Trends in National R&D Projects on Biomimetics in South Korea
Abstract
:1. Introduction
2. Literature Review
2.1. Biomimetics
2.1.1. Definition
2.1.2. Approaches for Sustainable Innovation
2.2. Text Mining
2.2.1. Text Network Analysis
2.2.2. Topic Modeling
3. Methodology
3.1. Data and Preprocessing
3.2. Research Process
4. Analysis Results
4.1. Descriptive Analysis
4.2. Interdisciplinary Research Network Analysis
4.3. Keyword Analysis
4.3.1. Keyword Frequency Analysis
4.3.2. Keyword Network Analysis
4.4. Topic Modeling Analysis
4.4.1. Analysis of Research Topics
4.4.2. Trends Analysis of Research Topics
4.5. Technology-Product Implementation
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Benyus, J.M. Biomimicry: Innovation Inspired by Nature; Morrow: New York, NY, USA, 1997. [Google Scholar]
- Benyus, J.M. A Biomimicry Primer; Biomimicry 3.8: Missoula, MT, USA, 2011; Available online: https://asknature.org/resource/a-biomimicry-primer/ (accessed on 7 May 2023).
- Wei, X.; Wang, Y.; Liu, Y.; Ji, K.; Li, K.; Wang, J.; Gu, Z. Biomimetic design strategies for biomedical applications. Matter 2024, 7, 826–854. [Google Scholar] [CrossRef]
- Wang, J.; Chen, W.; Xiao, X.; Xu, Y.; Li, C.; Jia, X.; Meng, M.Q.H. A survey of the development of biomimetic intelligence and robotics. Biomim. Intell. Robot. 2021, 1, 100001. [Google Scholar] [CrossRef]
- Soliman, M.E.; Bo, S. An innovative multifunctional biomimetic adaptive building envelope based on a novel integrated methodology of merging biological mechanisms. J. Build. Eng. 2023, 76, 106995. [Google Scholar] [CrossRef]
- Haag, H.; Dalton, P.D.; Bloemen, V. The synergy of biomimetic design strategies for tissue constructs. Adv. Funct. Mater. 2022, 32, 2201414. [Google Scholar] [CrossRef]
- Korhonen, J.; Honkasalo, A.; Seppälä, J. Circular economy: The concept and its limitations. Ecol. Econ. 2018, 143, 37–46. [Google Scholar] [CrossRef]
- D’amato, D.; Korhonen, J. Integrating the green economy, circular economy and bioeconomy in a strategic sustainability framework. Ecol. Econ. 2021, 188, 107143. [Google Scholar] [CrossRef]
- Ataide, R.M.; Gallagher, C.L. Bioinspiration: An Economic Progress Report; Technical Report; Fermanian Business and Economic Institute: San Diego, CA, USA, 2013; Available online: https://cnnespanol.cnn.com/wp-content/uploads/2014/05/bioreport13.final.sm.pdf (accessed on 22 October 2023).
- Hwang, J.; Jeong, Y.; Park, J.M.; Lee, K.H.; Hong, J.W.; Choi, J. Biomimetics: Forecasting the future of science, engineering, and medicine. Int. J. Nanomed. 2015, 10, 5701–5713. [Google Scholar] [CrossRef]
- Lebdioui, A. Nature-inspired innovation policy: Biomimicry as a pathway to leverage biodiversity for economic development. Ecol. Econ. 2022, 202, 107585. [Google Scholar] [CrossRef]
- Molina, A.; Raskin, K.; Marlin, R. Biomimetics: Nature as a source of innovation. J. École Paris Manag. 2018, 129, 15–22. [Google Scholar] [CrossRef]
- Lee, D.Y. Biomimetic Technologies: Trends and Challenges; National Assembly Research Service: Seoul, Republic of Korea, 2020; Available online: https://www.nars.go.kr (accessed on 9 October 2023).
- Kennedy, E.; Fecheyr-Lippens, D.; Hsiung, B.K.; Niewiarowski, P.H.; Kolodziej, M. Biomimicry: A path to sustainable innovation. Des. Issues. 2015, 31, 66–73. [Google Scholar] [CrossRef]
- Biomim’expo. Welcome to Biomim’expo 2025, Solutions for the Future. Available online: https://biomimexpo.com/en/ (accessed on 12 April 2025).
