Effect of Biomimetic Fish Scale Texture on Reciprocating Friction Pairs on Interfacial Lubricating Oil Transport
Abstract
:1. Introduction
2. Research Methods
2.1. Simulation Model
2.1.1. Biomimetic Fish Scale Texture Design
2.1.2. Numerical Simulation
2.1.3. Fluid Control Equations
2.1.4. Forward and Reverse Motion Regulations
2.1.5. Solution Procedure
2.2. Experiment Preparation
2.2.1. Experiment Sample
2.2.2. Test System
3. Results and Discussion
3.1. Simulation Results
3.1.1. Effect of Wall Velocity on Interface Oil Transport Using Biomimetic Fish Scale Texture
3.1.2. Effect of Oil Temperature on Interface Oil Transport at Biomimetic Fish Scale Texture
3.2. Experimental Verification
3.2.1. Effect of Piston Velocity and Oil Supply Rate on Lubricating Oil Transport Characteristics Under Continuous Interface Condition
3.2.2. Effect of Oil Temperature on Lubricating Oil Transport Characteristics Under Continuous Interface Condition
3.2.3. Effect of Piston Velocity and Oil Supply Rate on Lubricating Oil Transport Characteristics Under Discontinuous Interface Condition
3.2.4. Effect of Oil Temperature on Lubricating Oil Transport Characteristics Under Discontinuous Interface Condition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Delprete, C.; Razavykia, A. Piston Dynamics, Lubrication and Tribological Performance Evaluation: A Review. Int. J. Engine Res. 2020, 21, 725–741. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, F.; Zhai, L.; Meng, X. A Comprehensive Experimental Study on Tribological Performance of Piston Ring–Cylinder Liner Pair. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2022, 236, 184–204. [Google Scholar] [CrossRef]
- Meng, Z.; Ahling, S.; Tian, T. Modeling of Oil Transport between Piston Skirt and Cylinder Liner in Internal Combustion Engines. SAE Int. J. Adv. Curr. Pract. Mobil. 2019, 1, 1158–1168. [Google Scholar] [CrossRef]
- Andersen, F.H.; Hult, J.; Nogenmyr, K.-J.; Mayer, S. Numerical Investigation of the Scavenging Process in Marine Two-Stroke Diesel Engines; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2013. [Google Scholar] [CrossRef]
- Ren, G.; Li, Y.; Zhao, H.; Yan, Y.; Xu, W.; Sun, D. Research on Oil–Gas Two-Phase Flow Characteristics and Improvement of Aero-Engine Bearing Chamber. Lubricants 2023, 11, 360. [Google Scholar] [CrossRef]
- Miao, C.; Guo, Z.; Yuan, C. Tribological Behavior of Co-Textured Cylinder Liner-Piston Ring during Running-In. Friction 2022, 10, 878–890. [Google Scholar] [CrossRef]
- Guo, Z.; Yuan, C.; Liu, P.; Peng, Z.; Yan, X. Study on Influence of Cylinder Liner Surface Texture on Lubrication Performance for Cylinder Liner–Piston Ring Components. Tribol. Lett. 2013, 51, 9–23. [Google Scholar] [CrossRef]
- Mishra, P.; Ramkumar, P. Effect of Micro Texture on Tribological Performance of Piston Ring-Cylinder Liner System Under Different Lubrication Regimes; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2018. [Google Scholar] [CrossRef]
- Chen, T.; Wang, L.; Xu, J.; Gao, T.; Qin, X.; Yang, X.; Cong, Q.; Jin, J.; Liu, C. Effect of Groove Texture on Deformation and Sealing Performance of Engine Piston Ring. Machines 2022, 10, 1020. [Google Scholar] [CrossRef]
- Gao, T.; Su, B.; Jiang, L.; Cong, Q. Influence of Bionic Pit Structure on Friction and Sealing Performance of Reciprocating Plunger. Adv. Mater. Sci. Eng. 2020, 2020, 2130341. [Google Scholar] [CrossRef]
- Rahman, H.A.; Ghani, J.A.; Mahmood, W.M.F.W. A Brief Review on Friction Reduction via Dimple Structure for Piston Engine. World Rev. Sci. Technol. Sustain. Dev. 2018, 14, 147. [Google Scholar] [CrossRef]
- Kikuhara, K.; Koeser, P.S.; Tian, T. Effects of a Cylinder Liner Microstructure on Lubrication Condition of a Twin-Land Oil Control Ring and a Piston Skirt of an Internal Combustion Engine. Tribol. Lett. 2021, 70, 6. [Google Scholar] [CrossRef]
