EDECO: An Enhanced Educational Competition Optimizer for Numerical Optimization Problems
Abstract
:1. Introduction
- (1)
- We propose a hybrid search framework to combine ECO and EDA, which effectively improves the performance.
- (2)
- We propose a dynamic fitness distance balancing strategy, which promotes convergence accuracy and balances the exploitation and exploration capabilities.
- (3)
- We conduct a series of numerical experiments using the CEC2017 test suite to verify the superiority of the improved strategy and the proposed EDECO.
- (4)
- We further evaluate the performance and potential of EDECO in real-world applications using ten engineering constrained optimization problems.
2. Educational Competition Optimizer (ECO)
2.1. Population Initialization
2.2. Primary School Stage
2.3. Middle School Stage
2.4. High School Stage
Algorithm 1: Pseudo-code of the ECO |
1: Initialize the ECO parameters |
2: Initialize the solutions’ positions randomly Equation (2) |
3: While t < tmax |
4: Calculate the fitness function |
5: Find the best position and worst position |
6: Calculate Rt, P, E |
7: For i = 1: N do |
8: Stage 1: Primary school competition |
9: If mod (t, 3) == 1 Then |
10: Update school position by Equation (4) |
11: Update student position by Equation (5) |
12: End if |
13: Stage 2: middle school competition |
14: If mod (t, 3) == 2 Then |
15: Update school position by Equation (6) |
16: Update student position by Equation (7) |
17: End if |
18: Stage 3: High school competition |
19: If mod (t, 3) == 3 Then |
20: Update school position by Equation (10) |
21: Update student position by Equation (11) |
22: End if |
23: End for |
24: t = t + 1 |
24: End while |
25: Return the best solution and fitness |
3. Enhanced Educational Competition Optimizer
3.1. Hybrid Search Framework for EDA
3.2. Dynamic Fitness Distance Balancing Strategy
3.3. The Framework of EDECO
Algorithm 2: Pseudo-code of the EDECO |
1: Initialize the ECO parameters |
2: Initialize the solutions’ positions randomly Equation (2) |
3: While t < tmax |
4: Calculate the fitness function |
5: Find the best position and worst position |
6: Calculating Rt, P, E, C, S |
7: For i = 1: N do |
8: Stage 1: Primary school competition |
9: If mod (t, 3) == 1 Then |
10: Updating school position by Equation (4) |
11: Updating student position by Equation (5) |
12: End if |
13: Stage 2: middle school competition |
14: If mod (t, 3) == 2 Then |
15: Updating school position by Equation (6) |
16: Updating student position by Equation (7) |
17: End if |
18: Stage 3: High school competition |
19: If mod (t, 3) == 3 Then |
20: Updating school position by Equation (10) |
21: Updating student position by Equation (19) |
22: End if |
23: End for |
24: Selecting dominant group and construct G(X)(u, C) by Equations (12)–(14) |
25: Sampling according to this probability distribution model by Equation (15) |
26: Selecting the next iteration population by greedy strategy |
27: t = t + 1 |
28: End while |
29: Return the best solution |
3.4. Computational Complexity Analysis
4. Numerical Experiment and Analysis
4.1. Experiment Setting and Evaluation Criteria
4.2. Analysis of the Performance of Each Strategy on EDECO
4.3. Analysis of the Results of CEC2017 Test Suite
4.4. Analysis of the Results of Engineering Design Problems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Function | Index | EDECO | ECO | SAO | CFOA | DBO | MRFO | ISGTOA | EMTLBO | TERIME | AFDB-ARO |
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | Best | 1.0000E+02 | 1.6664E+02 | 1.9038E+07 | 2.7621E+05 | 3.2279E+02 | 6.0470E+02 | 1.1085E+02 | 2.4813E+02 | 1.5648E+06 | 5.8734E+03 |
Mean | 4.2957E+02 | 1.0700E+04 | 5.3372E+07 | 1.4643E+07 | 4.4217E+06 | 2.6891E+03 | 1.9579E+03 | 2.2673E+03 | 1.0659E+07 | 2.0313E+05 | |
Std | 6.2647E+02 | 1.1597E+04 | 2.6754E+07 | 1.5378E+07 | 1.6834E+07 | 2.4956E+03 | 2.7804E+03 | 2.3118E+03 | 6.5850E+06 | 1.6624E+05 | |
F3 | Best | 3.0000E+02 | 3.0007E+02 | 4.6260E+02 | 3.0394E+02 | 3.0868E+02 | 3.0011E+02 | 4.1405E+02 | 3.0078E+02 | 3.4832E+02 | 1.7321E+03 |
Mean | 3.0000E+02 | 3.2631E+02 | 6.5598E+02 | 7.6556E+02 | 8.5396E+02 | 3.0168E+02 | 6.8141E+02 | 4.3992E+02 | 5.8486E+02 | 4.5160E+03 | |
Std | 8.6380E−04 | 7.5387E+01 | 1.2294E+02 | 5.0501E+02 | 6.2468E+02 | 1.1112E+00 | 2.0294E+02 | 3.5523E+02 | 1.7054E+02 | 1.4564E+03 | |
F4 | Best | 4.0083E+02 | 4.0001E+02 | 4.0796E+02 | 4.0163E+02 | 4.0000E+02 | 4.0010E+02 | 4.0433E+02 | 4.0157E+02 | 4.0391E+02 | 4.0354E+02 |
Mean | 4.0302E+02 | 4.0668E+02 | 4.0987E+02 | 4.0625E+02 | 4.1696E+02 | 4.0522E+02 | 4.0743E+02 | 4.0450E+02 | 4.0964E+02 | 4.1974E+02 | |
Std | 1.1668E+00 | 1.0929E+01 | 7.7098E−01 | 2.0550E+00 | 2.4834E+01 | 1.2324E+01 | 9.2394E+00 | 1.4797E+00 | 1.2395E+01 | 1.2834E+01 | |
F5 | Best | 5.0205E+02 | 5.0897E+02 | 5.2317E+02 | 5.0724E+02 | 5.0982E+02 | 5.0601E+02 | 5.0504E+02 | 5.2007E+02 | 5.0643E+02 | 5.1335E+02 |
Mean | 5.0886E+02 | 5.2259E+02 | 5.3303E+02 | 5.1714E+02 | 5.2661E+02 | 5.1760E+02 | 5.1545E+02 | 5.2994E+02 | 5.2007E+02 | 5.2326E+02 | |
Std | 4.2109E+00 | 8.1581E+00 | 4.5427E+00 | 5.7959E+00 | 8.5577E+00 | 8.3764E+00 | 7.0016E+00 | 4.4260E+00 | 7.2650E+00 | 5.6912E+00 | |
F6 | Best | 6.0000E+02 | 6.0012E+02 | 6.0272E+02 | 6.0362E+02 | 6.0000E+02 | 6.0003E+02 | 6.0001E+02 | 6.0037E+02 | 6.0167E+02 | 6.0005E+02 |
Mean | 6.0002E+02 | 6.0601E+02 | 6.0485E+02 | 6.0793E+02 | 6.0094E+02 | 6.0007E+02 | 6.0001E+02 | 6.0057E+02 | 6.0375E+02 | 6.0085E+02 | |
Std | 1.4928E−02 | 6.2573E+00 | 1.2954E+00 | 2.8036E+00 | 1.9655E+00 | 5.3539E−02 | 6.5965E−03 | 1.0889E−01 | 1.6294E+00 | 8.0903E−01 | |
F7 | Best | 7.1297E+02 | 7.1539E+02 | 7.4139E+02 | 7.1608E+02 | 7.1373E+02 | 7.1541E+02 | 7.1794E+02 | 7.3063E+02 | 7.2433E+02 | 7.2238E+02 |
Mean | 7.1959E+02 | 7.3383E+02 | 7.5167E+02 | 7.2427E+02 | 7.3068E+02 | 7.3133E+02 | 7.3312E+02 | 7.3967E+02 | 7.4657E+02 | 7.3581E+02 | |
Std | 3.7326E+00 | 1.0140E+01 | 6.3675E+00 | 4.7256E+00 | 1.1252E+01 | 1.0544E+01 | 8.0637E+00 | 4.1249E+00 | 9.8485E+00 | 7.0266E+00 | |
F8 | Best | 8.0207E+02 | 8.0598E+02 | 8.1490E+02 | 8.0540E+02 | 8.0796E+02 | 8.0597E+02 | 8.0485E+02 | 8.1366E+02 | 8.1103E+02 | 8.0970E+02 |
Mean | 8.1035E+02 | 8.1797E+02 | 8.2523E+02 | 8.1346E+02 | 8.2270E+02 | 8.1615E+02 | 8.1618E+02 | 8.3007E+02 | 8.2427E+02 | 8.2193E+02 | |
Std | 4.5733E+00 | 7.5822E+00 | 5.6420E+00 | 5.3749E+00 | 1.0380E+01 | 5.9493E+00 | 7.2464E+00 | 5.0655E+00 | 8.5204E+00 | 6.1574E+00 | |
F9 | Best | 9.0000E+02 | 9.0011E+02 | 9.0261E+02 | 9.0200E+02 | 9.0000E+02 | 9.0000E+02 | 9.0000E+02 | 9.0002E+02 | 9.0114E+02 | 9.1127E+02 |
Mean | 9.0002E+02 | 9.4177E+02 | 9.0655E+02 | 9.2348E+02 | 9.0076E+02 | 9.0002E+02 | 9.0000E+02 | 9.0006E+02 | 9.1843E+02 | 9.2992E+02 | |
Std | 8.4016E−02 | 7.7080E+01 | 2.6248E+00 | 1.4525E+01 | 2.6067E+00 | 3.5700E−02 | 1.2697E−03 | 3.6407E−02 | 2.5649E+01 | 1.2864E+01 | |
F10 | Best | 1.1763E+03 | 1.3355E+03 | 1.2980E+03 | 1.2881E+03 | 1.1949E+03 | 1.1263E+03 | 1.4615E+03 | 1.5430E+03 | 1.0808E+03 | 1.3045E+03 |
Mean | 1.5839E+03 | 1.6756E+03 | 1.8609E+03 | 1.6783E+03 | 1.7094E+03 | 1.6669E+03 | 1.8856E+03 | 2.0739E+03 | 1.6977E+03 | 1.6604E+03 | |
Std | 2.3352E+02 | 2.0139E+02 | 2.6603E+02 | 2.0948E+02 | 2.8601E+02 | 2.9769E+02 | 2.3528E+02 | 2.1640E+02 | 2.6144E+02 | 1.2447E+02 | |
F11 | Best | 1.1005E+03 | 1.1099E+03 | 1.1219E+03 | 1.1110E+03 | 1.1020E+03 | 1.1034E+03 | 1.1038E+03 | 1.1037E+03 | 1.1028E+03 | 1.1162E+03 |
Mean | 1.1049E+03 | 1.1463E+03 | 1.1327E+03 | 1.1362E+03 | 1.1477E+03 | 1.1090E+03 | 1.1089E+03 | 1.1102E+03 | 1.1274E+03 | 1.1276E+03 | |
Std | 2.0791E+00 | 4.7048E+01 | 6.4853E+00 | 1.8116E+01 | 6.7728E+01 | 3.2771E+00 | 3.4521E+00 | 3.2839E+00 | 3.6658E+01 | 7.8775E+00 | |
F12 | Best | 1.2273E+03 | 3.2310E+03 | 2.6652E+05 | 5.6445E+03 | 2.6847E+03 | 3.3395E+03 | 6.2037E+03 | 1.7274E+03 | 8.0496E+04 | 1.5557E+04 |
Mean | 1.9576E+03 | 8.3363E+04 | 1.5718E+06 | 1.1211E+05 | 9.3190E+05 | 2.1834E+04 | 3.3965E+04 | 1.6690E+04 | 2.7915E+06 | 9.0221E+04 | |
Std | 7.7352E+02 | 2.7194E+05 | 1.8713E+06 | 1.5945E+05 | 2.3340E+06 | 1.7449E+04 | 2.2321E+04 | 1.6265E+04 | 2.6210E+06 | 9.3890E+04 | |
F13 | Best | 1.3059E+03 | 1.5457E+03 | 2.8950E+03 | 1.9407E+03 | 1.3609E+03 | 1.3623E+03 | 1.5193E+03 | 1.3172E+03 | 1.5933E+03 | 1.4298E+03 |
Mean | 1.3478E+03 | 2.3046E+03 | 1.1363E+04 | 3.0314E+03 | 1.2106E+04 | 2.5061E+03 | 2.0692E+03 | 1.6346E+03 | 1.6372E+04 | 1.6666E+03 | |
Std | 4.8201E+01 | 3.5032E+02 | 6.9110E+03 | 7.3297E+02 | 1.2162E+04 | 1.6506E+03 | 4.1559E+02 | 7.9352E+02 | 1.1418E+04 | 1.5366E+02 | |
F14 | Best | 1.4008E+03 | 1.4290E+03 | 1.4760E+03 | 1.4389E+03 | 1.4343E+03 | 1.4394E+03 | 1.4346E+03 | 1.4257E+03 | 1.4221E+03 | 1.4138E+03 |
Mean | 1.4168E+03 | 1.4769E+03 | 1.5483E+03 | 1.4680E+03 | 1.5093E+03 | 1.4845E+03 | 1.4559E+03 | 1.4709E+03 | 1.4706E+03 | 1.4303E+03 | |
Std | 1.0433E+01 | 2.8275E+01 | 5.2516E+01 | 1.6764E+01 | 5.1298E+01 | 2.9414E+01 | 1.2335E+01 | 1.1109E+02 | 5.9134E+01 | 5.7099E+00 | |
F15 | Best | 1.5006E+03 | 1.5386E+03 | 1.6127E+03 | 1.5468E+03 | 1.5133E+03 | 1.5582E+03 | 1.5365E+03 | 1.5067E+03 | 1.5251E+03 | 1.5252E+03 |