- Sedira, N.; Pinto, J.; Bentes, I.; Pereira, S. Bibliometric Analysis of Global Research Trends on Biomimetics, Biomimicry, Bionics, and Bio-Inspired Concepts in Civil Engineering Using the Scopus Database. Bioinspir. Biomim. 2024, 19, 041001. [Google Scholar] [CrossRef] [PubMed]
- Varshabi, N.; Arslan Selçuk, S.; Mutlu Avinç, G. Biomimicry for energy-efficient building design: A bibliometric analysis. Biomimetics 2022, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Goel, G.; Hélix-Nielsen, C.; Upadhyaya, H.M.; Goel, S. A bibliometric study on biomimetic and bioinspired membranes for water filtration. NPJ Clean Water 2021, 4, 41. [Google Scholar] [CrossRef]
- Bae, H. Biomimicry Industry and Patent Trends. Biomimetics 2023, 8, 288. [Google Scholar] [CrossRef]
- Jatsch, A.S.; Jacobs, S.; Wommer, K.; Wanieck, K. Biomimetics for sustainable developments—A literature overview of trends. Biomimetics 2023, 8, 304. [Google Scholar] [CrossRef]
- Jung, H.; Lee, B.G. Research trends in text mining: Semantic network and main path analysis of selected journals. Expert Syst. Appl. 2020, 162, 113851. [Google Scholar] [CrossRef]
- Lepora, N.F.; Verschure, P.; Prescott, T.J. The state of the art in biomimetics. Bioinspir. Biomim. 2013, 8, 013001. [Google Scholar] [CrossRef]
- Schmitt, O.H. Some interesting and useful biomimetic transforms. In Proceedings of the Third International Biophysics Congress, Boston, MA, USA, 29 August–3 September 1969; p. 197. [Google Scholar]
- Bar-Cohen, Y. Biomimetics—Using nature to inspire human innovation. Bioinspir. Biomim. 2006, 1, 1. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, B. Biomimetics: Lessons from nature—An overview. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 1445–1486. [Google Scholar] [CrossRef]
- Lurie-Luke, E. Product and technology innovation: What can biomimicry inspire? Biotechnol. Adv. 2014, 32, 1494–1505. [Google Scholar] [CrossRef]
- ISO 18458; Biomimetics—Terminology, Concepts and Methodology. BSI Standards Publication: London, UK, 2015.
- Iouguina, A.; Dawson, J.W.; Hallgrimsson, B.; Smart, G. Biologically informed disciplines: A comparative analysis of bionics, biomimetics, biomimicry, and bio-inspiration among others. Int. J. Des. Nat. Ecodyn. 2014, 9, 197–205. [Google Scholar] [CrossRef]
- Speck, O.; Speck, D.; Horn, R.; Gantner, J.; Sedlbauer, K.P. Biomimetic, bio-inspired, biomorph, sustainable? An attempt to classify and clarify biology—Derived technical developments. Bioinspir. Biomim. 2017, 12, 011004. [Google Scholar] [CrossRef] [PubMed]
- Harman, J. The Shark’s Paintbrush: Biomimicry and How Nature is Inspiring Innovation; Hachette: London, UK, 2013. [Google Scholar]
- Hayes, S.; Desha, C.; Baumeister, D. Learning from nature—Biomimicry innovation to support infrastructure sustainability and resilience. Technol. Forecast. Soc. Change 2020, 161, 120287. [Google Scholar] [CrossRef]
- Helms, M.; Vattam, S.S.; Goel, A.K. Biologically inspired design: Process and products. Des. Stud. 2009, 30, 606–622. [Google Scholar] [CrossRef]
- Baumeister, D.; Tocke, R.; Dwyer, J.; Ritter, S.; Benyus, J. Biomimicry Resource Handbook: A Seed Bank of Knowledge and Best Practices; Biomimicry 3.8: Missoula, MT, USA, 2013. [Google Scholar]
- Speck, T.; Speck, O. Process sequences in biomimetic research. In Design and Nature IV; Brebbia, C.A., Ed.; WIT Press: Boston, MA, USA, 2008; pp. 3–11. [Google Scholar] [CrossRef]
- Velcro, S.A. Improvements in or Relating to a Method and a Device for Producing a Velvet Type Fabric. Swiss Patent No. 721338, 22 October 1952. [Google Scholar]
- Solga, A.; Cerman, Z.; Striffler, B.F.; Spaeth, M.; Barthlott, W. The dream of staying clean: Lotus and biomimetic surfaces. Bioinspir. Biomim. 2007, 2, S126. [Google Scholar] [CrossRef]