- Kang, J.; Yi, J.; Kim, D.R.; Park, S. Reduction of Piston Skirt Friction Using the Micro-Scale Patterned Surface. Int. J. Automot. Technol. 2023, 24, 15–22. [Google Scholar] [CrossRef]
- Lu, Y.; Guo, Z.; Rao, X.; Yuan, C. The Influence of Bio-Inspired Surface Textures on the Tribological Behavior of Cylinder Liner-Piston Rings. In Proceedings of the 2023 International Conference on Marine Equipment & Technology and Sustainable Development, Beijing, China, 1 April 2023; Yang, D., Ed.; Lecture Notes in Civil Engineering. Springer Nature: Singapore, 2023; Volume 375, pp. 1198–1219, ISBN 978-981-9942-90-9. [Google Scholar]
- Gao, T.; Chen, H.; Tang, D.; Wang, Y. Inspired by Earthworms and Leeches: The Effects of Cylindrical Pit Arrays on the Performance of Piston-Cylinder Liner Friction Pairs. Appl. Sci. 2023, 13, 11580. [Google Scholar] [CrossRef]
- Chen, D.; Cui, X.; Chen, H. Flow Field Characteristics and Drag Reduction Performance of High–Low Velocity Stripes on the Biomimetic Imbricated Fish Scale Surfaces. Biosurface Biotribol. 2024, 10, 132–141. [Google Scholar] [CrossRef]
- He, X.; Liu, Y.; Zhan, H.; Liu, Y.; Zhao, L.; Feng, S. Bidirectional Underwater Drag Reduction on Bionic Flounder Two-Tier Structural Surfaces. Biomimetics 2023, 8, 116. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, H.; Dai, S.; Dong, G. Designing a Bioinspired Scaly Textured Surface for Improving the Tribological Behaviors of Starved Lubrication. Tribol. Int. 2022, 173, 107594. [Google Scholar] [CrossRef]
- Greiner, C.; Schäfer, M. Bio-inspired scale-like surface textures and their tribological properties. Bioinspir. Biomim. 2015, 10, 044001. [Google Scholar] [CrossRef]
- Quan, S.; Yong, G.; Jun, G.; Liu, X.; Yongping, J.; Shuyi, Y. Effect of Fish Scale Texture on Friction Performance for Reciprocating Pair with High Velocity. Ind. Lubr. Tribol. 2019, 72, 497–502. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, B.; Zhang, H.; Shangguan, Z.; Sun, C.; Cui, X.; Liu, X.; Zhao, Z.; Liu, G.; Chen, H. Laser Ablating Biomimetic Periodic Array Fish Scale Surface for Drag Reduction. Biomimetics 2024, 9, 415. [Google Scholar] [CrossRef]
- Li, J.; Qin, Q.; Shah, A.; Ras, R.H.; Tian, X.; Jokinen, V.P. Oil droplet self-transportation on oleophobic surfaces. Sci. Adv. 2016, 2, e1600148. [Google Scholar] [CrossRef]
- Yi, Z.; Wang, X.; Li, W. Interfacial friction at action: Interactions, regulation, and applications. Friction 2023, 11, 2153–2180. [Google Scholar] [CrossRef]
- Li, J.; Han, X.; Li, W.; Yang, L.; Li, X.; Wang, L. Nature-inspired reentrant surfaces. Prog. Mater. Sci. 2023, 133, 101064. [Google Scholar] [CrossRef]
- Hou, L.; Liu, X.; Ge, X.; Hu, R.; Cui, Z.; Wang, N.; Zhao, Y. Designing of anisotropic gradient surfaces for directional liquid transport: Fundamentals, construction, and applications. Innovation 2023, 4, 100508. [Google Scholar] [CrossRef]
- Gong, P.; Zhang, Y.; Cui, X.; Xu, S.; Yang, M.; Jia, D.; Li, C. Lubricant transportation mechanism and wear resistance of different arrangement textured turning tools. Tribol. Int. 2024, 196, 109704. [Google Scholar] [CrossRef]
- Guo, S.; Liu, X.; Guo, C.; Ning, Y.; Yang, K.; Yu, C.; Liu, K.; Jiang, L. Bioinspired Underwater Superoleophilic Two-Dimensional Surface with Asymmetric Oleophobic Barriers for Unidirectional and Long-Distance Oil Transport. ACS Appl. Mater. Interfaces 2023, 15, 22684–22691. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.C. Fish Swimming Efficiency. Curr. Biol. 2022, 32, R666–R671. [Google Scholar] [CrossRef] [PubMed]
- Flammang, B.E.; Lauder, G.V.; Troolin, D.R.; Strand, T.E. Volumetric Imaging of Fish Locomotion. Biol. Lett. 2011, 7, 695–698. [Google Scholar] [CrossRef] [PubMed]
- Rong, W.; Zhang, H.; Zhang, T.; Mao, Z.G.; Liu, X.; Song, K. Drag Reduction Using Lubricant-Impregnated Anisotropic Slippery Surfaces Inspired by Bionic Fish Scale Surfaces Containing Micro/Nanostructured Arrays. Adv. Eng. Mater. 2020, 23, 2000821. [Google Scholar] [CrossRef]