Mean | 1.5080E+03 | 1.6551E+03 | 1.8152E+03 | 1.6344E+03 | 1.9052E+03 | 1.6985E+03 | 1.5995E+03 | 1.6425E+03 | 2.1907E+03 | 1.5583E+03 | |
Std | 9.6205E+00 | 8.6561E+01 | 2.2347E+02 | 5.7593E+01 | 4.0463E+02 | 1.1731E+02 | 3.9219E+01 | 4.3228E+02 | 8.1787E+02 | 1.7649E+01 | |
F16 | Best | 1.6015E+03 | 1.6020E+03 | 1.6152E+03 | 1.6025E+03 | 1.6020E+03 | 1.6017E+03 | 1.6031E+03 | 1.6031E+03 | 1.6036E+03 | 1.6033E+03 |
Mean | 1.6138E+03 | 1.6832E+03 | 1.6642E+03 | 1.6681E+03 | 1.7351E+03 | 1.6792E+03 | 1.6259E+03 | 1.6551E+03 | 1.6702E+03 | 1.6757E+03 | |
Std | 2.0573E+01 | 8.5165E+01 | 5.4847E+01 | 6.6510E+01 | 1.1525E+02 | 7.9501E+01 | 2.9800E+01 | 4.2808E+01 | 7.5269E+01 | 6.4833E+01 | |
F17 | Best | 1.7175E+03 | 1.7231E+03 | 1.7334E+03 | 1.7240E+03 | 1.7216E+03 | 1.7068E+03 | 1.7304E+03 | 1.7076E+03 | 1.7087E+03 | 1.7189E+03 |
Mean | 1.7418E+03 | 1.7529E+03 | 1.7592E+03 | 1.7436E+03 | 1.7586E+03 | 1.7386E+03 | 1.7527E+03 | 1.7442E+03 | 1.7393E+03 | 1.7347E+03 | |
Std | 1.1004E+01 | 1.5976E+01 | 1.0842E+01 | 1.1883E+01 | 3.1297E+01 | 1.5425E+01 | 1.1949E+01 | 3.6363E+01 | 1.1835E+01 | 9.1603E+00 | |
F18 | Best | 1.8071E+03 | 1.8742E+03 | 8.4281E+03 | 2.1484E+03 | 2.1990E+03 | 1.9932E+03 | 2.1726E+03 | 1.8453E+03 | 4.2416E+03 | 1.9191E+03 |
Mean | 1.8384E+03 | 5.1728E+03 | 3.4097E+04 | 4.7255E+03 | 1.6523E+04 | 7.7965E+03 | 4.3282E+03 | 6.0126E+03 | 2.4234E+04 | 2.5527E+03 | |
Std | 2.7479E+01 | 4.7343E+03 | 1.3868E+04 | 2.2810E+03 | 1.4014E+04 | 5.7300E+03 | 2.8115E+03 | 6.5034E+03 | 1.4291E+04 | 8.8030E+02 | |
F19 | Best | 1.9008E+03 | 1.9091E+03 | 1.9390E+03 | 1.9200E+03 | 1.9078E+03 | 1.9170E+03 | 1.9111E+03 | 1.9058E+03 | 1.9123E+03 | 1.9113E+03 |
Mean | 1.9041E+03 | 1.9516E+03 | 2.8731E+03 | 1.9632E+03 | 3.5221E+03 | 2.0876E+03 | 1.9438E+03 | 2.5114E+03 | 3.1538E+03 | 1.9264E+03 | |
Std | 1.3937E+00 | 3.6330E+01 | 1.7041E+03 | 3.8064E+01 | 5.6984E+03 | 1.8673E+02 | 2.7025E+01 | 2.3483E+03 | 2.4763E+03 | 8.8024E+00 | |
F20 | Best | 2.0225E+03 | 2.0226E+03 | 2.0468E+03 | 2.0268E+03 | 2.0003E+03 | 2.0040E+03 | 2.0121E+03 | 2.0488E+03 | 2.0243E+03 | 2.0026E+03 |
Mean | 2.0427E+03 | 2.0675E+03 | 2.0599E+03 | 2.0472E+03 | 2.0393E+03 | 2.0236E+03 | 2.0371E+03 | 2.0617E+03 | 2.0458E+03 | 2.0229E+03 | |
Std | 1.4418E+01 | 2.2512E+01 | 6.7939E+00 | 1.3437E+01 | 3.0802E+01 | 1.6200E+01 | 1.2079E+01 | 8.4457E+00 | 1.8892E+01 | 9.2740E+00 | |
F21 | Best | 2.2000E+03 | 2.2004E+03 | 2.2026E+03 | 2.2031E+03 | 2.1000E+03 | 2.1006E+03 | 2.2006E+03 | 2.2033E+03 | 2.2028E+03 | 2.2025E+03 |
Mean | 2.2009E+03 | 2.2122E+03 | 2.2185E+03 | 2.2070E+03 | 2.2058E+03 | 2.2095E+03 | 2.2486E+03 | 2.2095E+03 | 2.2044E+03 | 2.2182E+03 | |
Std | 1.2701E+00 | 3.4297E+01 | 3.8974E+01 | 3.0528E+00 | 2.9369E+01 | 4.0516E+01 | 5.7567E+01 | 2.0731E+01 | 1.0412E+00 | 1.8449E+01 | |
F22 | Best | 2.2000E+03 | 2.2001E+03 | 2.2452E+03 | 2.2214E+03 | 2.2258E+03 | 2.2002E+03 | 2.2000E+03 | 2.2096E+03 | 2.2329E+03 | 2.2443E+03 |
Mean | 2.2484E+03 | 2.2592E+03 | 2.3049E+03 | 2.3043E+03 | 2.2988E+03 | 2.2900E+03 | 2.2866E+03 | 2.2898E+03 | 2.2849E+03 | 2.2786E+03 | |
Std | 3.9288E+01 | 4.0937E+01 | 2.4568E+01 | 2.1868E+01 | 2.9958E+01 | 3.1154E+01 | 3.3905E+01 | 3.3679E+01 | 3.3443E+01 | 1.9401E+01 | |
F23 | Best | 2.6039E+03 | 2.6104E+03 | 2.6247E+03 | 2.3057E+03 | 2.6112E+03 | 2.6081E+03 | 2.6073E+03 | 2.6148E+03 | 2.6116E+03 | 2.3054E+03 |
Mean | 2.6135E+03 | 2.6256E+03 | 2.6333E+03 | 2.5791E+03 | 2.6304E+03 | 2.6179E+03 | 2.6164E+03 | 2.6288E+03 | 2.6244E+03 | 2.6242E+03 | |
Std | 5.0863E+00 | 1.1549E+01 | 4.9813E+00 | 1.0848E+02 | 1.0260E+01 | 6.3946E+00 | 6.6986E+00 | 5.2466E+00 | 9.3523E+00 | 6.0964E+01 | |
F24 | Best | 2.5000E+03 | 2.5002E+03 | 2.5091E+03 | 2.4619E+03 | 2.5000E+03 | 2.5000E+03 | 2.5004E+03 | 2.5492E+03 | 2.4548E+03 | 2.4878E+03 |
Mean | 2.6513E+03 | 2.6684E+03 | 2.6843E+03 | 2.5621E+03 | 2.6660E+03 | 2.6584E+03 | 2.6888E+03 | 2.7003E+03 | 2.5866E+03 | 2.5564E+03 | |
Std | 1.1707E+02 | 1.1922E+02 | 1.1885E+02 | 4.8869E+01 | 1.1388E+02 | 1.1772E+02 | 1.0547E+02 | 9.2779E+01 | 1.1624E+02 | 5.0899E+01 | |
F25 | Best | 2.8977E+03 | 2.8978E+03 | 2.8984E+03 | 2.8985E+03 | 2.8981E+03 | 2.8978E+03 | 2.8979E+03 | 2.8980E+03 | 2.8993E+03 | 2.6677E+03 |
Mean | 2.9212E+03 | 2.9242E+03 | 2.9361E+03 | 2.9042E+03 | 2.9350E+03 | 2.9217E+03 | 2.9219E+03 | 2.9146E+03 | 2.9315E+03 | 2.8863E+03 | |
Std | 2.3397E+01 | 2.3309E+01 | 2.0725E+01 | 6.8861E+00 | 2.7293E+01 | 2.3395E+01 | 2.3470E+01 | 2.1658E+01 | 2.4599E+01 | 7.3027E+01 | |
F26 | Best | 2.9000E+03 | 2.9001E+03 | 2.9251E+03 | 2.9143E+03 | 2.9000E+03 | 2.9000E+03 | 2.9000E+03 | 2.9002E+03 | 2.8986E+03 | 2.7746E+03 |
Mean | 2.9000E+03 | 2.9496E+03 | 2.9508E+03 | 2.9626E+03 | 3.0151E+03 | 2.9063E+03 | 2.9125E+03 | 2.9012E+03 | 2.9334E+03 | 2.9420E+03 | |
Std | 2.9357E−03 | 8.7581E+01 | 1.5971E+01 | 4.0287E+01 | 4.3364E+01 | 2.2587E+01 | 2.4017E+01 | 6.0566E−01 | 3.1184E+01 | 7.3499E+01 | |
F27 | Best | 3.0892E+03 | 3.0894E+03 | 3.0903E+03 | 3.0899E+03 | 3.0904E+03 | 3.0901E+03 | 3.0890E+03 | 3.0904E+03 | 3.0908E+03 | 3.1064E+03 |
Mean | 3.0914E+03 | 3.0938E+03 | 3.0953E+03 | 3.0955E+03 | 3.0964E+03 | 3.0981E+03 | 3.0902E+03 | 3.0914E+03 | 3.0965E+03 | 3.1135E+03 | |
Std | 2.5005E+00 | 3.0748E+00 | 1.5795E+00 | 3.0515E+00 | 3.4404E+00 | 4.8215E+00 | 9.8906E−01 | 6.4803E−01 | 3.1208E+00 | 4.2835E+00 | |
F28 | Best | 3.1000E+03 | 3.1003E+03 | 3.1614E+03 | 3.1208E+03 | 3.1691E+03 | 3.1001E+03 | 3.1003E+03 | 3.1050E+03 | 3.1208E+03 | 3.0258E+03 |
Mean | 3.2417E+03 | 3.3182E+03 | 3.2439E+03 | 3.1868E+03 | 3.2769E+03 | 3.1762E+03 | 3.2228E+03 | 3.1616E+03 | 3.1841E+03 | 3.2103E+03 | |
Std | 1.2722E+02 | 1.2387E+02 | 1.0220E+02 | 2.8216E+01 | 1.0483E+02 | 1.1853E+02 | 1.1112E+02 | 8.1973E+01 | 2.2536E+01 | 7.1913E+01 | |
F29 | Best | 3.1382E+03 | 3.1379E+03 | 3.1725E+03 | 3.1433E+03 | 3.1581E+03 | 3.1463E+03 | 3.1486E+03 | 3.1487E+03 | 3.1513E+03 | 3.1526E+03 |
Mean | 3.1613E+03 | 3.2046E+03 | 3.1970E+03 | 3.1831E+03 | 3.2039E+03 | 3.1890E+03 | 3.1867E+03 | 3.1937E+03 | 3.1825E+03 | 3.2028E+03 | |
Std | 1.6949E+01 | 5.4528E+01 | 1.6699E+01 | 2.3472E+01 | 4.8482E+01 | 2.9891E+01 | 1.8095E+01 | 3.2183E+01 | 1.9909E+01 | 1.9113E+01 | |
F30 | Best | 3.5310E+03 | 4.0582E+03 | 1.5663E+04 | 4.0153E+03 | 3.7068E+03 | 4.2384E+03 | 6.5611E+03 | 3.7827E+03 | 7.7210E+03 | 1.6514E+04 |
Mean | 1.7054E+04 | 1.5101E+05 | 3.8045E+05 | 4.7171E+04 | 5.6042E+05 | 3.0943E+05 | 1.4982E+05 | 1.9457E+05 | 1.2525E+05 | 3.1662E+05 | |
Std | 5.4232E+04 | 2.6223E+05 | 4.6557E+05 | 6.5635E+04 | 4.7247E+05 | 5.9605E+05 | 2.0978E+05 | 3.3016E+05 | 1.8985E+05 | 2.8525E+05 |
Function | Index | EDECO | ECO | SAO | CFOA | DBO | MRFO | ISGTOA | EMTLBO | TERIME | AFDB-ARO |
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | Best | 3.5853E+03 | 1.8798E+08 | 1.5334E+09 | 1.4219E+09 | 1.1622E+05 | 1.4842E+05 | 4.5167E+02 | 4.4013E+04 | 1.9993E+08 | 5.3758E+04 |
Mean | 4.9269E+04 | 6.0544E+09 | 2.2325E+09 | 2.5321E+09 | 6.6359E+07 | 3.1884E+05 | 3.9321E+03 | 1.4834E+05 | 5.7717E+08 | 2.4551E+05 | |
Std | 4.7262E+04 | 6.0700E+09 | 3.8007E+08 | 6.7906E+08 | 4.2155E+07 | 1.0483E+05 | 3.5069E+03 | 1.2583E+05 | 2.2459E+08 | 2.5486E+05 | |
F3 | Best | 4.7261E+02 | 3.9840E+03 | 2.1904E+04 | 1.1979E+04 | 3.1055E+04 | 3.2941E+03 | 1.6652E+04 | 9.3023E+03 | 1.7843E+04 | 5.3358E+04 |
Mean | 1.4839E+03 | 2.0230E+04 | 3.8791E+04 | 2.5105E+04 | 6.0561E+04 | 7.6418E+03 | 2.9248E+04 | 2.3871E+04 | 3.0373E+04 | 6.8846E+04 | |
Std | 1.1725E+03 | 1.3013E+04 | 6.7160E+03 | 8.1251E+03 | 1.2430E+04 | 2.3586E+03 | 5.6130E+03 | 1.0428E+04 | 7.4690E+03 | 7.4843E+03 | |
F4 | Best | 4.7390E+02 | 4.9456E+02 | 6.0635E+02 | 6.0970E+02 | 5.0414E+02 | 4.7704E+02 | 4.7324E+02 | 4.0530E+02 | 5.2611E+02 | 4.8858E+02 |
Mean | 5.0551E+02 | 1.0444E+03 | 6.6682E+02 | 8.0685E+02 | 5.5655E+02 | 5.1327E+02 | 5.0931E+02 | 4.9537E+02 | 5.8357E+02 | 5.8445E+02 | |
Std | 1.9095E+01 | 6.6393E+02 | 3.5430E+01 | 1.1865E+02 | 4.5631E+01 | 2.3040E+01 | 2.3799E+01 | 2.7206E+01 | 4.1930E+01 | 5.5177E+01 | |
F5 | Best | 5.4094E+02 | 6.0573E+02 | 6.9230E+02 | 6.3193E+02 | 5.9806E+02 | 5.6223E+02 | 5.4172E+02 | 6.6241E+02 | 5.9825E+02 | 6.1479E+02 |
Mean | 5.8542E+02 | 7.1637E+02 | 7.2215E+02 | 6.5977E+02 | 6.6218E+02 | 6.2209E+02 | 5.7493E+02 | 6.8169E+02 | 6.4807E+02 | 6.5841E+02 | |
Std | 2.8339E+01 | 6.1073E+01 | 1.1111E+01 | 1.6024E+01 | 3.5511E+01 | 3.3567E+01 | 2.2021E+01 | 1.1742E+01 | 2.7103E+01 | 2.2357E+01 | |
F6 | Best | 6.0106E+02 | 6.2603E+02 | 6.1583E+02 | 6.2499E+02 | 6.0190E+02 | 6.0108E+02 | 6.0015E+02 | 6.0131E+02 | 6.0795E+02 | 6.0028E+02 |
Mean | 6.0475E+02 | 6.4938E+02 | 6.2051E+02 | 6.3385E+02 | 6.1638E+02 | 6.0723E+02 | 6.0108E+02 | 6.0239E+02 | 6.1435E+02 | 6.0401E+02 | |
Std | 3.9282E+00 | 1.0213E+01 | 2.7081E+00 | 4.7430E+00 | 9.1168E+00 | 6.2859E+00 | 8.9407E−01 | 6.3896E−01 | 3.5540E+00 | 1.8552E+00 | |
F7 | Best | 7.6834E+02 | 9.4425E+02 | 9.6284E+02 | 8.7955E+02 | 7.8856E+02 | 8.0939E+02 | 7.9933E+02 | 8.9880E+02 | 8.8523E+02 | 8.2939E+02 |
Mean | 8.4154E+02 | 1.0388E+03 | 9.9582E+02 | 9.2468E+02 | 8.8444E+02 | 8.9657E+02 | 8.6537E+02 | 9.1698E+02 | 9.5985E+02 | 9.2549E+02 | |