- Yamamoto, M.; Nishikawa, N.; Mayama, H.; Nonomura, Y.; Yokojima, S.; Nakamura, S.; Uchida, K. Theoretical explanation of the lotus effect: Superhydrophobic property changes by removal of nanostructures from the surface of a lotus leaf. Langmuir 2015, 31, 7355–7363. [Google Scholar] [CrossRef]
- Badarnah, L.; Kadri, U. A methodology for the generation of biomimetic design concepts. Archit. Sci. Rev. 2015, 58, 120–133. [Google Scholar] [CrossRef]
- Aziz, M.S. Biomimicry as an approach for bio-inspired structure with the aid of computation. Alex. Eng. J. 2016, 55, 707–714. [Google Scholar] [CrossRef]
- Goel, A.K. Biologically inspired design: A new program for computational substantiality. IEEE Intell. Syst. 2013, 28, 80–84. [Google Scholar] [CrossRef]
- Kennedy, E.B.; Marting, T.A. Biomimicry: Streamlining the front end of innovation for environmentally sustainable products. Res. Technol. Manag. 2016, 59, 40–48. [Google Scholar] [CrossRef]
- Yang, Y.; Song, X.; Li, X.; Chen, Z.; Zhou, C.; Zhou, Q.; Chen, Y. Recent progress in biomimetic additive manufacturing technology: From materials to functional structures. Adv. Mater. 2018, 30, 1706539. [Google Scholar] [CrossRef] [PubMed]
- Speck, O.; Speck, T. An overview of bioinspired and biomimetic self-repairing materials. Biomimetics 2019, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Ogata, S. Magnesium based alloys for reinforcing biopolymer composites and coatings: A critical overview on biomedical materials. Adv. Ind. Eng. Polym. Res. 2023, 6, 341–355. [Google Scholar] [CrossRef]
- Gao, Z.; Shi, Q.; Fukuda, T.; Li, C.; Huang, Q. An overview of biomimetic robots with animal behaviors. Neurocomputing 2019, 332, 339–350. [Google Scholar] [CrossRef]
- Ilami, M.; Bagheri, H.; Ahmed, R.; Skowronek, E.O.; Marvi, H. Materials, actuators, and sensors for soft bioinspired robots. Adv. Mater. 2021, 33, 2003139. [Google Scholar] [CrossRef]
- Bandyopadhyay, P.R.; Hellum, A.M. Modeling how shark and dolphin skin patterns control transitional wall-turbulence vorticity patterns using spatiotemporal phase reset mechanisms. Sci. Rep. 2014, 4, 6650. [Google Scholar] [CrossRef]
- López, M.; Rubio, R.; Martín, S.; Croxford, B. How plants inspire façades. From plants to architecture—Biomimetic principles for the development of adaptive architectural envelopes. Renew. Sustain. Energy Rev. 2017, 67, 692–703. [Google Scholar] [CrossRef]
- Fu, S.C.; Zhong, X.L.; Zhang, Y.; Lai, T.W.; Chan, K.C.; Lee, K.Y.; Chao, C.Y. Bio-inspired cooling technologies and the applications in buildings. Energy Build. 2020, 225, 110313. [Google Scholar] [CrossRef]
- Mclnerney, S.J.; Niewiarowski, P.H. Biomimicry Training to Promote Employee Engagement in Sustainability. Biomimetics 2022, 7, 71. [Google Scholar] [CrossRef]
- Wanieck, K. Biomimetics for Technical Products and Innovation: An Overview for Applications; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Aguilar-Planet, T.; Peralta, E. Innovation Inspired by Nature: Applications of Biomimicry in Engineering Design. Biomimetics 2024, 9, 523. [Google Scholar] [CrossRef]
- The Biomimicry Institute. AskNature. Available online: https://asknature.org/innovations/ (accessed on 15 April 2025).
- Bogatyrev, N.; Bogatyreva, O. TRIZ-Based Algorithm for Biomimetic Design. Procedia Eng. 2015, 131, 377–387. [Google Scholar] [CrossRef]
- Nagel, J.K.; Stone, R.B.; McAdams, D.A. An Engineering-to-Biology Thesaurus for Engineering Design. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, QC, Canada, January 2010; Volume 44137, pp. 117–128. [Google Scholar]
- Nasa-Petal. BIDARA (Bio-Inspired Design and Research Assistant); GitHub, Periodic Table of Life (PeTaL)-NASA GRC. 2023. Available online: https://nasa-petal.github.io/bidara-deep-chat/ (accessed on 15 April 2025).
- Asteria. Asteria: Bio-Innovation Platform. Available online: https://www.asteria.life/ (accessed on 15 April 2025).
