrix multiplication. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 27, 988–991. [Google Scholar] [CrossRef]
- Lee, S.-T.; Lim, S.; Choi, N.Y.; Bae, J.-H.; Kwon, D.; Park, B.-G.; Lee, J.-H. Operation scheme of multi-layer neural networks using NAND flash memory as high-density synaptic devices. IEEE J. Electron Devices Soc. 2019, 7, 1085–1093. [Google Scholar] [CrossRef]
- Lue, H.-T.; Hsu, P.-K.; Wei, M.-L.; Yeh, T.-H.; Du, P.-Y.; Chen, W.-C.; Wang, K.-C.; Lu, C.-Y. Optimal design methods to transform 3D NAND flash into a high-density, high-bandwidth and low-power nonvolatile computing in memory (nvCIM) accelerator for deep-learning neural networks (DNN). In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 38.31.31–38.31.34. [Google Scholar]
- Lee, S.-T.; Lee, J.-H. Neuromorphic computing using NAND flash memory architecture with pulse width modulation scheme. Front. Neurosci. 2020, 14, 571292. [Google Scholar] [CrossRef]
- Sodini, C.G.; Ko, P.-K.; Moll, J.L. The effect of high fields on MOS device and circuit performance. IEEE Trans. Electron Devices 1984, 31, 1386–1393. [Google Scholar] [CrossRef]
- Duvvury, C. A guide to short-channel effects in MOSFETs. IEEE Circuits Devices Mag. 1986, 2, 6–10. [Google Scholar] [CrossRef]
- Tanaka, H.; Kido, M.; Yahashi, K.; Oomura, M.; Katsumata, R.; Kito, M.; Fukuzumi, Y.; Sato, M.; Nagata, Y.; Matsuoka, Y.; et al. Bit Cost Scalable technology with Punch and plug process for ultra high density flash memory. In Proceedings of the 2007 IEEE Symposium on VLSI Technology, Kyoto, Japan, 12–14 June 2007; pp. 14–15. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, H.; Kim, G.; Yu, D.; Kim, H. Wordline Input Bias Scheme for Neural Network Implementation in 3D-NAND Flash. Biomimetics 2025, 10, 318. https://doi.org/10.3390/biomimetics10050318
Hwang H, Kim G, Yu D, Kim H. Wordline Input Bias Scheme for Neural Network Implementation in 3D-NAND Flash. Biomimetics. 2025; 10(5):318. https://doi.org/10.3390/biomimetics10050318
Chicago/Turabian StyleHwang, Hwiho, Gyeonghae Kim, Dayeon Yu, and Hyungjin Kim. 2025. "Wordline Input Bias Scheme for Neural Network Implementation in 3D-NAND Flash" Biomimetics 10, no. 5: 318. https://doi.org/10.3390/biomimetics10050318
APA StyleHwang, H., Kim, G., Yu, D., & Kim, H. (2025). Wordline Input Bias Scheme for Neural Network Implementation in 3D-NAND Flash. Biomimetics, 10(5), 318. https://doi.org/10.3390/biomimetics10050318