Std | 3.1560E+01 | 7.7198E+01 | 1.7530E+01 | 2.4418E+01 | 5.7465E+01 | 4.6704E+01 | 3.4335E+01 | 8.9337E+00 | 3.7372E+01 | 3.3806E+01 | |
F8 | Best | 8.3509E+02 | 8.6123E+02 | 9.7549E+02 | 8.8974E+02 | 8.9655E+02 | 8.7124E+02 | 8.4981E+02 | 9.5806E+02 | 8.9688E+02 | 8.9611E+02 |
Mean | 8.7371E+02 | 9.7668E+02 | 1.0081E+03 | 9.3058E+02 | 9.6214E+02 | 9.1229E+02 | 8.9826E+02 | 9.8264E+02 | 9.5883E+02 | 9.4937E+02 | |
Std | 2.2744E+01 | 5.3143E+01 | 1.4282E+01 | 1.7267E+01 | 4.1875E+01 | 2.9953E+01 | 4.1726E+01 | 1.0425E+01 | 3.2728E+01 | 2.9174E+01 | |
F9 | Best | 9.0433E+02 | 3.2233E+03 | 1.5184E+03 | 2.0071E+03 | 1.8011E+03 | 9.7482E+02 | 9.0642E+02 | 9.0232E+02 | 1.6121E+03 | 1.4160E+03 |
Mean | 1.1556E+03 | 4.7235E+03 | 1.9180E+03 | 2.6645E+03 | 4.1434E+03 | 2.2691E+03 | 9.2449E+02 | 9.0617E+02 | 2.9295E+03 | 3.5874E+03 | |
Std | 3.6346E+02 | 1.1065E+03 | 2.2971E+02 | 3.3270E+02 | 1.7601E+03 | 1.0866E+03 | 1.5994E+01 | 3.1675E+00 | 1.0727E+03 | 8.4869E+02 | |
F10 | Best | 4.2899E+03 | 4.6992E+03 | 6.6048E+03 | 4.4764E+03 | 4.0126E+03 | 3.3620E+03 | 4.5943E+03 | 6.8829E+03 | 4.7262E+03 | 3.1511E+03 |
Mean | 5.4251E+03 | 6.8069E+03 | 7.8792E+03 | 5.7604E+03 | 5.2110E+03 | 4.6535E+03 | 7.1802E+03 | 7.9964E+03 | 5.3581E+03 | 4.4002E+03 | |
Std | 4.8742E+02 | 1.2070E+03 | 4.3006E+02 | 4.8723E+02 | 1.0125E+03 | 8.3787E+02 | 9.6906E+02 | 3.1933E+02 | 3.8398E+02 | 4.9661E+02 | |
F11 | Best | 1.1516E+03 | 1.3029E+03 | 1.4707E+03 | 1.4554E+03 | 1.2425E+03 | 1.1692E+03 | 1.2184E+03 | 1.1846E+03 | 1.2422E+03 | 1.3013E+03 |
Mean | 1.2058E+03 | 1.7200E+03 | 1.5712E+03 | 2.0863E+03 | 1.4768E+03 | 1.2524E+03 | 1.2883E+03 | 1.2435E+03 | 1.3030E+03 | 1.3891E+03 | |
Std | 3.8199E+01 | 4.3220E+02 | 6.4426E+01 | 4.2008E+02 | 1.1410E+02 | 3.8805E+01 | 3.3773E+01 | 3.6881E+01 | 3.3278E+01 | 5.3945E+01 | |
F12 | Best | 8.4870E+04 | 8.8398E+06 | 1.2822E+08 | 1.6513E+07 | 2.6367E+05 | 1.3412E+05 | 1.0270E+05 | 5.6330E+04 | 5.8909E+06 | 1.0669E+06 |
Mean | 1.1786E+06 | 2.3229E+08 | 1.9003E+08 | 4.3437E+07 | 2.0950E+07 | 9.1000E+05 | 6.3194E+05 | 4.6360E+05 | 2.9142E+07 | 3.7432E+06 | |
Std | 1.1725E+06 | 2.7811E+08 | 4.6227E+07 | 2.1107E+07 | 2.2789E+07 | 6.1352E+05 | 5.5558E+05 | 5.2563E+05 | 1.9110E+07 | 1.8801E+06 | |
F13 | Best | 4.2787E+03 | 2.9940E+04 | 1.1349E+07 | 1.9964E+04 | 9.0004E+03 | 1.7716E+03 | 1.9850E+03 | 3.1097E+03 | 2.6020E+05 | 2.8668E+04 |
Mean | 1.7099E+04 | 1.5274E+05 | 4.7321E+07 | 3.8128E+05 | 2.5876E+06 | 1.3795E+04 | 1.6967E+04 | 1.8384E+04 | 2.3864E+06 | 8.3025E+04 | |
Std | 1.0988E+04 | 1.1931E+05 | 2.2350E+07 | 4.0397E+05 | 1.1126E+07 | 1.4773E+04 | 1.5633E+04 | 1.7343E+04 | 2.0286E+06 | 4.7870E+04 | |
F14 | Best | 1.4692E+03 | 1.7132E+03 | 7.6594E+03 | 3.2079E+03 | 5.1374E+03 | 1.9696E+03 | 2.2725E+03 | 1.5551E+03 | 4.1630E+03 | 2.6925E+03 |
Mean | 1.5381E+03 | 1.0688E+04 | 5.7076E+04 | 1.3681E+04 | 7.0775E+04 | 8.9148E+03 | 5.6761E+03 | 1.0653E+04 | 5.5694E+04 | 1.6611E+04 | |
Std | 4.0604E+01 | 2.2994E+04 | 3.2445E+04 | 9.6129E+03 | 7.2087E+04 | 1.0114E+04 | 3.6488E+03 | 1.4796E+04 | 5.1384E+04 | 2.1909E+04 | |
F15 | Best | 1.7917E+03 | 8.0654E+03 | 1.8656E+05 | 5.0579E+03 | 5.6375E+03 | 1.6862E+03 | 1.9668E+03 | 1.8370E+03 | 4.9155E+04 | 3.5552E+03 |
Mean | 2.6605E+03 | 3.8155E+04 | 6.4030E+05 | 4.2980E+04 | 5.2732E+04 | 1.3594E+04 | 8.4133E+03 | 5.9693E+03 | 4.2753E+05 | 1.0271E+04 | |
Std | 1.1536E+03 | 2.5747E+04 | 4.5952E+05 | 8.5200E+04 | 4.4799E+04 | 1.1359E+04 | 6.9659E+03 | 8.0073E+03 | 5.8961E+05 | 8.5133E+03 | |
F16 | Best | 1.8764E+03 | 2.4560E+03 | 2.5964E+03 | 2.3083E+03 | 2.1511E+03 | 1.9740E+03 | 1.8135E+03 | 2.2495E+03 | 2.0119E+03 | 2.3131E+03 |
Mean | 2.3550E+03 | 3.2266E+03 | 3.0932E+03 | 2.6917E+03 | 2.8233E+03 | 2.4829E+03 | 2.5431E+03 | 2.9768E+03 | 2.6158E+03 | 2.8355E+03 | |
Std | 2.0524E+02 | 4.2048E+02 | 2.3477E+02 | 2.3150E+02 | 2.5899E+02 | 2.6349E+02 | 3.5624E+02 | 3.3758E+02 | 2.6273E+02 | 2.1094E+02 | |
F17 | Best | 1.7752E+03 | 1.8233E+03 | 1.9310E+03 | 1.8474E+03 | 1.9575E+03 | 1.7622E+03 | 1.8091E+03 | 1.8461E+03 | 1.8045E+03 | 1.8066E+03 |
Mean | 1.8665E+03 | 2.4374E+03 | 2.0905E+03 | 1.9948E+03 | 2.3040E+03 | 1.9995E+03 | 1.9514E+03 | 2.0727E+03 | 2.1190E+03 | 2.1496E+03 | |
Std | 5.5747E+01 | 2.9224E+02 | 1.0785E+02 | 1.1028E+02 | 1.9838E+02 | 1.5034E+02 | 8.7658E+01 | 1.4285E+02 | 1.6418E+02 | 1.6868E+02 | |
F18 | Best | 2.0216E+03 | 3.3520E+04 | 2.3171E+05 | 3.5239E+04 | 6.3540E+04 | 3.9240E+04 | 3.9583E+04 | 2.0502E+04 | 6.9762E+04 | 3.8799E+04 |
Mean | 4.4653E+03 | 1.4280E+05 | 1.0518E+06 | 1.7164E+05 | 1.0691E+06 | 2.3526E+05 | 1.4651E+05 | 1.8297E+05 | 1.0907E+06 | 2.4321E+05 | |
Std | 4.1174E+03 | 1.2811E+05 | 6.6436E+05 | 9.0793E+04 | 1.6016E+06 | 2.1715E+05 | 9.5910E+04 | 2.1689E+05 | 1.0467E+06 | 1.4595E+05 | |
F19 | Best | 1.9578E+03 | 7.3817E+03 | 8.2549E+05 | 4.3255E+03 | 2.3272E+03 | 1.9680E+03 | 2.0895E+03 | 2.1009E+03 | 4.5360E+04 | 3.0313E+03 |
Mean | 2.3392E+03 | 6.9921E+05 | 3.0986E+06 | 4.6557E+04 | 2.5519E+05 | 1.1806E+04 | 6.7214E+03 | 7.4914E+03 | 5.7122E+05 | 9.6765E+03 | |
Std | 7.4841E+02 | 1.4884E+06 | 2.1506E+06 | 4.4514E+04 | 5.2710E+05 | 1.1027E+04 | 6.8501E+03 | 6.5254E+03 | 6.3471E+05 | 5.8900E+03 | |
F20 | Best | 2.1398E+03 | 2.3796E+03 | 2.2267E+03 | 2.1611E+03 | 2.1074E+03 | 2.1354E+03 | 2.0708E+03 | 2.4872E+03 | 2.0876E+03 | 2.2057E+03 |
Mean | 2.2998E+03 | 2.7301E+03 | 2.3706E+03 | 2.3951E+03 | 2.4172E+03 | 2.3597E+03 | 2.3705E+03 | 2.6765E+03 | 2.3045E+03 | 2.4704E+03 | |
Std | 8.1987E+01 | 1.6670E+02 | 9.9238E+01 | 1.0307E+02 | 1.6437E+02 | 1.5060E+02 | 1.5837E+02 | 9.3655E+01 | 1.4405E+02 | 1.2810E+02 | |
F21 | Best | 2.3294E+03 | 2.3802E+03 | 2.4792E+03 | 2.2712E+03 | 2.4013E+03 | 2.3588E+03 | 2.3397E+03 | 2.4519E+03 | 2.4056E+03 | 2.4247E+03 |
Mean | 2.3717E+03 | 2.4880E+03 | 2.5030E+03 | 2.4282E+03 | 2.4694E+03 | 2.3944E+03 | 2.3921E+03 | 2.4753E+03 | 2.4423E+03 | 2.4742E+03 | |
Std | 2.2960E+01 | 4.3173E+01 | 1.1959E+01 | 3.3935E+01 | 3.4156E+01 | 2.2091E+01 | 3.0322E+01 | 1.2087E+01 | 2.1659E+01 | 3.0114E+01 | |
F22 | Best | 2.3011E+03 | 2.6138E+03 | 2.5181E+03 | 2.4980E+03 | 2.3331E+03 | 2.3043E+03 | 2.3000E+03 | 2.3114E+03 | 2.3592E+03 | 2.3753E+03 |
Mean | 2.5841E+03 | 6.9933E+03 | 2.6302E+03 | 2.7315E+03 | 3.5236E+03 | 2.3082E+03 | 2.3009E+03 | 2.3170E+03 | 3.2830E+03 | 3.7056E+03 | |
Std | 1.0617E+03 | 2.3481E+03 | 4.7988E+01 | 1.2306E+02 | 1.8174E+03 | 3.2849E+00 | 2.5812E+00 | 7.7546E+00 | 1.7647E+03 | 7.5454E+02 | |
F23 | Best | 2.6871E+03 | 2.7892E+03 | 2.8429E+03 | 2.7697E+03 | 2.7630E+03 | 2.7216E+03 | 2.6702E+03 | 2.7831E+03 | 2.7607E+03 | 2.7231E+03 |
Mean | 2.7302E+03 | 3.0693E+03 | 2.8767E+03 | 2.8174E+03 | 2.8258E+03 | 2.7707E+03 | 2.7270E+03 | 2.8307E+03 | 2.8108E+03 | 2.8776E+03 | |
Std | 3.0587E+01 | 1.5218E+02 | 1.5796E+01 | 2.2455E+01 | 3.2286E+01 | 3.1139E+01 | 3.5226E+01 | 1.4477E+01 | 2.9073E+01 | 4.0662E+01 | |
F24 | Best | 2.8477E+03 | 2.9981E+03 | 3.0135E+03 | 2.9160E+03 | 2.9314E+03 | 2.8796E+03 | 2.8518E+03 | 2.9819E+03 | 2.9438E+03 | 2.9449E+03 |
Mean | 2.8937E+03 | 3.2848E+03 | 3.0403E+03 | 2.9712E+03 | 3.0139E+03 | 2.9490E+03 | 2.8973E+03 | 2.9983E+03 | 3.0064E+03 | 3.0613E+03 | |
Std | 2.3362E+01 | 2.6656E+02 | 1.2813E+01 | 2.3655E+01 | 4.1297E+01 | 4.7133E+01 | 2.9738E+01 | 9.8678E+00 | 3.0880E+01 | 4.3458E+01 | |
F25 | Best | 2.8837E+03 | 2.9523E+03 | 2.9525E+03 | 3.0171E+03 | 2.8836E+03 | 2.8854E+03 | 2.8838E+03 | 2.8864E+03 | 2.9093E+03 | 2.8925E+03 |
Mean | 2.8930E+03 | 3.1020E+03 | 2.9840E+03 | 3.0752E+03 | 2.9278E+03 | 2.9080E+03 | 2.8973E+03 | 2.8981E+03 | 2.9688E+03 | 2.9471E+03 | |
Std | 1.1365E+01 | 1.3885E+02 | 1.9704E+01 | 2.6449E+01 | 2.7584E+01 | 1.6994E+01 | 1.3843E+01 | 1.3010E+01 | 3.4831E+01 | 3.2337E+01 | |
F26 | Best | 2.9026E+03 | 3.9479E+03 | 5.6661E+03 | 3.6904E+03 | 3.5683E+03 | 2.8151E+03 | 2.9005E+03 | 2.8971E+03 | 3.6141E+03 | 3.2338E+03 |
Mean | 4.2223E+03 | 6.6306E+03 | 5.8661E+03 | 4.5460E+03 | 5.3572E+03 | 4.4276E+03 | 4.2369E+03 | 5.0101E+03 | 5.2988E+03 | 4.8218E+03 | |
Std | 6.7182E+02 | 1.3141E+03 | 1.2924E+02 | 7.1305E+02 | 7.6308E+02 | 1.1087E+03 | 4.2625E+02 | 8.5062E+02 | 4.5702E+02 | 6.6758E+02 | |
F27 | Best | 3.1981E+03 | 3.2259E+03 | 3.2299E+03 | 3.2497E+03 | 3.2144E+03 | 3.2275E+03 | 3.1920E+03 | 3.1967E+03 | 3.2297E+03 | 3.2395E+03 |
Mean | 3.2287E+03 | 3.4130E+03 | 3.2472E+03 | 3.2838E+03 | 3.2463E+03 | 3.2622E+03 | 3.2231E+03 | 3.2183E+03 | 3.2468E+03 | 3.2861E+03 | |
Std | 1.5952E+01 | 1.3752E+02 | 9.1073E+00 | 2.0281E+01 | 1.9538E+01 | 2.5217E+01 | 1.2978E+01 | 9.9354E+00 | 1.1614E+01 | 2.7234E+01 | |
F28 | Best | 3.2036E+03 | 3.3439E+03 | 3.3620E+03 | 3.3355E+03 | 3.2783E+03 | 3.2054E+03 | 3.2057E+03 | 3.2044E+03 | 3.2564E+03 | 3.2517E+03 |
Mean | 3.2358E+03 | 3.8122E+03 | 3.4150E+03 | 3.4571E+03 | 3.3696E+03 | 3.2387E+03 | 3.2381E+03 | 3.2395E+03 | 3.3282E+03 | 3.3048E+03 | |
Std | 2.0493E+01 | 3.5926E+02 | 2.8925E+01 | 5.2352E+01 | 5.8336E+01 | 1.9556E+01 | 2.2474E+01 | 2.6919E+01 | 3.4461E+01 | 4.4028E+01 | |
F29 | Best | 3.4413E+03 | 4.1395E+03 | 3.6585E+03 | 3.6709E+03 | 3.4487E+03 | 3.4508E+03 | 3.4773E+03 | 3.5604E+03 | 3.4460E+03 | 3.9445E+03 |
Mean | 3.7831E+03 | 4.7846E+03 | 4.0276E+03 | 4.0191E+03 | 3.8829E+03 | 3.7543E+03 | 3.7063E+03 | 3.9275E+03 | 3.7678E+03 | 4.2511E+03 | |