- Zhang, J.; Kestem, L.; Wommer, K.; Wanieck, K. Biomimetic tools: Insights and implications of a comprehensive analysis and classification. Bioinspir. Biomim. 2025, 20, 026014. [Google Scholar] [CrossRef]
- Hearst, M. What is text mining? School of Information Management and Systems, University of California: Berkeley, CA, USA, 2003; p. 5. [Google Scholar]
- Yoon, B.; Park, Y. A text-mining-based patent network: Analytical tool for high-technology trend. J. High Technol. Manag. Res. 2004, 15, 37–50. [Google Scholar] [CrossRef]
- Hotho, A.; Nürnberger, A.; Paaß, G. A brief survey of text mining. J. Lang. Technol. Comput. Linguist. 2005, 20, 19–62. Available online: http://www.kde.cs.uni-kassel.de/hotho/pub/2005/hotho05TextMining.pdf (accessed on 10 June 2023). [CrossRef]
- DiMaggio, P.; Nag, M.; Blei, D. Exploiting affinities between topic modeling and the sociological perspective on culture: Application to newspaper coverage of US government arts funding. Poetics 2013, 41, 570–606. [Google Scholar] [CrossRef]
- Mohr, J.W.; Bogdanov, P. Introduction—Topic models: What they are and why they matter. Poetics 2013, 41, 545–569. [Google Scholar] [CrossRef]
- Hannigan, T.R.; Briggs, A.R.; Valadao, R.; Seidel, M.D.L.; Jennings, P.D. A new tool for policymakers: Mapping cultural possibilities in an emerging AI entrepreneurial ecosystem. Res. Policy 2022, 51, 104315. [Google Scholar] [CrossRef]
- Borgatti, S.P.; Mehra, A.; Brass, D.J.; Labianca, G. Network analysis in the social sciences. Science 2009, 323, 892–895. [Google Scholar] [CrossRef]
- Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Diesner, J.; Carley, K.M. Revealing social structure from texts: Meta-matrix text analysis as a novel method for network text analysis. In Causal Mapping for Research in Information Technology; Nielsen, P.E., Ed.; IGI Global: Hershey, PA, USA, 2005; pp. 81–108. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Wu, D.; Xie, Y.; Li, J. Mapping the research trends by co-word analysis based on keywords from funded project. Procedia Comput. Sci. 2016, 91, 547–555. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef]
- Bonacich, P. Some unique properties of eigenvector centrality. Soc. Netw. 2007, 29, 555–564. [Google Scholar] [CrossRef]
- Duvvuru, A.; Kamarthi, S.; Sultornsanee, S. Undercovering research trends: Network analysis of keywords in scholarly articles. In Proceedings of the 2012 Ninth International Conference on Computer Science and Software Engineering (JCSSE), Bangkok, Thailand, 30 May–1 June 2012; IEEE: Bangkok, Thailand, 2012; pp. 265–270. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Erbis, S.; Isaacs, J.A.; Kamarthi, S. Novel keyword co-occurrence network-based methods to foster systematic reviews of scientific literature. PLoS ONE 2017, 12, e0172778. [Google Scholar] [CrossRef]
- Kim, T.; Lee, D.; Lim, H.; Lee, U.K.; Cho, H.; Cho, K. Exploring research trends and network characteristics in construction automation and robotics based on keyword network analysis. J. Asian Archit. Build. Eng. 2021, 20, 442–457. [Google Scholar] [CrossRef]
- Yuan, C.; Li, G.; Kamarthi, S.; Jin, X.; Moghaddam, M. Trends in intelligent manufacturing research: A keyword co-occurrence network based review. J. Intell. Manuf. 2022, 33, 425–439. [Google Scholar] [CrossRef]
- Allahyari, M.; Pouriyeh, S.; Assefi, M.; Safaei, S.; Trippe, E.D.; Gutierrez, J.B.; Kochut, K. A brief survey of text mining: Classification, clustering and extraction techniques. arXiv 2017, arXiv:1707.02919. [Google Scholar] [CrossRef]
- Chang, J.; Gerrish, S.; Wang, C.; Boyd-Graber, J.; Blei, D.M. Reading Tea Leaves: How Humans Interpret Topic Models. Adv. Neural Inf. Process. Syst. 2009, 22, 288–296. [Google Scholar]
- Helldin, T.; Steinhauer, H.J.; Karlsson, A.; Mathiason, G. Situation awareness in telecommunication networks using topic modeling. In Proceedings of the 2018 21st International Conference on Information Fusion (FUSION), Cambridge, UK, 10–13 July 2018; IEEE: Cambridge, UK, 2018; pp. 549–556. [Google Scholar] [CrossRef]