- Bixler, G.D.; Bhushan, B. Bioinspired Rice Leaf and Butterfly Wing Surface Structures Combining Shark Skin and Lotus Effects. Soft Matter 2012, 8, 11271–11284. [Google Scholar] [CrossRef]
- Wang, B.; Liu, X.; Tang, G.; Wu, J.; Yang, Y. Optimal kinematics of the bee tongue for viscous fluid transport. Soft Matter 2022, 18, 7317–7323. [Google Scholar] [CrossRef]
- Lu, P.; Wood, R.J.K.; Gee, M.G. A Novel Surface Texture Shape for Directional Friction Control. Tribol. Lett. 2018, 66, 51. [Google Scholar] [CrossRef]
Parameter Names | Numerical | |
---|---|---|
Texture parameters | Chord length L (mm) | 1.2 |
Groove width D (mm) | 0.1 | |
Top arc length R1 (mm) | 1.32 | |
Bottom arc length R2 (mm) | 0.59 | |
Fluid domain side length l (mm) | 4 × 4 | |
Texture depth h1 (mm) | 0.1 | |
Fluid domain parameters | Initial oil film thickness h0 (mm) | 0.1 |
Viscosity of lubricating oil η (Pa·s) | 0.169 | |
Density of lubricating oil ρ (kg·m−3) | 868 | |
Atmospheric reference pressure p0 (Pa) | 101,325.1 |
Laser Processing Parameter | Numerical |
---|---|
Laser processing power (W) | 20 |
Laser scanning speed (mm/s) | 100 |
Number of laser scans | 5 |
Single processing area (mm × mm) | 65 × 15 |
Number of laser etching of a single piston | 10 |
Parameters of Piston | Numerical | |
---|---|---|
Piston parameters | Piston length (mm) | 67 |
Piston outer diameter (mm) | 65 | |
Piston wall thickness (mm) | 7.5 | |
Characteristic parameters of biomimetic fish scale-textured piston | Chord length L (mm) | 1.2 |
Groove width D (mm) | 0.1 | |
Top arc length R1 (mm) | 1.32 | |
Bottom arc length R2 (mm) | 0.59 | |
Texture depth (mm) | 0.1 | |
Characteristic parameters of triangular-textured piston | Textured side length (mm) | 0.8 |
Texture spacing (mm) | 0.8 | |
Texture depth (mm) | 0.1 |
Parameters of Cylinder Liners | Numerical | |
---|---|---|
Continuous interface condition | Cylinder liner length (mm) | 278 |
Cylinder liner outer diameter (mm) | 70 | |
Cylinder liner wall thickness (mm) | 5 | |
Discontinuous interface condition | Cylinder liner length (mm) | 278 |
Cylinder liner outer diameter (mm) | 70 | |
Cylinder liner wall thickness (mm) | 5 | |
Distance between scavenging port and upper end (mm) | 37.5 | |
Scavenging port length (mm) | 17.5 | |
Scavenging port width (mm) | 15 | |
Number of scavenging ports | 8 |
Parameter | Numerical |
---|---|
Lubricating oil temperature | 25 °C |
Oil supply rate | 1 mL/min, 3 mL/min, 5 mL/min, 7 mL/min, 10 mL/min |
Crankshaft speed | 100 r/min, 300 r/min, 500 r/min, 700 r/min |
Oil supply time | 10 min |
Parameter | Numerical |
---|---|
Lubricating oil temperature | 25 °C |
Oil supply rate | 3 mL/min, 5 mL/min, 7 mL/min, 10 mL/min |
Crankshaft speed | 100 r/min, 300 r/min, 500 r/min, 700 r/min |
Oil supply time | 5 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, T.; Yan, Z.; Xue, L.; Jiang, Y.; Wu, S. Effect of Biomimetic Fish Scale Texture on Reciprocating Friction Pairs on Interfacial Lubricating Oil Transport. Biomimetics 2025, 10, 248. https://doi.org/10.3390/biomimetics10040248
Sun T, Yan Z, Xue L, Jiang Y, Wu S. Effect of Biomimetic Fish Scale Texture on Reciprocating Friction Pairs on Interfacial Lubricating Oil Transport. Biomimetics. 2025; 10(4):248. https://doi.org/10.3390/biomimetics10040248
Chicago/Turabian StyleSun, Tao, Zhijun Yan, Lixia Xue, Yuanyuan Jiang, and Shibo Wu. 2025. "Effect of Biomimetic Fish Scale Texture on Reciprocating Friction Pairs on Interfacial Lubricating Oil Transport" Biomimetics 10, no. 4: 248. https://doi.org/10.3390/biomimetics10040248
APA StyleSun, T., Yan, Z., Xue, L., Jiang, Y., & Wu, S. (2025). Effect of Biomimetic Fish Scale Texture on Reciprocating Friction Pairs on Interfacial Lubricating Oil Transport. Biomimetics, 10(4), 248. https://doi.org/10.3390/biomimetics10040248