Std | 2.0069E+02 | 3.8145E+02 | 1.9800E+02 | 1.9051E+02 | 2.3622E+02 | 1.7281E+02 | 1.5409E+02 | 2.2096E+02 | 2.0310E+02 | 1.8549E+02 | |
F30 | Best | 7.0601E+03 | 3.7739E+05 | 4.0037E+06 | 7.0087E+04 | 8.7955E+03 | 1.0040E+04 | 1.1231E+04 | 7.7881E+03 | 1.4603E+05 | 7.4578E+04 |
Mean | 2.6531E+04 | 7.7681E+06 | 1.1103E+07 | 9.3399E+05 | 7.1791E+05 | 3.2885E+04 | 2.5177E+04 | 2.1048E+04 | 1.1605E+06 | 1.3491E+05 | |
Std | 1.2868E+04 | 8.4947E+06 | 3.3596E+06 | 7.0461E+05 | 1.5598E+06 | 2.4483E+04 | 1.3490E+04 | 1.0263E+04 | 8.1768E+05 | 5.5937E+04 |
Function | Index | EDECO | ECO | SAO | CFOA | DBO | MRFO | ISGTOA | EMTLBO | TERIME | AFDB-ARO |
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | Best | 1.4571E+06 | 5.6577E+07 | 6.9231E+09 | 9.5444E+09 | 3.2487E+08 | 5.1922E+06 | 4.0229E+04 | 7.6106E+05 | 1.9259E+09 | 2.2990E+06 |
Mean | 3.5528E+06 | 1.8317E+08 | 9.3995E+09 | 1.4547E+10 | 1.3196E+09 | 1.1478E+07 | 2.5893E+05 | 3.4394E+06 | 4.1220E+09 | 6.5651E+06 | |
Std | 1.4347E+06 | 1.2870E+08 | 1.3249E+09 | 2.9557E+09 | 6.8850E+08 | 4.1979E+06 | 2.2062E+05 | 1.5875E+06 | 1.1922E+09 | 3.1512E+06 | |
F3 | Best | 3.0061E+03 | 8.6664E+03 | 6.6131E+04 | 4.5934E+04 | 8.4925E+04 | 3.5865E+04 | 6.6214E+04 | 2.8709E+04 | 6.0095E+04 | 1.3451E+05 |
Mean | 1.1319E+04 | 2.6586E+04 | 1.0712E+05 | 7.1119E+04 | 1.5901E+05 | 6.7079E+04 | 8.5481E+04 | 5.9353E+04 | 1.0348E+05 | 1.6300E+05 | |
Std | 4.4909E+03 | 1.0144E+04 | 1.4259E+04 | 1.2932E+04 | 2.5369E+04 | 1.5212E+04 | 8.7477E+03 | 1.8463E+04 | 1.6173E+04 | 1.1859E+04 | |
F4 | Best | 4.9273E+02 | 4.9158E+02 | 1.1474E+03 | 1.3540E+03 | 6.1612E+02 | 5.1473E+02 | 5.0293E+02 | 4.7347E+02 | 7.7844E+02 | 5.7754E+02 |
Mean | 6.0056E+02 | 6.7618E+02 | 1.4520E+03 | 2.1145E+03 | 8.8836E+02 | 6.3204E+02 | 5.7501E+02 | 5.9728E+02 | 9.8306E+02 | 7.1280E+02 | |
Std | 4.8819E+01 | 6.0625E+01 | 1.7027E+02 | 3.3981E+02 | 1.7182E+02 | 5.4772E+01 | 4.3377E+01 | 4.6562E+01 | 1.9798E+02 | 6.4158E+01 | |
F5 | Best | 6.3297E+02 | 6.7207E+02 | 8.9488E+02 | 7.9229E+02 | 6.9434E+02 | 7.2676E+02 | 6.0359E+02 | 8.3962E+02 | 7.5360E+02 | 7.4068E+02 |
Mean | 7.0237E+02 | 7.7635E+02 | 9.4910E+02 | 8.4085E+02 | 8.5440E+02 | 7.8957E+02 | 6.7864E+02 | 8.7298E+02 | 8.2588E+02 | 8.1373E+02 | |
Std | 4.3790E+01 | 4.7648E+01 | 2.2381E+01 | 2.7446E+01 | 6.4625E+01 | 3.4239E+01 | 6.0281E+01 | 1.4400E+01 | 3.9934E+01 | 4.0320E+01 | |
F6 | Best | 6.0578E+02 | 6.3479E+02 | 6.2785E+02 | 6.3827E+02 | 6.1516E+02 | 6.1000E+02 | 6.0292E+02 | 6.0236E+02 | 6.1576E+02 | 6.0198E+02 |
Mean | 6.1694E+02 | 6.4996E+02 | 6.3288E+02 | 6.4797E+02 | 6.3491E+02 | 6.3005E+02 | 6.0658E+02 | 6.0417E+02 | 6.2450E+02 | 6.0570E+02 | |
Std | 7.5902E+00 | 8.0826E+00 | 2.7969E+00 | 4.4560E+00 | 8.5352E+00 | 1.4432E+01 | 2.5376E+00 | 9.4614E−01 | 4.9206E+00 | 2.0383E+00 | |
F7 | Best | 9.1220E+02 | 1.1344E+03 | 1.2276E+03 | 1.1674E+03 | 9.9536E+02 | 1.0107E+03 | 8.7259E+02 | 1.1104E+03 | 1.1241E+03 | 9.5697E+02 |
Mean | 1.0335E+03 | 1.2648E+03 | 1.3052E+03 | 1.2558E+03 | 1.1415E+03 | 1.1562E+03 | 1.0068E+03 | 1.1384E+03 | 1.2832E+03 | 1.1418E+03 | |
Std | 8.8554E+01 | 9.4668E+01 | 3.0312E+01 | 4.4444E+01 | 1.1124E+02 | 9.5887E+01 | 7.4750E+01 | 1.6057E+01 | 6.4815E+01 | 6.5160E+01 | |
F8 | Best | 9.3147E+02 | 1.0026E+03 | 1.2144E+03 | 1.0687E+03 | 1.0298E+03 | 9.7591E+02 | 8.8803E+02 | 1.1343E+03 | 1.0215E+03 | 1.0093E+03 |
Mean | 9.9433E+02 | 1.1059E+03 | 1.2508E+03 | 1.1468E+03 | 1.1652E+03 | 1.0917E+03 | 9.7380E+02 | 1.1756E+03 | 1.1331E+03 | 1.1115E+03 | |
Std | 4.0889E+01 | 4.8825E+01 | 2.1391E+01 | 3.7597E+01 | 7.3935E+01 | 4.3284E+01 | 4.4825E+01 | 1.5611E+01 | 4.6594E+01 | 4.0203E+01 | |
F9 | Best | 1.6079E+03 | 4.9280E+03 | 4.2648E+03 | 6.4620E+03 | 6.3920E+03 | 4.3773E+03 | 1.0310E+03 | 9.2793E+02 | 4.2940E+03 | 9.9808E+03 |
Mean | 3.0381E+03 | 1.1144E+04 | 6.1216E+03 | 1.0011E+04 | 1.5787E+04 | 1.1545E+04 | 1.6295E+03 | 1.0162E+03 | 8.7111E+03 | 1.4154E+04 | |
Std | 1.1013E+03 | 3.0185E+03 | 9.3311E+02 | 1.7321E+03 | 5.5372E+03 | 4.3055E+03 | 6.0065E+02 | 7.9423E+01 | 2.6925E+03 | 2.1460E+03 | |
F10 | Best | 7.3194E+03 | 7.0215E+03 | 1.2577E+04 | 9.1524E+03 | 6.4686E+03 | 6.1631E+03 | 1.1259E+04 | 1.3361E+04 | 7.7493E+03 | 6.0613E+03 |
Mean | 8.8318E+03 | 9.1607E+03 | 1.3564E+04 | 1.0522E+04 | 9.0607E+03 | 7.7242E+03 | 1.3501E+04 | 1.4194E+04 | 9.3570E+03 | 7.2025E+03 | |
Std | 9.6066E+02 | 1.1235E+03 | 5.7587E+02 | 8.0518E+02 | 1.9612E+03 | 1.0677E+03 | 9.9227E+02 | 3.8259E+02 | 8.3628E+02 | 6.4934E+02 | |
F11 | Best | 1.2156E+03 | 1.3403E+03 | 2.3599E+03 | 2.2379E+03 | 1.6858E+03 | 1.3214E+03 | 1.5665E+03 | 1.3444E+03 | 1.4841E+03 | 1.5422E+03 |
Mean | 1.3152E+03 | 1.4850E+03 | 3.5760E+03 | 6.1667E+03 | 2.1549E+03 | 1.4012E+03 | 1.7418E+03 | 1.4964E+03 | 1.7287E+03 | 1.8904E+03 | |
Std | 5.2322E+01 | 7.4516E+01 | 6.2601E+02 | 2.1994E+03 | 3.4170E+02 | 7.1460E+01 | 1.0656E+02 | 1.3680E+02 | 1.5074E+02 | 2.4726E+02 | |
F12 | Best | 1.6262E+05 | 4.0213E+06 | 1.2047E+09 | 4.0234E+08 | 2.2107E+07 | 2.0031E+06 | 6.8412E+05 | 8.5532E+05 | 7.7370E+07 | 5.9556E+06 |
Mean | 5.7692E+06 | 2.7218E+07 | 2.0328E+09 | 9.6952E+08 | 3.7227E+08 | 6.2400E+06 | 4.2419E+06 | 5.7091E+06 | 3.1533E+08 | 2.2375E+07 | |
Std | 4.6743E+06 | 1.9095E+07 | 4.0748E+08 | 3.6970E+08 | 3.4082E+08 | 3.1370E+06 | 2.8463E+06 | 5.4459E+06 | 1.5261E+08 | 1.3337E+07 | |
F13 | Best | 5.7030E+03 | 1.3468E+04 | 2.0973E+08 | 6.3440E+06 | 7.3659E+04 | 3.0417E+03 | 6.5961E+03 | 2.8226E+03 | 3.8572E+06 | 3.3551E+04 |
Mean | 2.1805E+04 | 4.4932E+04 | 3.9510E+08 | 3.6781E+07 | 2.1890E+07 | 9.1735E+03 | 1.5998E+04 | 1.1332E+04 | 1.8464E+07 | 2.3006E+05 | |
Std | 1.1430E+04 | 2.5659E+04 | 1.0329E+08 | 2.3831E+07 | 3.3136E+07 | 6.1190E+03 | 9.4381E+03 | 7.7613E+03 | 1.2079E+07 | 2.2370E+05 | |
F14 | Best | 1.5360E+03 | 1.9063E+03 | 1.9055E+05 | 2.1165E+04 | 1.2970E+04 | 1.5200E+04 | 1.5649E+04 | 2.1553E+03 | 5.2986E+04 | 3.8584E+04 |
Mean | 1.8077E+03 | 6.5826E+04 | 6.4809E+05 | 1.6101E+05 | 5.7000E+05 | 7.6210E+04 | 7.1461E+04 | 2.9783E+04 | 4.6576E+05 | 2.3939E+05 | |
Std | 1.8956E+02 | 5.5929E+04 | 3.1268E+05 | 9.8685E+04 | 5.7977E+05 | 4.3757E+04 | 4.7562E+04 | 3.3252E+04 | 3.8850E+05 | 1.6627E+05 | |
F15 | Best | 2.1615E+03 | 3.5936E+03 | 8.4871E+06 | 2.2841E+04 | 2.6372E+04 | 1.8441E+03 | 2.3422E+03 | 2.0106E+03 | 1.7056E+05 | 2.5278E+03 |
Mean | 6.4379E+03 | 2.2461E+04 | 2.6119E+07 | 4.4362E+05 | 2.5828E+06 | 9.3681E+03 | 1.0743E+04 | 8.7553E+03 | 2.8011E+06 | 2.6350E+04 | |
Std | 3.9671E+03 | 1.4666E+04 | 1.3965E+07 | 5.7830E+05 | 7.7912E+06 | 6.2748E+03 | 7.7850E+03 | 6.5189E+03 | 2.1062E+06 | 2.5135E+04 | |
F16 | Best | 2.1354E+03 | 2.9226E+03 | 3.7299E+03 | 2.7202E+03 | 2.8484E+03 | 2.6576E+03 | 2.5314E+03 | 3.6980E+03 | 2.6821E+03 | 3.3207E+03 |
Mean | 3.0779E+03 | 3.6648E+03 | 4.5635E+03 | 3.2883E+03 | 3.7882E+03 | 3.2520E+03 | 3.2719E+03 | 4.5149E+03 | 3.7340E+03 | 3.9394E+03 | |
Std | 3.4244E+02 | 3.9041E+02 | 3.5518E+02 | 3.0553E+02 | 4.5251E+02 | 3.9062E+02 | 4.5172E+02 | 3.2194E+02 | 4.9631E+02 | 3.5738E+02 | |
F17 | Best | 2.3775E+03 | 2.6270E+03 | 2.7748E+03 | 2.3838E+03 | 3.0036E+03 | 2.2286E+03 | 2.1686E+03 | 2.0017E+03 | 2.4424E+03 | 2.8230E+03 |
Mean | 2.7994E+03 | 3.3434E+03 | 3.8192E+03 | 2.9952E+03 | 3.6013E+03 | 3.0171E+03 | 2.8593E+03 | 3.1160E+03 | 3.1397E+03 | 3.4096E+03 | |
Std | 2.4619E+02 | 2.9163E+02 | 2.8520E+02 | 2.7802E+02 | 3.3359E+02 | 2.5309E+02 | 3.3731E+02 | 5.1167E+02 | 3.8048E+02 | 2.2994E+02 | |
F18 | Best | 3.7954E+03 | 7.3458E+04 | 1.4138E+06 | 1.2752E+05 | 6.2889E+05 | 1.4027E+05 | 1.0878E+05 | 4.9158E+04 | 1.9874E+05 | 3.8207E+05 |
Mean | 5.8613E+04 | 5.9098E+05 | 6.0765E+06 | 1.4581E+06 | 3.5497E+06 | 8.5259E+05 | 8.6838E+05 | 3.7656E+05 | 4.5622E+06 | 2.7442E+06 | |
Std | 7.7921E+04 | 5.5627E+05 | 4.3362E+06 | 1.0569E+06 | 3.5171E+06 | 6.1322E+05 | 5.1368E+05 | 3.1220E+05 | 3.2993E+06 | 1.5239E+06 | |
F19 | Best | 2.2174E+03 | 6.1925E+03 | 5.6395E+06 | 3.2375E+04 | 1.7300E+04 | 2.8185E+03 | 2.1579E+03 | 2.0688E+03 | 1.3366E+05 | 7.5472E+03 |
Mean | 7.3595E+03 | 2.5497E+04 | 2.4370E+07 | 1.6139E+05 | 1.7929E+06 | 1.4697E+04 | 1.6694E+04 | 1.2260E+04 | 1.3489E+06 | 1.9150E+04 | |
Std | 3.9523E+03 | 8.1732E+03 | 1.0652E+07 | 9.5140E+04 | 2.7954E+06 | 9.0050E+03 | 9.7398E+03 | 1.0314E+04 | 1.2465E+06 | 9.5367E+03 | |
F20 | Best | 2.5180E+03 | 2.3742E+03 | 2.7325E+03 | 2.4865E+03 | 2.7722E+03 | 2.5964E+03 | 2.5909E+03 | 3.5232E+03 | 2.5817E+03 | 2.7475E+03 |
Mean | 2.8774E+03 | 3.0968E+03 | 3.2717E+03 | 2.9780E+03 | 3.3338E+03 | 3.0316E+03 | 3.3161E+03 | 3.8074E+03 | 3.0464E+03 | 3.2122E+03 | |
Std | 1.9984E+02 | 3.3144E+02 | 2.6393E+02 | 2.0589E+02 | 2.5965E+02 | 3.0114E+02 | 3.6145E+02 | 1.3175E+02 | 3.0076E+02 | 2.6898E+02 | |
F21 | Best | 2.3680E+03 | 2.4905E+03 | 2.6925E+03 | 2.5781E+03 | 2.5768E+03 | 2.4393E+03 | 2.3761E+03 | 2.6140E+03 | 2.5560E+03 | 2.5637E+03 |
Mean | 2.4631E+03 | 2.5907E+03 | 2.7319E+03 | 2.6195E+03 | 2.6802E+03 | 2.5244E+03 | 2.4385E+03 | 2.6626E+03 | 2.6239E+03 | 2.6544E+03 | |
Std | 4.3196E+01 | 5.2773E+01 | 1.9844E+01 | 2.1787E+01 | 5.7542E+01 | 4.4399E+01 | 3.5296E+01 | 1.8541E+01 | 3.9873E+01 | 4.8311E+01 | |