- Maier, D.; Waldherr, A.; Miltner, P.; Wiedemann, G.; Niekler, A.; Keinert, A.; Pfetsch, B.; Heyer, G.; Rever, U.; Häussler, T.; et al. Applying LDA topic modeling in communication research: Toward a valid and reliable methodology. Commun. Methods Meas. 2018, 12, 93–118. [Google Scholar] [CrossRef]
- Momeni, A.; Rost, K. Identification and monitoring of possible disruptive technologies by patent-development paths and topic modeling. Technol. Forecast. Soc. Change 2016, 104, 16–29. [Google Scholar] [CrossRef]
- Mustak, M.; Salminen, J.; Plé, L.; Wirtz, J. Artificial intelligence in marketing: Topic modeling, scientometric analysis, and research agenda. J. Bus. Res. 2021, 124, 389–404. [Google Scholar] [CrossRef]
- Zhang, H.; Daim, T.; Zhang, Y.P. Integrating patent analysis into technology roadmapping: A latent Dirichlet allocation based technology assessment and roadmapping in the field of Blockchain. Technol. Forecast. Soc. Change 2021, 167, 120729. [Google Scholar] [CrossRef]
- Saheb, T.; Dehghani, M.; Saheb, T. Artificial intelligence for sustainable energy: A contextual topic modeling and content analysis. Sustain. Comput. Inform. Syst. 2022, 35, 100699. [Google Scholar] [CrossRef]
- Erzurumlu, S.S.; Pachamanova, D. Topic modeling and technology forecasting for assessing the commercial viability of healthcare innovations. Technol. Forecast. Soc. Change 2020, 156, 120041. [Google Scholar] [CrossRef]
- Li, X.; Xie, Q.; Jiang, J.; Zhou, Y.; Huang, L. Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology. Technol. Forecast. Soc. Change 2019, 146, 687–705. [Google Scholar] [CrossRef]
- Egger, R.; Yu, J. A topic modeling comparison between lda, nmf, top2vec, and bertopic to demystify twitter posts. Front. Sociol. 2022, 7, 886498. [Google Scholar] [CrossRef]
- Gawusu, S. Evolving energy landscapes: A computational analysis of the determinants of energy poverty. Renew. Sustain. Energy Rev. 2024, 202, 114705. [Google Scholar] [CrossRef]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Blei, D.M. Probabilistic topic models. Commun. ACM 2012, 55, 77–84. [Google Scholar] [CrossRef]
- Daud, A.; Li, J.; Zhou, L.; Muhammad, F. Knowledge discovery through directed probabilistic topic models: A survey. Front. Comput. Sci. China 2010, 4, 280–301. [Google Scholar] [CrossRef]
- Kim, S.W.; Gil, J.M. Research paper classification systems based on TF-IDF and LDA schemes. Hum.-Centric Comput. Inf. Sci. 2019, 9, 30. [Google Scholar] [CrossRef]
- Alammary, A.S. Arabic questions classification using modified TF-IDF. IEEE Access 2021, 9, 95109–95122. [Google Scholar] [CrossRef]
- Lopes, N.; Ribeiro, B. Non-Negative Matrix Factorization (NMF). In Machine Learning for Adaptive Many-Core Machines—A Practical Approach; Lopes, N., Ribeiro, B., Eds.; Studies in Big Data; Springer: Cham, Switzerland, 2015; Volume 7, pp. 127–154. [Google Scholar] [CrossRef]
- Guan, N.; Tao, D.; Luo, Z.; Shawe-Taylor, J. MahNMF: Manhattan Non-negative Matrix Factorization. arXiv 2012, arXiv:1207.3438. [Google Scholar]
- Liu, W.; Zheng, N. Non-negative matrix factorization based methods for object recognition. Pattern Recognit. Lett. 2004, 25, 893–897. [Google Scholar] [CrossRef]
- Bastani, K.; Namavari, H.; Shaffer, J. Latent Dirichlet allocation (LDA) for topic modeling of the CFPB consumer complaints. Expert Syst. Appl. 2019, 127, 256–271. [Google Scholar] [CrossRef]
- Grootendorst, M. BERTopic: Neural Topic Modeling with a Class-Based TF-IDF Procedure. arXiv 2022, arXiv:2203.05794. [Google Scholar]
- M’sik, B.; Casablanca, B.M. Topic Modeling Coherence: A Comparative Study between LDA and NMF Models Using COVID’19 Corpus. Int. J. 2020, 9, 4. Available online: http://www.warse.org/IJATCSE/static/pdf/file/ijatcse231942020.pdf (accessed on 15 April 2025).
- Choung, J.Y.; Hwang, H.R. The evolutionary patterns of knowledge production in Korea. Scientometrics 2013, 94, 629–650. [Google Scholar] [CrossRef]
- Grün, B.; Hornik, K. Topicmodels: An R package for fitting topic models. J. Stat. Softw. 2011, 40, 1–30. [Google Scholar] [CrossRef]
- Li, H.; An, H.; Wang, Y.; Huang, J.; Gao, X. Evolutionary features of academic articles co-keyword network and keywords co-occurrence network: Based on two-mode affiliation network. Phys. A Stat. Mech. Appl. 2016, 450, 657–669. [Google Scholar] [CrossRef]
- Lozano, S.; Calzada-Infante, L.; Adenso-Díaz, B.; García, S. Complex network analysis of keywords co-occurrence in the recent efficiency analysis literature. Scientometrics 2019, 120, 609–629. [Google Scholar] [CrossRef]
- Tamborini, M. The elephant in the room: The biomimetic principle in bio-robotics and embodied AI. Stud. Hist. Philos. Sci. 2023, 97, 13–19. [Google Scholar] [CrossRef]
- Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [Google Scholar] [CrossRef]
- Dasgupta, D.; Michalewicz, Z. (Eds.) Evolutionary Algorithms in Engineering Applications; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Dorigo, M.; Di Caro, G. Ant colony optimization: A new meta-heuristic. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; IEEE: Piscataway, NJ, USA, 1999; pp. 1470–1477. [Google Scholar]
- Bag, A.; Ghosh, G.; Sultan, M.J.; Chouhdry, H.H.; Hong, S.J.; Trung, T.Q.; Kang, G.-Y.; Lee, N.-E. Bio-Inspired Sensory Receptors for Artificial-Intelligence Perception. Adv. Mater. 2024, 36, 2403150. [Google Scholar] [CrossRef]
- Sharma, S.; Sarkar, P. Biomimicry: Exploring research, challenges, gaps, and tools. In Research into Design for a Connected World; Chakrabarti, A., Ed.; Springer: Singapore, 2019; pp. 87–97. [Google Scholar] [CrossRef]
- Jiang, C.; Xu, H.; Yang, L.; Liu, J.; Li, Y.; Takei, K.; Xu, W. Neuromorphic antennal sensory system. Nat. Commun. 2024, 15, 2109. [Google Scholar] [CrossRef]
- Asadnia, M.; Kottapalli, A.G.P.; Karavitaki, K.D.; Warkiani, M.E.; Miao, J.; Corey, D.P.; Triantafyllou, M. From biological cilia to artificial flow sensors: Biomimetic soft polymer nanosensors with high sensing performance. Sci. Rep. 2016, 6, 32955. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.J.; Khalekuzzaman, M.; Suh, J.N.; Jung, N.S.; Kim, H.J.; Shagol, C.; Kim, H.; Kim, H.J. Phytoremediation of volatile organic compounds by indoor plants: A review. Hortic. Environ. Biotechnol. 2018, 59, 143–157. [Google Scholar] [CrossRef]
- Prakash, A.; Nair, A.R.; Arunav, H.; PR, R.; Akhil, V.M.; Tawk, C.; Shankar, K.V. Bioinspiration and biomimetics in marine robotics: A review on current applications and future trends. Bioinspir. Biomim. 2024, 19, 031002. [Google Scholar] [CrossRef]
- Geckil, H.; Xu, F.; Zhang, X.; Moon, S.; Demirci, U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine 2010, 5, 469–484. [Google Scholar] [CrossRef]
- Raman, R.; Sreenivasan, A.; Suresh, M.; Nedungadi, P. Mapping biomimicry research to sustainable development goals. Sci. Rep. 2024, 14, 18613. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, S.; Huang, J.; Khan, A.Q.; An, B.; Zhou, X.; Liu, Z.; Zhu, M. Spider silk-inspired artificial fibers. Adv. Sci. 2022, 9, 2103965. [Google Scholar] [CrossRef]
- Mu, X.; Fitzpatrick, V.; Kaplan, D.L. From silk spinning to 3D printing: Polymer manufacturing using directed hierarchical molecular assembly. Adv. Healthc. Mater. 2020, 9, 1901552. [Google Scholar] [CrossRef]
- Schepers, J.; Schnell, R.; Vroom, P. From Idea to Business—How Siemens Bridges the Innovation Gap. Res. Technol. Manag. 1999, 42, 26–31. [Google Scholar] [CrossRef]
- Azarang, A.; Kehtarnavaz, N. A generative model method for unsupervised multispectral image fusion in remote sensing. Signal Image Video Process. 2022, 16, 63–71. [Google Scholar] [CrossRef]