F22 | Best | 6.7987E+03 | 2.3447E+03 | 3.2003E+03 | 5.4288E+03 | 4.8107E+03 | 2.3313E+03 | 2.3089E+03 | 2.5429E+03 | 9.4390E+03 | 7.0214E+03 |
Mean | 1.0087E+04 | 1.0069E+04 | 7.6308E+03 | 9.4152E+03 | 1.1526E+04 | 9.7564E+03 | 1.3245E+04 | 1.4771E+04 | 1.1140E+04 | 8.8594E+03 | |
Std | 1.1371E+03 | 1.8858E+03 | 5.8083E+03 | 2.4111E+03 | 2.5523E+03 | 1.8027E+03 | 3.9421E+03 | 2.8428E+03 | 9.5129E+02 | 8.4583E+02 | |
F23 | Best | 2.8479E+03 | 3.0072E+03 | 3.1786E+03 | 3.0237E+03 | 3.0416E+03 | 2.9000E+03 | 2.8393E+03 | 3.0404E+03 | 2.9939E+03 | 3.0919E+03 |
Mean | 2.9338E+03 | 3.1453E+03 | 3.2088E+03 | 3.1393E+03 | 3.1748E+03 | 3.0500E+03 | 2.8932E+03 | 3.0965E+03 | 3.0824E+03 | 3.2264E+03 | |
Std | 4.7904E+01 | 8.5304E+01 | 2.0915E+01 | 3.8963E+01 | 6.1739E+01 | 9.6164E+01 | 3.6843E+01 | 2.1783E+01 | 4.2069E+01 | 7.4182E+01 | |
F24 | Best | 3.0125E+03 | 3.1681E+03 | 3.3146E+03 | 3.2174E+03 | 3.1874E+03 | 3.1031E+03 | 2.9912E+03 | 3.2323E+03 | 3.2070E+03 | 3.2221E+03 |
Mean | 3.0902E+03 | 3.3262E+03 | 3.3532E+03 | 3.2983E+03 | 3.3282E+03 | 3.2142E+03 | 3.0572E+03 | 3.2651E+03 | 3.2928E+03 | 3.4096E+03 | |
Std | 4.8379E+01 | 1.2271E+02 | 1.5142E+01 | 3.8169E+01 | 7.5584E+01 | 7.5636E+01 | 4.6080E+01 | 1.4946E+01 | 5.5279E+01 | 7.1777E+01 | |
F25 | Best | 3.0322E+03 | 3.0574E+03 | 3.6429E+03 | 3.7371E+03 | 3.0755E+03 | 3.0424E+03 | 3.0377E+03 | 3.0448E+03 | 3.2080E+03 | 2.9806E+03 |
Mean | 3.1110E+03 | 3.1584E+03 | 3.8005E+03 | 4.2779E+03 | 3.2609E+03 | 3.1456E+03 | 3.1056E+03 | 3.0990E+03 | 3.3671E+03 | 3.1301E+03 | |
Std | 3.5737E+01 | 5.6819E+01 | 1.1913E+02 | 2.9234E+02 | 9.5714E+01 | 4.1801E+01 | 2.5326E+01 | 2.5660E+01 | 8.5678E+01 | 4.5933E+01 | |
F26 | Best | 2.9860E+03 | 3.6398E+03 | 8.0625E+03 | 4.8993E+03 | 3.8068E+03 | 3.0963E+03 | 4.8921E+03 | 6.9757E+03 | 6.8200E+03 | 4.6792E+03 |
Mean | 5.5483E+03 | 7.7332E+03 | 8.5635E+03 | 7.4666E+03 | 8.0673E+03 | 6.3767E+03 | 5.5010E+03 | 7.2866E+03 | 7.6992E+03 | 7.5752E+03 | |
Std | 9.8548E+02 | 1.3803E+03 | 2.1426E+02 | 1.1438E+03 | 1.2007E+03 | 2.0040E+03 | 4.8579E+02 | 1.6993E+02 | 5.7225E+02 | 1.0166E+03 | |
F27 | Best | 3.2660E+03 | 3.3398E+03 | 3.4380E+03 | 3.5595E+03 | 3.3393E+03 | 3.4570E+03 | 3.2864E+03 | 3.2629E+03 | 3.3605E+03 | 3.5924E+03 |
Mean | 3.4936E+03 | 3.5701E+03 | 3.5116E+03 | 3.7629E+03 | 3.5513E+03 | 3.6681E+03 | 3.4236E+03 | 3.3481E+03 | 3.4969E+03 | 3.7463E+03 | |
Std | 1.3416E+02 | 1.5752E+02 | 5.1577E+01 | 9.1196E+01 | 1.1520E+02 | 1.3683E+02 | 9.7737E+01 | 6.4026E+01 | 9.0940E+01 | 1.1915E+02 | |
F28 | Best | 3.2761E+03 | 3.3520E+03 | 3.7543E+03 | 4.3455E+03 | 3.3636E+03 | 3.3500E+03 | 3.3137E+03 | 3.2745E+03 | 3.3966E+03 | 3.3281E+03 |
Mean | 3.3613E+03 | 3.5025E+03 | 3.9405E+03 | 4.8506E+03 | 4.2937E+03 | 3.4423E+03 | 3.3817E+03 | 3.3499E+03 | 3.6407E+03 | 3.4142E+03 | |
Std | 4.1062E+01 | 9.0431E+01 | 1.3177E+02 | 2.9620E+02 | 1.3669E+03 | 5.7332E+01 | 3.5195E+01 | 3.6448E+01 | 1.0751E+02 | 5.5563E+01 | |
F29 | Best | 3.5775E+03 | 4.0253E+03 | 4.5959E+03 | 4.6803E+03 | 4.3264E+03 | 3.7351E+03 | 3.5819E+03 | 4.1589E+03 | 3.6850E+03 | 4.4702E+03 |
Mean | 4.2611E+03 | 4.6943E+03 | 5.5336E+03 | 5.4406E+03 | 4.8183E+03 | 4.4037E+03 | 4.2100E+03 | 4.7933E+03 | 4.4121E+03 | 5.0798E+03 | |
Std | 3.4768E+02 | 3.8582E+02 | 3.3499E+02 | 4.1664E+02 | 3.4596E+02 | 3.0366E+02 | 2.7398E+02 | 3.3744E+02 | 3.5888E+02 | 3.3495E+02 | |
F30 | Best | 7.8209E+05 | 1.3797E+06 | 6.8969E+07 | 3.0117E+07 | 2.4684E+06 | 2.3959E+06 | 8.6368E+05 | 1.1290E+06 | 5.6045E+06 | 2.7514E+06 |
Mean | 1.4393E+06 | 3.7645E+06 | 1.3771E+08 | 5.5311E+07 | 1.2973E+07 | 4.3730E+06 | 1.3741E+06 | 1.9651E+06 | 1.4093E+07 | 4.2771E+06 | |
Std | 6.2791E+05 | 2.4260E+06 | 3.7086E+07 | 1.7702E+07 | 8.0992E+06 | 1.3638E+06 | 3.7860E+05 | 9.6758E+05 | 6.0105E+06 | 1.1205E+06 |
Function | Index | EDECO | ECO | SAO | CFOA | DBO | MRFO | ISGTOA | EMTLBO | TERIME | AFDB-ARO |
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | Best | 6.4093E+07 | 6.0811E+08 | 3.5632E+10 | 5.4419E+10 | 9.0795E+09 | 4.6751E+08 | 9.9740E+07 | 9.1571E+07 | 2.1991E+10 | 4.5955E+06 |
Mean | 1.4361E+08 | 1.6215E+09 | 4.6462E+10 | 6.6144E+10 | 4.0977E+10 | 8.9030E+08 | 2.6073E+08 | 1.6669E+08 | 3.1931E+10 | 1.1789E+07 | |
Std | 7.8703E+07 | 7.4915E+08 | 4.2203E+09 | 6.0628E+09 | 3.1955E+10 | 4.4942E+08 | 1.5579E+08 | 5.2449E+07 | 5.9902E+09 | 5.8211E+06 | |
F3 | Best | 4.0463E+04 | 6.6301E+04 | 2.4806E+05 | 1.5671E+05 | 2.8620E+05 | 1.5744E+05 | 1.9993E+05 | 1.3521E+05 | 2.4960E+05 | 3.1429E+05 |
Mean | 6.1024E+04 | 1.1645E+05 | 2.8120E+05 | 2.0870E+05 | 3.6571E+05 | 2.0055E+05 | 2.2948E+05 | 2.0759E+05 | 3.4402E+05 | 3.3288E+05 | |
Std | 1.3122E+04 | 2.5409E+04 | 1.4935E+04 | 2.1433E+04 | 5.1842E+04 | 2.0904E+04 | 1.1920E+04 | 4.8423E+04 | 4.8397E+04 | 1.0476E+04 | |
F4 | Best | 7.6212E+02 | 9.4142E+02 | 4.5433E+03 | 5.4287E+03 | 1.5645E+03 | 1.0202E+03 | 7.8019E+02 | 7.9924E+02 | 2.2109E+03 | 7.2445E+02 |
Mean | 8.8858E+02 | 1.1599E+03 | 5.5153E+03 | 8.4545E+03 | 2.9785E+03 | 1.1847E+03 | 9.2100E+02 | 9.2000E+02 | 3.3919E+03 | 8.2946E+02 | |
Std | 7.3712E+01 | 1.6728E+02 | 6.7475E+02 | 1.2564E+03 | 1.5163E+03 | 1.4424E+02 | 7.8512E+01 | 6.5828E+01 | 5.8852E+02 | 4.5782E+01 | |
F5 | Best | 8.5002E+02 | 1.0185E+03 | 1.5643E+03 | 1.3647E+03 | 1.2312E+03 | 1.1118E+03 | 8.4750E+02 | 1.3914E+03 | 1.2981E+03 | 1.0625E+03 |
Mean | 1.0275E+03 | 1.2708E+03 | 1.6158E+03 | 1.4657E+03 | 1.5057E+03 | 1.2595E+03 | 9.3635E+02 | 1.4372E+03 | 1.4114E+03 | 1.2890E+03 | |
Std | 1.0774E+02 | 1.2176E+02 | 2.3377E+01 | 4.1069E+01 | 1.2239E+02 | 7.9360E+01 | 6.5141E+01 | 2.8196E+01 | 6.6943E+01 | 9.7417E+01 | |
F6 | Best | 6.1763E+02 | 6.4768E+02 | 6.4894E+02 | 6.5933E+02 | 6.4245E+02 | 6.3969E+02 | 6.1626E+02 | 6.0931E+02 | 6.2868E+02 | 6.0570E+02 |
Mean | 6.3915E+02 | 6.6007E+02 | 6.5363E+02 | 6.6782E+02 | 6.6146E+02 | 6.5400E+02 | 6.2490E+02 | 6.1172E+02 | 6.4324E+02 | 6.1032E+02 | |
Std | 8.2945E+00 | 6.1166E+00 | 2.8516E+00 | 3.7147E+00 | 8.0898E+00 | 7.5418E+00 | 5.3530E+00 | 1.3589E+00 | 7.1420E+00 | 2.4438E+00 | |
F7 | Best | 1.4940E+03 | 1.8708E+03 | 2.2571E+03 | 2.0971E+03 | 1.5914E+03 | 1.8735E+03 | 1.3469E+03 | 1.6680E+03 | 2.2462E+03 | 1.5950E+03 |
Mean | 1.8011E+03 | 2.4316E+03 | 2.3744E+03 | 2.4179E+03 | 2.0263E+03 | 2.2564E+03 | 1.4935E+03 | 1.7402E+03 | 2.6407E+03 | 1.8356E+03 | |
Std | 1.9682E+02 | 2.4183E+02 | 6.2421E+01 | 1.1261E+02 | 1.6821E+02 | 2.8758E+02 | 1.1602E+02 | 3.0045E+01 | 2.3334E+02 | 1.3959E+02 | |
F8 | Best | 1.1644E+03 | 1.3980E+03 | 1.8549E+03 | 1.7396E+03 | 1.5839E+03 | 1.3472E+03 | 1.1418E+03 | 1.6358E+03 | 1.5582E+03 | 1.3971E+03 |
Mean | 1.3591E+03 | 1.6245E+03 | 1.9207E+03 | 1.8359E+03 | 1.8703E+03 | 1.5863E+03 | 1.2519E+03 | 1.7240E+03 | 1.7214E+03 | 1.6172E+03 | |
Std | 9.8046E+01 | 1.1160E+02 | 3.1367E+01 | 5.1949E+01 | 1.2464E+02 | 1.1414E+02 | 1.0182E+02 | 4.0498E+01 | 9.5055E+01 | 9.1618E+01 | |
F9 | Best | 6.4841E+03 | 2.0204E+04 | 2.4678E+04 | 2.8417E+04 | 2.7954E+04 | 2.5934E+04 | 7.3478E+03 | 1.9319E+03 | 2.5362E+04 | 2.0557E+04 |
Mean | 1.6538E+04 | 2.7902E+04 | 3.5242E+04 | 3.3004E+04 | 6.2106E+04 | 3.3334E+04 | 1.5419E+04 | 3.5161E+03 | 4.1077E+04 | 3.0685E+04 | |
Std | 6.5364E+03 | 4.3580E+03 | 5.5667E+03 | 3.1879E+03 | 1.3189E+04 | 6.8115E+03 | 4.0988E+03 | 1.8623E+03 | 1.1121E+04 | 4.5494E+03 | |
F10 | Best | 1.4943E+04 | 1.4207E+04 | 2.9421E+04 | 2.0445E+04 | 1.5559E+04 | 1.2625E+04 | 2.4677E+04 | 2.9213E+04 | 1.9660E+04 | 1.3310E+04 |
Mean | 1.8405E+04 | 1.8867E+04 | 3.0418E+04 | 2.4330E+04 | 2.2372E+04 | 1.7040E+04 | 2.9320E+04 | 3.0748E+04 | 2.2291E+04 | 1.4707E+04 | |
Std | 2.4196E+03 | 2.5409E+03 | 4.9822E+02 | 1.3768E+03 | 6.1053E+03 | 2.4499E+03 | 1.9333E+03 | 4.6133E+02 | 1.3058E+03 | 9.0095E+02 | |
F11 | Best | 2.6776E+03 | 3.1419E+03 | 3.1504E+04 | 2.7488E+04 | 4.3360E+04 | 1.4914E+04 | 1.8090E+04 | 4.1607E+03 | 1.1006E+04 | 3.5813E+04 |
Mean | 3.1285E+03 | 5.3797E+03 | 4.7227E+04 | 4.6798E+04 | 6.9393E+04 | 2.3603E+04 | 2.8114E+04 | 1.2780E+04 | 2.3087E+04 | 6.4962E+04 | |
Std | 3.3494E+02 | 1.3946E+03 | 7.2536E+03 | 8.1994E+03 | 2.2234E+04 | 4.2792E+03 | 4.9756E+03 | 8.1886E+03 | 8.5232E+03 | 1.6572E+04 | |
F12 | Best | 1.3646E+07 | 7.1724E+07 | 8.6900E+09 | 6.2214E+09 | 7.8804E+08 | 3.1173E+07 | 1.2097E+07 | 1.7337E+07 | 1.5451E+09 | 3.3473E+07 |
Mean | 4.8815E+07 | 2.3802E+08 | 1.2173E+10 | 9.7865E+09 | 2.3839E+09 | 8.7579E+07 | 4.1293E+07 | 4.3574E+07 | 3.4930E+09 | 1.0621E+08 | |
Std | 2.5076E+07 | 1.0824E+08 | 1.4290E+09 | 2.0611E+09 | 8.7968E+08 | 3.6325E+07 | 1.7645E+07 | 2.0526E+07 | 9.9177E+08 | 4.1603E+07 | |
F13 | Best | 6.4394E+03 | 2.6385E+04 | 9.1054E+08 | 9.1188E+07 | 2.2712E+05 | 1.0386E+04 | 1.4118E+04 | 6.6219E+03 | 3.5726E+07 | 1.4415E+04 |
Mean | 1.3939E+04 | 9.2609E+04 | 1.3446E+09 | 5.8024E+08 | 7.5769E+07 | 1.8477E+04 | 2.3862E+04 | 1.1945E+04 | 8.8798E+07 | 4.2557E+05 | |
Std | 9.9074E+03 | 6.6426E+04 | 2.4487E+08 | 2.2919E+08 | 6.8310E+07 | 8.0874E+03 | 5.7207E+03 | 3.8850E+03 | 5.2428E+07 | 3.4788E+05 | |
F14 | Best | 3.2207E+03 | 9.8429E+04 | 2.8928E+06 | 3.6465E+05 | 9.0888E+05 | 2.7660E+05 | 2.9125E+05 | 7.0233E+04 | 2.1120E+06 | 2.5136E+05 |