- Cao, B.; Wisler, A.; Wang, J. Speaker adaptation on articulation and acoustics for articulation-to-speech synthesis. Sensors 2022, 22, 6056. [Google Scholar] [CrossRef]
- Li, W.; Pei, Y.; Zhang, C.; Kottapalli, A.G.P. Bioinspired designs and biomimetic applications of triboelectric nanogenerators. Nano Energy 2021, 84, 105865. [Google Scholar] [CrossRef]
- Kantaros, A.; Petrescu, F.I.T.; Ganetsos, T. From Stents to Smart Implants Employing Biomimetic Materials: The Impact of 4D Printing on Modern Healthcare. Biomimetics 2025, 10, 125. [Google Scholar] [CrossRef]
- Niu, H.; Li, H.; Gao, S.; Li, Y.; Wei, X.; Chen, Y.; Yue, W.; Zhou, W.; Shen, G. Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv. Mater. 2022, 34, 2202622. [Google Scholar] [CrossRef]
Comparative Models | LDA | NMF | TF-IDF | BERTopic |
---|---|---|---|---|
Dimensionality reduction | V | V | V | V |
Semantic Annotation | V | V | V | |
Mixture Model | V | |||
Generation Ability | V | V | ||
Scalability | V | V | V | |
Computational Efficiency | V | V | ||
Interpretability | V | V | V | |
Stability for Large Database | V | V | V | V |
Rank | Degree | Closeness | Betweenness | Eigenvector |
---|---|---|---|---|
1 | Convergence Biotechnology (0.387) | Convergence Biotechnology (0.588) | Convergence Biotechnology (0.588) | Convergence Biotechnology (1.000) |
2 | Polymeric Materials (0.367) | Polymeric Materials (0.588) | Polymeric Materials (0.100) | Polymeric Materials (0.992) |
3 | Medical Devices (0.333) | Medical Devices (0.560) | Medical Devices (0.092) | Medical Devices (0.868) |
4 | Nano/Micro Machine System (0.307) | Nano/Micro Machine System (0.560) | Nano/Micro Machine System (0.071) | Nano/Micro Machine System (0.842) |
5 | Drug Development (0.267) | Drug Development (0.540) | Semiconductor Devices (0.071) | Nano-chemical Processes (0.767) |
6 | Nano-chemical Processes (0.260) | Semiconductor Devices (0.540) | Drug Development (0.060) | Drug Development (0.753) |
7 | Semiconductor Devices (0.260) | Nano-chemical Processes (0.538) | Information Theory (0.056) | Semiconductor Devices (0.686) |
8 | Robot/Automated Machinery (0.207) | Robot/Automated Machinery (0.519) | Environmental biology (0.050) | Biochemical Process (0.643) |
9 | Materials Chemistry (0.207) | Molecular Cell Biology (0.512) | Manufacturing Platform (0.047) | Materials Chemistry (0.627) |
10 | Biochemical Process (0.207) | New/Renewable Energy (0.508) | Bioengineering (0.045) | Metallic Materials (0.620) |
All-Time (Top 20) | Common | New Emergence (Top 50) | |||||
---|---|---|---|---|---|---|---|
Rank | Word | Freq. | 1P | 2P | 3P | Period | Word (Freq.) |
1 | System | 1155 | ○ | ○ | ○ | 1P (2009~2013) | Robot (81) Energy (68) Membrane (56) Actuator (53) Environment (47) Carbon (45) |
2 | Material | 722 | ○ | ○ | ○ | ||
3 | Nano | 687 | ○ | ○ | ○ | ||
4 | Cell | 639 | ○ | ○ | ○ | ||
5 | 3D | 558 | - | ○ | ○ | ||
6 | Structure | 512 | ○ | ○ | ○ | ||
7 | Drug | 487 | ○ | ○ | ○ | ||
8 | Stem cell | 466 | ○ | ○ | ○ | 2P (2014~2018) | Network (90) Disease (83) Therapy (83) Screening (80) Cancer (76) Culture (74) Microenvironment (74) |
9 | Tissue | 458 | ○ | ○ | ○ | ||
10 | Device | 423 | ○ | ○ | ○ | ||
11 | Sensor | 404 | ○ | ○ | ○ | ||
12 | Control | 375 | ○ | ○ | ○ | ||
13 | Application | 361 | ○ | ○ | ○ | ||
14 | Platform | 341 | - | ○ | ○ | ||
15 | Polymer | 335 | ○ | ○ | ○ | 3P (2019~2023) | Treatment (133) Organoid (133) Water (114) Metal (111) Catalyst (93) Artificial Intelligence (76) |
16 | Model | 330 | - | ○ | ○ | ||
17 | Regeneration | 329 | ○ | ○ | ○ | ||
18 | Engineering | 320 | ○ | ○ | - | ||
19 | Surface | 313 | ○ | - | ○ | ||
20 | Design | 291 | ○ | - | - |
Rank | Degree | Closeness | Betweenness | Eigenvector |
---|---|---|---|---|
1 | System (0.346) | System (0.604) | System (0.127) | System (1.000) |
2 | Nano (0.235) | Nano (0.566) | Material (0.057) | Nano (0.813) |
3 | Material (0.222) | Material (0.562) | Nano (0.056) | Material (0.784) |
4 | Cell (0.210) | Cell (0.557) | Cell (0.044) | Cell (0.747) |
5 | Structure (0.184) | Structure (0.549) | Structure (0.038) | Structure (0.694) |
6 | 3D (0.171) | 3D (0.546) | Mechanism (0.034) | 3D (0.676) |
7 | Control (0.162) | Control (0.543) | Control (0.030) | Control (0.658) |
8 | Application (0.154) | Application (0.540) | Application (0.028) | Drug (0.635) |
9 | Drug (0.153) | Mechanism (0.540) | Sensor (0.027) | Application (0.635) |
10 | Mechanism (0.151) | Device (0.539) | Device (0.026) | Device (0.625) |
11 | Sensor (0.149) | Drug (0.539) | 3D (0.026) | Model (0.605) |
12 | Device (0.148) | Sensor (0.538) | Drug (0.021) | Platform (0.595) |
13 | Tissue (0.140) | Model (0.535) | Surface (0.020) | Mechanism (0.586) |
14 | Model (0.139) | Surface (0.534) | Model (0.020) | Sensor (0.584) |
15 | Surface (0.134) | Tissue (0.533) | Design (0.020) | Polymer (0.574) |
16 | Platform (0.130) | Platform (0.533) | Robot (0.019) | Tissue (0.570) |
17 | Stem-cell (0.127) | Design (0.531) | Tissue (0.019) | Engineering (0.567) |
18 | Design (0.125) | Engineering (0.531) | Network (0.018) | Surface (0.537) |
19 | Engineering (0.125) | Stem-cell (0.530) | Platform (0.017) | Stem-cell (0.529) |
20 | Robot (0.114) | Hybrid (0.527) | Polymer (0.016) | Hybrid (0.529) |
Cluster/Topic | Topic Name/Keywords (Top 10) | Projects (%) | Expenses (M USD, %) | |
---|---|---|---|---|
Cluster 1 (Intelligent Robotics) | Topic 1 | [Biomimetic computing] sensor, system, network, signal, processing, control, detection, pattern, recognition, electronics, robot, algorithm, transistor, membrane, artificial intelligence (AI) | 737 (14.2%) | 194.0 (17.8%) |
Topic 2 | [Robotics and fluid dynamics systems] robot, design, actuator, sensor, fluid, flow, dynamics, flight, shape, motion, control, energy, optimization, artificial intelligence (AI), vehicle | 749 (14.4%) | 161.9 (14.9%) | |
Cluster 2 (Biomedical Engineering) | Topic 3 | [Tissue engineering and regenerative medicine] tissue, regeneration, stem-cell, 3d, printing, scaffold, engineering, born, treatment, biomaterial, hydrogel, device, differentiation, phototherapy, mechanism | 715 (13.7%) | 135.1 (12.4%) |
Topic 4 | [Drug delivery systems] drug, system, delivery, cancer, disease, cell, therapy, tumor, tissue, gene, treatment, medicine, microenvironment, target, nanoparticle | 542 (10.4%) | 136.2 (12.5%) | |
Topic 5 | [Drug screening platforms] drug, cell, screening, platform, disease, model, efficacy, evaluation, organoid, membrane, culture, safety, biochip, toxicity, test | 604 (11.6%) | 122.3 (11.2%) | |
Cluster 3 (Materials Science) | Topic 6 | [Catalytic systems] system, water, catalyst, energy, CO2, oxidation, membrane, reaction, reduction, conversion, metal, production, enzyme, purification, carbon | 600 (11.5%) | 135.4 (12.4%) |
Topic 7 | [Materials synthesis and design] material, synthesis, application, design, energy, polymer, nanostructure, metal, hybrid, reaction, chemistry, control, catalyst, assembly, complex | 504 (9.7%) | 90.5 (8.3%) | |
Topic 8 | [Surface engineering] material, polymer, surface, coating, system, hybrid, structure, hydrogel, fabrication, biomineralization, adhesion, application, metal, fiber, nanoparticle | 751 (14.4%) | 114.7 (10.5%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Na, H.; Kim, E. Trends in National R&D Projects on Biomimetics in South Korea. Biomimetics 2025, 10, 275. https://doi.org/10.3390/biomimetics10050275
Na H, Kim E. Trends in National R&D Projects on Biomimetics in South Korea. Biomimetics. 2025; 10(5):275. https://doi.org/10.3390/biomimetics10050275
Chicago/Turabian StyleNa, Hyein, and Eunhee Kim. 2025. "Trends in National R&D Projects on Biomimetics in South Korea" Biomimetics 10, no. 5: 275. https://doi.org/10.3390/biomimetics10050275
APA StyleNa, H., & Kim, E. (2025). Trends in National R&D Projects on Biomimetics in South Korea. Biomimetics, 10(5), 275. https://doi.org/10.3390/biomimetics10050275