Mean | 6.5823E+04 | 5.3485E+05 | 5.4714E+06 | 2.6675E+06 | 4.7113E+06 | 8.5821E+05 | 9.4091E+05 | 4.1067E+05 | 8.4961E+06 | 2.4644E+06 | |
Std | 5.3852E+04 | 2.7186E+05 | 1.4656E+06 | 9.4721E+05 | 3.0285E+06 | 4.9473E+05 | 3.7929E+05 | 3.0308E+05 | 4.4363E+06 | 1.4171E+06 | |
F15 | Best | 2.3150E+03 | 4.8222E+03 | 2.3791E+08 | 3.8192E+06 | 6.4001E+04 | 2.4095E+03 | 4.7605E+03 | 2.4786E+03 | 2.8956E+06 | 1.4789E+04 |
Mean | 7.2317E+03 | 2.5925E+04 | 3.4627E+08 | 3.5469E+07 | 4.5170E+06 | 4.9756E+03 | 8.6631E+03 | 6.4260E+03 | 1.1330E+07 | 7.5247E+04 | |
Std | 5.5274E+03 | 1.6154E+04 | 7.0196E+07 | 2.4602E+07 | 9.8311E+06 | 3.2721E+03 | 4.2534E+03 | 6.0441E+03 | 7.1382E+06 | 5.1243E+04 | |
F16 | Best | 4.7424E+03 | 4.7474E+03 | 9.7048E+03 | 6.5083E+03 | 5.3172E+03 | 4.6752E+03 | 3.6894E+03 | 7.4613E+03 | 5.3675E+03 | 4.9856E+03 |
Mean | 5.5830E+03 | 6.3978E+03 | 1.0476E+04 | 7.9632E+03 | 7.7569E+03 | 5.8261E+03 | 5.3651E+03 | 8.6555E+03 | 7.4023E+03 | 6.3867E+03 | |
Std | 5.6509E+02 | 7.0682E+02 | 3.7297E+02 | 6.1990E+02 | 8.7524E+02 | 6.4629E+02 | 8.0469E+02 | 5.5024E+02 | 8.2011E+02 | 5.3963E+02 | |
F17 | Best | 3.8551E+03 | 4.5805E+03 | 7.3927E+03 | 4.8945E+03 | 5.6912E+03 | 4.2075E+03 | 3.3422E+03 | 3.2757E+03 | 5.0000E+03 | 5.1547E+03 |
Mean | 4.5337E+03 | 5.6151E+03 | 8.1467E+03 | 5.7177E+03 | 6.9405E+03 | 4.8591E+03 | 4.6841E+03 | 4.9468E+03 | 5.5768E+03 | 5.8943E+03 | |
Std | 4.2414E+02 | 5.3745E+02 | 3.8130E+02 | 4.4822E+02 | 6.6657E+02 | 4.7794E+02 | 5.8098E+02 | 1.0638E+03 | 4.5075E+02 | 4.5471E+02 | |
F18 | Best | 4.3418E+04 | 3.0406E+05 | 5.5141E+06 | 1.1565E+06 | 1.5655E+06 | 4.1188E+05 | 4.5790E+05 | 2.2056E+05 | 3.7643E+06 | 1.4942E+06 |
Mean | 1.4338E+05 | 9.0488E+05 | 1.2158E+07 | 2.2582E+06 | 8.5901E+06 | 1.4103E+06 | 1.8148E+06 | 6.2667E+05 | 1.5943E+07 | 3.4406E+06 | |
Std | 7.3365E+04 | 7.7698E+05 | 4.9804E+06 | 6.0869E+05 | 3.3367E+06 | 6.0317E+05 | 1.2761E+06 | 4.9173E+05 | 8.2148E+06 | 1.4594E+06 | |
F19 | Best | 2.1407E+03 | 8.1980E+03 | 1.9383E+08 | 7.9498E+06 | 1.6328E+06 | 2.3924E+03 | 2.3973E+03 | 2.2590E+03 | 3.3597E+06 | 7.1631E+03 |
Mean | 5.0396E+03 | 6.0871E+04 | 3.3563E+08 | 3.8904E+07 | 2.2604E+07 | 6.0791E+03 | 7.5209E+03 | 6.7378E+03 | 1.4327E+07 | 1.1509E+05 | |
Std | 2.9285E+03 | 8.0844E+04 | 7.4788E+07 | 2.3203E+07 | 2.5585E+07 | 5.1265E+03 | 5.7939E+03 | 6.4609E+03 | 7.1633E+06 | 1.2569E+05 | |
F20 | Best | 3.7956E+03 | 4.1226E+03 | 4.8723E+03 | 4.3659E+03 | 4.3748E+03 | 4.1083E+03 | 3.6959E+03 | 6.5424E+03 | 4.1070E+03 | 4.3926E+03 |
Mean | 4.9623E+03 | 5.1888E+03 | 6.5603E+03 | 5.2178E+03 | 5.7324E+03 | 4.9617E+03 | 6.2439E+03 | 7.0705E+03 | 5.2824E+03 | 5.1608E+03 | |
Std | 3.7074E+02 | 6.2052E+02 | 5.6847E+02 | 3.9827E+02 | 7.2338E+02 | 5.2654E+02 | 7.2337E+02 | 2.0211E+02 | 5.0263E+02 | 3.8231E+02 | |
F21 | Best | 2.6194E+03 | 2.9237E+03 | 3.3190E+03 | 3.1841E+03 | 3.3325E+03 | 2.7405E+03 | 2.6411E+03 | 3.1862E+03 | 3.1202E+03 | 3.0421E+03 |
Mean | 2.8083E+03 | 3.2018E+03 | 3.4089E+03 | 3.2673E+03 | 3.5474E+03 | 3.0409E+03 | 2.7383E+03 | 3.2268E+03 | 3.2604E+03 | 3.1906E+03 | |
Std | 1.0277E+02 | 1.5398E+02 | 3.2660E+01 | 5.3679E+01 | 9.9253E+01 | 1.1397E+02 | 6.9729E+01 | 2.1495E+01 | 7.0566E+01 | 8.3527E+01 | |
F22 | Best | 1.7614E+04 | 1.9499E+04 | 7.4025E+03 | 1.6604E+04 | 1.8554E+04 | 1.7447E+04 | 2.4826E+04 | 3.0568E+04 | 2.1620E+04 | 1.5437E+04 |
Mean | 2.2725E+04 | 2.2688E+04 | 2.4609E+04 | 2.7098E+04 | 2.2372E+04 | 2.0620E+04 | 3.1464E+04 | 3.2649E+04 | 2.4806E+04 | 1.7425E+04 | |
Std | 2.4022E+03 | 1.9610E+03 | 1.1631E+04 | 2.4908E+03 | 4.2882E+03 | 1.5848E+03 | 2.1144E+03 | 6.3771E+02 | 1.3441E+03 | 1.1396E+03 | |
F23 | Best | 3.1682E+03 | 3.5303E+03 | 3.9090E+03 | 3.8556E+03 | 3.7089E+03 | 3.4956E+03 | 3.1559E+03 | 3.4709E+03 | 3.5583E+03 | 3.4100E+03 |
Mean | 3.3771E+03 | 3.8586E+03 | 4.0133E+03 | 3.9695E+03 | 3.9365E+03 | 3.6897E+03 | 3.3083E+03 | 3.6690E+03 | 3.6609E+03 | 3.5250E+03 | |
Std | 1.1487E+02 | 1.7642E+02 | 4.4756E+01 | 6.8572E+01 | 1.1981E+02 | 1.0000E+02 | 8.1744E+01 | 5.8575E+01 | 7.5736E+01 | 7.5286E+01 | |
F24 | Best | 3.7263E+03 | 4.0586E+03 | 4.4380E+03 | 4.4667E+03 | 4.2727E+03 | 4.2481E+03 | 3.5457E+03 | 4.0783E+03 | 4.1346E+03 | 4.2543E+03 |
Mean | 3.9355E+03 | 4.6301E+03 | 4.5658E+03 | 4.6656E+03 | 4.6140E+03 | 4.5428E+03 | 3.7692E+03 | 4.1699E+03 | 4.3724E+03 | 4.4724E+03 | |
Std | 1.2929E+02 | 2.7836E+02 | 6.9515E+01 | 8.8737E+01 | 1.7135E+02 | 1.8692E+02 | 9.3922E+01 | 4.6972E+01 | 9.7893E+01 | 1.1071E+02 | |
F25 | Best | 3.4223E+03 | 3.6827E+03 | 5.7920E+03 | 6.9568E+03 | 4.0796E+03 | 3.6645E+03 | 3.4618E+03 | 3.4474E+03 | 4.9998E+03 | 3.3405E+03 |
Mean | 3.5806E+03 | 3.9365E+03 | 6.9471E+03 | 7.9971E+03 | 6.2492E+03 | 3.8484E+03 | 3.6179E+03 | 3.6168E+03 | 6.0505E+03 | 3.4439E+03 | |
Std | 7.9968E+01 | 1.8347E+02 | 4.8499E+02 | 5.6848E+02 | 2.7327E+03 | 8.8690E+01 | 7.1202E+01 | 6.1172E+01 | 6.5654E+02 | 5.5448E+01 | |
F26 | Best | 1.0533E+04 | 8.5487E+03 | 1.7934E+04 | 1.8823E+04 | 1.5170E+04 | 1.3860E+04 | 9.7523E+03 | 1.2915E+04 | 1.4236E+04 | 1.1040E+04 |
Mean | 1.2744E+04 | 1.7401E+04 | 1.8936E+04 | 2.1379E+04 | 1.9009E+04 | 1.9604E+04 | 1.1189E+04 | 1.4550E+04 | 1.6705E+04 | 1.7907E+04 | |
Std | 1.3238E+03 | 3.0059E+03 | 4.2890E+02 | 2.1401E+03 | 1.9271E+03 | 3.1054E+03 | 1.0519E+03 | 5.6074E+02 | 8.9228E+02 | 2.2523E+03 | |
F27 | Best | 3.5303E+03 | 3.5501E+03 | 3.8565E+03 | 4.2956E+03 | 3.5366E+03 | 3.7935E+03 | 3.5249E+03 | 3.4047E+03 | 3.6293E+03 | 3.6656E+03 |
Mean | 3.6733E+03 | 3.8081E+03 | 4.1141E+03 | 4.6228E+03 | 3.7682E+03 | 4.0820E+03 | 3.6646E+03 | 3.5011E+03 | 3.8731E+03 | 3.8970E+03 | |
Std | 1.0819E+02 | 1.4572E+02 | 1.4381E+02 | 1.7352E+02 | 1.6798E+02 | 1.7284E+02 | 1.0799E+02 | 5.7106E+01 | 1.0054E+02 | 1.0671E+02 | |
F28 | Best | 3.5166E+03 | 3.7497E+03 | 7.1696E+03 | 9.4069E+03 | 5.5837E+03 | 3.8265E+03 | 3.6324E+03 | 3.5310E+03 | 5.4898E+03 | 3.4881E+03 |
Mean | 3.6374E+03 | 4.5645E+03 | 8.0727E+03 | 1.0781E+04 | 1.5105E+04 | 4.2162E+03 | 3.7474E+03 | 3.6600E+03 | 6.8604E+03 | 4.1791E+03 | |
Std | 6.4295E+01 | 2.3610E+03 | 5.7234E+02 | 7.4127E+02 | 4.5069E+03 | 2.5532E+02 | 6.8253E+01 | 5.8586E+01 | 1.2241E+03 | 2.3644E+03 | |
F29 | Best | 5.9190E+03 | 6.9693E+03 | 1.0007E+04 | 9.5806E+03 | 7.1834E+03 | 5.9217E+03 | 5.8411E+03 | 7.4655E+03 | 6.2682E+03 | 7.1984E+03 |
Mean | 6.7814E+03 | 7.9910E+03 | 1.1244E+04 | 1.0430E+04 | 8.7717E+03 | 7.3753E+03 | 6.9994E+03 | 8.6778E+03 | 7.6190E+03 | 7.8121E+03 | |
Std | 6.8647E+02 | 5.8233E+02 | 4.4027E+02 | 4.6823E+02 | 8.8805E+02 | 5.9343E+02 | 6.5606E+02 | 5.8396E+02 | 5.4083E+02 | 4.2690E+02 | |
F30 | Best | 3.2533E+04 | 5.1093E+05 | 8.6458E+08 | 2.3485E+08 | 7.6644E+06 | 1.6746E+05 | 1.3255E+05 | 7.1824E+04 | 1.3486E+07 | 1.7498E+05 |
Mean | 9.0560E+04 | 3.9727E+06 | 1.1898E+09 | 4.6489E+08 | 4.7662E+07 | 4.2200E+05 | 4.8348E+05 | 2.6844E+05 | 6.2636E+07 | 5.5747E+05 | |
Std | 6.0173E+04 | 2.7152E+06 | 1.8612E+08 | 1.6817E+08 | 3.1427E+07 | 2.2887E+05 | 2.6316E+05 | 1.2535E+05 | 2.9629E+07 | 2.1458E+05 |
References
- Slowik, A.; Kwasnicka, H. Nature Inspired Methods and Their Industry Applications-Swarm Intelligence Algorithms. IEEE Trans. Ind. Inform. 2018, 14, 1004–1015. [Google Scholar] [CrossRef]
- Tang, A.; Zhou, H.; Han, T.; Xie, L. A Modified Manta Ray Foraging Optimization for Global Optimization Problems. IEEE Access 2021, 9, 128702–128721. [Google Scholar] [CrossRef]
- Jin, B.; Vai, M.I. An Adaptive Ultrasonic Backscattered Signal Processing Technique for Accurate Object Localization Based on the Instantaneous Energy Density Level. J. Med. Imaging Health Inform. 2015, 5, 1059–1064. [Google Scholar] [CrossRef]
- Shen, X.; Du, S.C.; Sun, Y.N.; Sun, P.Z.H.; Law, R.; Wu, E.Q. Advance Scheduling for Chronic Care Under Online or Offline Revisit Uncertainty. IEEE Trans. Autom. Sci. Eng. 2023, 24, 5297–5310. [Google Scholar] [CrossRef]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.S. Nature-Inspired Optimization Algorithms: Challenges and Open Problems. J. Comput. Sci. 2020, 46, 101104. [Google Scholar] [CrossRef]
- Tang, A.; Zhou, H.; Han, T.; Xie, L. A Chaos Sparrow Search Algorithm with Logarithmic Spiral and Adaptive Step for Engineering Problems. CMES—Comput. Model. Eng. Sci. 2022, 130, 331–364. [Google Scholar] [CrossRef]
- Zhao, W.; Du, C.; Jiang, S. An Adaptive Multiscale Approach for Identifying Multiple Flaws Based on XFEM and a Discrete Artificial Fish Swarm Algorithm. Comput. Methods Appl. Mech. Eng. 2018, 339, 341–357. [Google Scholar] [CrossRef]
- Ficarella, E.; Lamberti, L.; Degertekin, S.O. Mechanical Identification of Materials and Structures with Optical Methods and Metaheuristic Optimization. Materials 2019, 12, 2133. [Google Scholar] [CrossRef]
- Ascencion-Mestiza, H.; Maximov, S.; Mezura-Montes, E.; Olivares-Galvan, J.C.; Ocon-Valdez, R.; Escarela-Perez, R. Estimation of the Equivalent Circuit Parameters in Transformers Using Evolutionary Algorithms. Math. Comput. Appl. 2023, 28, 36. [Google Scholar] [CrossRef]
- Sharma, A. Antenna Array Pattern Synthesis Using Metaheuristic Algorithms: A Review. IETE Tech. Rev. (Inst. Electron. Telecommun. Eng. India) 2023, 40, 90–115. [Google Scholar] [CrossRef]
- Wu, D.; Jia, H.; Abualigah, L.; Xing, Z.; Zheng, R.; Wang, H.; Altalhi, M. Enhance Teaching-Learning-Based Optimization for Tsallis-Entropy-Based Feature Selection Classification Approach. Processes 2022, 10, 360. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, W.; Jia, H.; Leng, X. Simultaneous Feature Selection and Support Vector Machine Optimization Using an Enhanced Chimp Optimization Algorithm. Algorithms 2021, 14, 282. [Google Scholar] [CrossRef]
- Tan, M.; Tang, A.; Ding, D.; Xie, L.; Huang, C. Autonomous Air Combat Maneuvering Decision Method of UCAV Based on LSHADE-TSO-MPC under Enemy Trajectory Prediction. Electronics 2022, 11, 3383. [Google Scholar] [CrossRef]
- Jin, B.; Gonçalves, N.; Cruz, L.; Medvedev, I.; Yu, Y.Y.; Wang, J.J. Simulated Multimodal Deep Facial Diagnosis. Expert Syst. Appl. 2024, 252, 123881. [Google Scholar] [CrossRef]
- Tang, A.D.; Han, T.; Zhou, H.; Xie, L. An Improved Equilibrium Optimizer with Application in Unmanned Aerial Vehicle Path Planning. Sensors 2021, 21, 1814. [Google Scholar] [CrossRef] [PubMed]
- Abualigah, L.; Habash, M.; Hanandeh, E.S.; Hussein, A.M.A.; Shinwan, M.A.; Zitar, R.A.; Jia, H. Improved Reptile Search Algorithm by Salp Swarm Algorithm for Medical Image Segmentation. J. Bionic Eng. 2023, 20, 1766–1790. [Google Scholar] [CrossRef] [PubMed]
- Otair, M.; Alhmoud, A.; Jia, H.; Altalhi, M.; Hussein, A.M.A.; Abualigah, L. Optimized Task Scheduling in Cloud Computing Using Improved Multi-Verse Optimizer. Clust. Comput. 2022, 25, 4221–4232. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, G.; Suganthan, P.N.; Song, A.; Luo, Q. Performance Assessment and Exhaustive Listing of 500+ Nature-Inspired Metaheuristic Algorithms. Swarm Evol. Comput. 2023, 77, 101248. [Google Scholar] [CrossRef]
- Glover, F. Future Paths for Integer Programming and Links to Artificial Intelligence. Comput. Oper. Res. 1986, 13, 533–549. [Google Scholar] [CrossRef]
- Windras Mara, S.T.; Norcahyo, R.; Jodiawan, P.; Lusiantoro, L.; Rifai, A.P. A Survey of Adaptive Large Neighborhood Search Algorithms and Applications. Comput. Oper. Res. 2022, 146, 105903. [Google Scholar] [CrossRef]
- Abualigah, L.; Al-qaness, M.A.A.; Abd Elaziz, M.; Ewees, A.A.; Oliva, D.; Cuong-Le, T. The Non-Monopolize Search (NO): A Novel Single-Based Local Search Optimization Algorithm. Neural Comput. Appl. 2024, 36, 5305–5332. [Google Scholar] [CrossRef]
- Tang, A.D.; Tang, S.Q.; Han, T.; Zhou, H.; Xie, L. A Modified Slime Mould Algorithm for Global Optimization. Comput. Intell. Neurosci. 2021, 2021, 2298215. [Google Scholar] [CrossRef] [PubMed]
- Holland, J.H. Genetic Algorithms. Sci. Am. 1992, 267, 66–72. [Google Scholar] [CrossRef]
- Opara, K.R.; Arabas, J. Differential Evolution: A Survey of Theoretical Analyses. Swarm Evol. Comput. 2019, 44, 546–558. [Google Scholar] [CrossRef]
- Beyer, H.-G.; Schwefel, H.-P. Evolution Strategies—A Comprehensive Introduction. Nat. Comput. 2002, 1, 3–52. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, Q.K. Alpha Evolution: An Efficient Evolutionary Algorithm with Evolution Path Adaptation and Matrix Generation. Eng. Appl. Artif. Intell. 2024, 137, 109202. [Google Scholar] [CrossRef]
- Sulaiman, M.H.; Mustaffa, Z.; Saari, M.M.; Daniyal, H.; Mirjalili, S. Evolutionary Mating Algorithm. Neural Comput. Appl. 2023, 35, 487–516. [Google Scholar] [CrossRef]
- Huang, W.; Xu, J. Particle Swarm Optimization. In Springer Tracts in Civil Engineering; Springer: Berlin, Germany, 2023. [Google Scholar]
- Karaboga, D.; Akay, B. A Comparative Study of Artificial Bee Colony Algorithm. Appl. Math. Comput. 2009, 214, 108–132. [Google Scholar] [CrossRef]
- Jia, H.; Rao, H.; Wen, C.; Mirjalili, S. Crayfish Optimization Algorithm. Artif. Intell. Rev. 2023, 56, 1919–1979. [Google Scholar] [CrossRef]
- Fu, Y.F.; Liu, D.; Chen, J.D.; He, L. Secretary Bird Optimization Algorithm: A New Metaheuristic for Solving Global Optimization Problems. Artif. Intell. Rev. 2024, 57, 123. [Google Scholar] [CrossRef]
- Jia, H.; Peng, X.; Lang, C. Remora Optimization Algorithm. Expert Syst. Appl. 2021, 185, 115665. [Google Scholar] [CrossRef]
- Xie, L.; Han, T.; Zhou, H.; Zhang, Z.-R.; Han, B.; Tang, A. Tuna Swarm Optimization: A Novel Swarm-Based Metaheuristic Algorithm for Global Optimization. Comput. Intell. Neurosci. 2021, 2021, 9210050. [Google Scholar] [CrossRef] [PubMed]
- Aribowo, W. A Novel Improved Sea-Horse Optimizer for Tuning Parameter Power System Stabilizer. J. Robot. Control 2023, 4, 12–22. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-Verse Optimizer: A Nature-Inspired Algorithm for Global Optimization. Neural Comput. Appl. 2016, 27, 495–513. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Azeem, S.A.A.; Jameel, M.; Abouhawwash, M. Kepler Optimization Algorithm: A New Metaheuristic Algorithm Inspired by Kepler’s Laws of Planetary Motion. Knowl.-Based Syst. 2023, 268, 110454. [Google Scholar] [CrossRef]
- Hashim, F.A.; Mostafa, R.R.; Hussien, A.G.; Mirjalili, S.; Sallam, K.M. Fick’s Law Algorithm: A Physical Law-Based Algorithm for Numerical Optimization. Knowl.-Based Syst. 2023, 260, 110146. [Google Scholar] [CrossRef]
- Yuan, C.; Zhao, D.; Heidari, A.A.; Liu, L.; Chen, Y.; Chen, H. Polar Lights Optimizer: Algorithm and Applications in Image Segmentation and Feature Selection. Neurocomputing 2024, 607, 128427. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium Optimizer: A Novel Optimization Algorithm. Knowl.-Based Syst. 2020, 191, 105190. [Google Scholar] [CrossRef]
- Sowmya, R.; Premkumar, M.; Jangir, P. Newton-Raphson-Based Optimizer: A New Population-Based Metaheuristic Algorithm for Continuous Optimization Problems. Eng. Appl. Artif. Intell. 2024, 128, 107532. [Google Scholar] [CrossRef]
- Deng, L.; Liu, S. Snow Ablation Optimizer: A Novel Metaheuristic Technique for Numerical Optimization and Engineering Design. Expert Syst. Appl. 2023, 225, 120069. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Abualigah, L.; Altalhi, M. A Novel Generalized Normal Distribution Arithmetic Optimization Algorithm for Global Optimization and Data Clustering Problems. J. Ambient Intell. Humaniz. Comput. 2024, 15, 389–417. [Google Scholar] [CrossRef]
- Tanyildizi, E.; Demir, G. Golden Sine Algorithm: A Novel Math-Inspired Algorithm. Adv. Electr. Comput. Eng. 2017, 17, 71–78. [Google Scholar] [CrossRef]
- Zhao, W.G.; Wang, L.Y.; Zhang, Z.X.; Mirjalili, S.; Khodadadi, N.; Ge, Q. Quadratic Interpolation Optimization (QIO): A New Optimization Algorithm Based on Generalized Quadratic Interpolation and Its Applications to Real-World Engineering Problems. Comput. Methods Appl. Mech. Eng. 2023, 417, 116446. [Google Scholar] [CrossRef]
- Beltran, L.A.; Navarro, M.A.; Oliva, D.; Campos-Peña, D.; Ramos-Frutos, J.; Zapotecas-Martínez, S. Quasi-Random Fractal Search (QRFS): A Dynamic Metaheuristic with Sigmoid Population Decrement for Global Optimization. Expert Syst. Appl. 2024, 254, 124400. [Google Scholar] [CrossRef]
- Fakhouri, H.N.; Awaysheh, F.M.; Alawadi, S.; Alkhalaileh, M.; Hamad, F. Four Vector Intelligent Metaheuristic for Data Optimization. Computing 2024, 106, 2321–2359. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; El-Shahat, D.; Jameel, M.; Abouhawwash, M. Exponential Distribution Optimizer (EDO): A Novel Math-Inspired Algorithm for Global Optimization and Engineering Problems. Artif. Intell. Rev. 2023, 56, 9329–9400. [Google Scholar] [CrossRef]
- Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching-Learning-Based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems. CAD Comput. Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
- Zhang, Y.; Chi, A. Group Teaching Optimization Algorithm with Information Sharing for Numerical Optimization and Engineering Optimization. J. Intell. Manuf. 2023, 34, 1547–1571. [Google Scholar] [CrossRef]
- Jia, H.; Wen, Q.; Wang, Y.; Mirjalili, S. Catch Fish Optimization Algorithm: A New Human Behavior Algorithm for Solving Clustering Problems. Clust. Comput. 2024, 27, 13295–13332. [Google Scholar] [CrossRef]
- Trojovský, P. A New Human-Based Metaheuristic Algorithm for Solving Optimization Problems Based on Preschool Education. Sci. Rep. 2023, 13, 21472. [Google Scholar] [CrossRef] [PubMed]
- Oladejo, S.O.; Ekwe, S.O.; Mirjalili, S. The Hiking Optimization Algorithm: A Novel Human-Based Metaheuristic Approach. Knowl.-Based Syst. 2024, 296, 111880. [Google Scholar] [CrossRef]
- Das, B.; Mukherjee, V.; Das, D. Student Psychology Based Optimization Algorithm: A New Population Based Optimization Algorithm for Solving Optimization Problems. Adv. Eng. Softw. 2020, 146, 102804. [Google Scholar] [CrossRef]
- Lian, J.B.; Zhu, T.; Ma, L.; Wu, X.C.; Heidari, A.A.; Chen, Y.; Chen, H.L.; Hui, G.H. The Educational Competition Optimizer. Int. J. Syst. Sci. 2024, 55, 3185–3222. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. Dung Beetle Optimizer: A New Meta-Heuristic Algorithm for Global Optimization. J. Supercomput. 2023, 79, 7305–7336. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, Z.; Wang, L. Manta Ray Foraging Optimization: An Effective Bio-Inspired Optimizer for Engineering Applications. Eng. Appl. Artif. Intell. 2020, 87, 103300. [Google Scholar] [CrossRef]
- Jiang, Z.; Zou, F.; Chen, D.; Cao, S.; Liu, H.; Guo, W. An Ensemble Multi-Swarm Teaching–Learning-Based Optimization Algorithm for Function Optimization and Image Segmentation. Appl. Soft Comput. 2022, 130, 109653. [Google Scholar] [CrossRef]
- Chen, S.-S.; Jiang, Y.-T.; Chen, W.; Li, X.-Y. TERIME: An Improved RIME Algorithm with Enhanced Exploration and Exploitation for Robust Parameter Extraction of Photovoltaic Models. arXiv 2024, arXiv:2407.18986. [Google Scholar]
- Ozkaya, B.; Duman, S.; Kahraman, H.T.; Guvenc, U. Optimal Solution of the Combined Heat and Power Economic Dispatch Problem by Adaptive Fitness-Distance Balance Based Artificial Rabbits Optimization Algorithm. Expert Syst. Appl. 2024, 238, 122272. [Google Scholar] [CrossRef]
Test Suite | Type | No. | Fmin |
---|---|---|---|
CEC2017 | Unimodal functions | F1–F3 | 100–300 |
Multimodal functions | F4–F10 | 400–1000 | |
Hybrid functions | F11–F20 | 1100–2000 | |
Composition functions | F21–F30 | 2100–3000 | |
Search range [−100, 100] |
Algorithm | Parameter Settings |
---|---|
EDECO | |
ECO | |
SAO | |
CFOA | |
DBO | |
MRFO | |
ISGTOA | |
EMTLBO | |
TERIME | |
AFDB-ARO |
Test Suite | Dimension | ECO | EECO | DECO | EDECO | p-Value |
---|---|---|---|---|---|---|
CEC 2017 | 10 | 3.90 | 2.48 | 2.34 | 1.28 | 4.75E−13 |
30 | 3.83 | 2.38 | 2.66 | 1.14 | 9.89E−14 | |
50 | 4.00 | 2.21 | 2.72 | 1.07 | 1.25E−16 | |
100 | 3.83 | 2.14 | 2.76 | 1.28 | 5.36E−13 | |
Mean ranking | 3.89 | 2.30 | 2.62 | 1.19 | NaN |
vs. ECO +/=/− | CEC-2017 Test Suite | |||
---|---|---|---|---|
10D | 30D | 50D | 100D | |
EECO | 22/6/1 | 19/10/0 | 20/9/0 | 21/8/0 |
DECO | 21/7/1 | 15/12/2 | 17/12/0 | 19/10/0 |
EDECO | 28/1/0 | 27/2/0 | 27/2/0 | 26/3/0 |
EDECO vs. +/=/− | CEC-2017 Test Suite | Total | |||
---|---|---|---|---|---|
10D | 30D | 50D | 100D | ||
ECO | 27/2/0 | 29/0/0 | 26/3/0 | 26/3/0 | 108/8/0 |
SAO | 28/1/0 | 29/0/0 | 27/1/1 | 29/0/0 | 113/2/1 |
CFOA | 22/6/1 | 28/1/0 | 27/2/0 | 29/0/0 | 106/9/1 |
DBO | 25/4/0 | 27/2/0 | 27/2/0 | 28/0/1 | 107/8/1 |
MRFO | 22/6/1 | 19/7/3 | 21/6/2 | 23/4/2 | 85/23/8 |
ISGTOA | 22/6/1 | 13/12/4 | 10/9/10 | 12/9/8 | 57/36/23 |
EMTLBO | 25/3/1 | 20/4/5 | 18/7/4 | 17/9/3 | 80/23/13 |
TERIME | 24/5/0 | 26/3/0 | 27/2/0 | 28/1/0 | 105/11/0 |
AFDB-ARO | 23/4/2 | 27/1/1 | 25/1/3 | 21/2/6 | 96/8/12 |
Algorithm | CEC-2017 Test Suite | |||||
---|---|---|---|---|---|---|
10D | 30D | 50D | 100D | Mean Ranking | Overall Ranking | |
EDECO | 1.8276 | 1.9655 | 2.2069 | 2.0690 | 2.0172 | 1 |
ECO | 6.4483 | 8.6897 | 5.4138 | 5.1724 | 6.4310 | 7 |
SAO | 8.3103 | 8.2069 | 8.7241 | 8.7931 | 8.5086 | 10 |
CFOA | 5.1379 | 6.3793 | 7.0345 | 8.2759 | 6.7069 | 8 |
DBO | 7.8276 | 6.7586 | 7.7931 | 7.7586 | 7.5345 | 9 |
MRFO | 4.6207 | 3.5172 | 4.0000 | 4.2069 | 4.0862 | 3 |
ISGTOA | 4.2414 | 2.4138 | 2.9655 | 3.3793 | 3.2500 | 2 |
EMTLBO | 5.2759 | 4.4828 | 4.2414 | 4.1034 | 4.5259 | 4 |
TERIME | 6.1724 | 6.2414 | 6.5172 | 6.7241 | 6.4138 | 6 |
AFDB-ARO | 5.1379 | 6.3448 | 6.1034 | 4.5172 | 5.5259 | 5 |
p-value | 5.00E−17 | 3.11E−28 | 2.81E−23 | 6.25E−27 | N/A | N/A |
Problem | Name | D |
---|---|---|
RW01 | Tension/compression spring design problem | 3 |
RW02 | Pressure vessel design problem | 4 |
RW03 | Three-bar truss design problem | 2 |
RW04 | Welded beam design problem | 4 |
RW05 | Speed reducer design problem | 7 |
RW06 | Gear train design problem | 4 |
RW07 | Rolling element bearing design | 10 |
RW08 | Cantilever beam design problem | 5 |
RW09 | Multiple disk clutch brake design problem | 5 |
RW10 | Step-cone pulley problem | 5 |
No. | Index | EDECO | ECO | SAO | CFOA | DBO | MRFO | ISGTOA | EMTLBO | TERIME | AFDB-ARO |
---|---|---|---|---|---|---|---|---|---|---|---|
RW1 | Best | 1.2669E−02 | 1.2685E−02 | 1.2738E−02 | 1.2674E−02 | 1.2719E−02 | 1.2758E−02 | 1.2686E−02 | 1.2666E−02 | 1.2791E−02 | 1.2820E−02 |
Mean | 1.2864E−02 | 1.3817E−02 | 1.2890E−02 | 1.2727E−02 | 1.4052E−02 | 1.3242E−02 | 1.2834E−02 | 1.2728E−02 | 1.5126E−02 | 1.3139E−02 | |
Std | 7.5060E−04 | 1.4828E−03 | 1.7802E−04 | 1.8317E−05 | 1.7973E−03 | 3.6082E−04 | 9.2758E−05 | 7.9627E−05 | 2.4163E−03 | 1.9551E−04 | |
Rank | 4 | 8 | 5 | 1 | 9 | 7 | 3 | 2 | 10 | 6 | |
RW2 | Best | 5.8704E+03 | 5.9533E+03 | 5.8937E+03 | 5.8718E+03 | 5.8701E+03 | 5.8961E+03 | 5.9027E+03 | 5.8710E+03 | 6.1334E+03 | 5.9138E+03 |
Mean | 6.0663E+03 | 6.5032E+03 | 6.3398E+03 | 6.4378E+03 | 6.5134E+03 | 6.2741E+03 | 6.1319E+03 | 5.9778E+03 | 8.7195E+03 | 6.0595E+03 | |
Std | 3.3002E+02 | 4.6657E+02 | 5.5444E+02 | 7.6231E+02 | 5.5236E+02 | 2.4423E+02 | 2.0576E+02 | 1.3536E+02 | 2.0960E+03 | 9.6526E+01 | |
Rank | 3 | 8 | 6 | 7 | 9 | 5 | 4 | 1 | 10 | 2 | |
RW3 | Best | 2.6389E+02 | 2.6389E+02 | 2.6390E+02 | 2.6389E+02 | 2.6389E+02 | 2.6389E+02 | 2.6389E+02 | 2.6389E+02 | 2.6389E+02 | 2.6389E+02 |
Mean | 2.6389E+02 | 2.6409E+02 | 2.6393E+02 | 2.6389E+02 | 2.6389E+02 | 2.6389E+02 | 2.6389E+02 | 2.6389E+02 | 2.6402E+02 | 2.6393E+02 | |
Std | 4.4858E−10 | 4.1803E−01 | 2.5896E−02 | 7.7140E−03 | 2.1837E−03 | 1.3741E−03 | 2.4102E−03 | 3.5728E−04 | 1.4606E−01 | 2.4251E−02 | |
Rank | 1 | 10 | 8 | 6 | 5 | 3 | 4 | 2 | 9 | 7 | |
RW4 | Best | 1.6929E+00 | 1.7159E+00 | 1.7040E+00 | 1.7031E+00 | 1.6928E+00 | 1.6986E+00 | 1.7002E+00 | 1.6939E+00 | 1.7469E+00 | 1.7473E+00 |
Mean | 1.7078E+00 | 1.8940E+00 | 1.7334E+00 | 1.8028E+00 | 1.7246E+00 | 1.7098E+00 | 1.7125E+00 | 1.7018E+00 | 1.8904E+00 | 1.8253E+00 | |
Std | 2.0634E−02 | 1.6516E−01 | 1.6138E−02 | 8.1996E−02 | 3.8621E−02 | 7.7329E−03 | 6.8060E−03 | 8.4140E−03 | 9.6649E−02 | 5.3845E−02 | |
Rank | 2.00E+00 | 1.00E+01 | 6.00E+00 | 7.00E+00 | 5.00E+00 | 3.00E+00 | 4.00E+00 | 1.00E+00 | 9.00E+00 | 8.00E+00 | |
RW5 | Best | 2.9936E+03 | 2.9936E+03 | 2.9953E+03 | 2.9937E+03 | 2.9936E+03 | 2.9951E+03 | 2.9936E+03 | 2.9936E+03 | 2.9943E+03 | 2.9942E+03 |
Mean | 2.9936E+03 | 2.9994E+03 | 3.0045E+03 | 3.0031E+03 | 2.9959E+03 | 2.9982E+03 | 2.9936E+03 | 2.9937E+03 | 3.0134E+03 | 2.9956E+03 | |
Std | 1.0406E−04 | 6.3475E+00 | 5.2540E+00 | 7.7544E+00 | 4.6170E+00 | 1.8148E+00 | 1.4899E−04 | 2.4555E−02 | 1.6217E+01 | 1.3795E+00 | |
Rank | 1 | 7 | 9 | 8 | 5 | 6 | 2 | 3 | 10 | 4 | |
RW6 | Best | 2.7009E−12 | 2.7009E−12 | 2.3078E−11 | 2.7009E−12 | 2.3078E−11 | 2.7009E−12 | 2.7009E−12 | 2.7009E−12 | 2.7009E−12 | 2.7009E−12 |
Mean | 7.7801E−11 | 1.8517E−09 | 2.6352E−09 | 3.8504E−10 | 2.4014E−09 | 6.4834E−11 | 2.7514E−10 | 7.7968E−10 | 2.0626E−09 | 3.6345E−10 | |
Std | 1.6781E−10 | 4.8789E−09 | 5.3234E−09 | 4.4710E−10 | 4.8591E−09 | 2.4769E−10 | 4.0326E−10 | 1.0022E−09 | 1.7757E−09 | 4.3973E−10 | |
Rank | 2 | 7 | 10 | 5 | 9 | 1 | 3 | 6 | 8 | 4 | |
RW7 | Best | −2.4358E+05 | −2.4358E+05 | −2.4358E+05 | −2.4358E+05 | −2.4358E+05 | −2.4319E+05 | −2.4358E+05 | −2.4358E+05 | −2.4358E+05 | −2.4334E+05 |
Mean | −2.4358E+05 | −2.4358E+05 | −2.4358E+05 | −2.4358E+05 | −2.4358E+05 | −2.4216E+05 | −2.4358E+05 | −2.4358E+05 | −2.3989E+05 | −2.4000E+05 | |
Std | 6.7933E−11 | 5.2908E−02 | 3.1848E+00 | 2.4655E−02 | 1.6469E−05 | 7.1829E+02 | 7.1494E−11 | 1.1181E−10 | 3.8019E+03 | 2.3898E+03 | |
Rank | 1 | 5 | 7 | 6 | 4 | 8 | 2 | 3 | 10 | 9 | |
RW8 | Best | 1.3400E+00 | 1.3405E+00 | 1.3417E+00 | 1.3402E+00 | 1.3400E+00 | 1.3400E+00 | 1.3408E+00 | 1.3405E+00 | 1.3726E+00 | 1.3437E+00 |
Mean | 1.3404E+00 | 1.3831E+00 | 1.3455E+00 | 1.4912E+00 | 1.3403E+00 | 1.3404E+00 | 1.3421E+00 | 1.3416E+00 | 1.5795E+00 | 1.3497E+00 | |
Std | 7.1854E−04 | 4.2430E−02 | 2.4454E−03 | 1.9531E−01 | 2.1076E−04 | 2.5067E−04 | 8.1659E−04 | 7.9139E−04 | 1.4039E−01 | 3.8672E−03 | |
Rank | 3 | 8 | 6 | 9 | 1 | 2 | 5 | 4 | 10 | 7 | |
RW9 | Best | 3.9247E+08 | 3.9247E+08 | 3.9247E+08 | 3.9247E+08 | 3.9247E+08 | 3.9247E+08 | 3.9247E+08 | 3.9247E+08 | 3.9247E+08 | 3.9247E+08 |
Mean | 3.9247E+08 | 3.9247E+08 | 3.9247E+08 | 3.9247E+08 | 3.9247E+08 | 3.9247E+08 | 3.9247E+08 | 3.9247E+08 | 3.9247E+08 | 3.9247E+08 | |
Std | 1.8187E−07 | 1.8187E−07 | 1.8187E−07 | 1.8187E−07 | 1.8187E−07 | 1.8187E−07 | 1.8187E−07 | 1.8187E−07 | 1.8187E−07 | 1.8187E−07 | |
Rank | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
RW10 | Best | 1.6086E+01 | 1.6115E+01 | 1.8052E+01 | 1.6090E+01 | 1.6453E+01 | 1.6137E+01 | 1.6195E+01 | 1.6090E+01 | 1.6596E+01 | 1.8704E+01 |
Mean | 1.6090E+01 | 1.6634E+01 | 2.1916E+01 | 1.6714E+01 | 2.3561E+01 | 1.6481E+01 | 1.6625E+01 | 1.6180E+01 | 1.7934E+01 | 2.6097E+01 | |
Std | 8.3474E−03 | 3.4454E−01 | 3.1844E+00 | 4.3513E−01 | 2.2653E+01 | 2.2656E−01 | 2.6490E−01 | 1.8328E−01 | 1.6910E+00 | 7.8801E+00 | |
Rank | 1 | 5 | 8 | 6 | 9 | 3 | 4 | 2 | 7 | 10 | |
Friedman ranking | 2.35 | 7.35 | 7.05 | 6.05 | 6.15 | 4.35 | 3.65 | 2.95 | 8.85 | 6.25 | |
Wilconxon rank sum results | 9/1/0 | 9/1/0 | 8/2/0 | 7/3/0 | 7/1/2 | 8/1/1 | 6/4/0 | 9/1/0 | 8/1/1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, W.; Shi, S.; Lu, Z.; Lin, M.; Cheng, H. EDECO: An Enhanced Educational Competition Optimizer for Numerical Optimization Problems. Biomimetics 2025, 10, 176. https://doi.org/10.3390/biomimetics10030176
Tang W, Shi S, Lu Z, Lin M, Cheng H. EDECO: An Enhanced Educational Competition Optimizer for Numerical Optimization Problems. Biomimetics. 2025; 10(3):176. https://doi.org/10.3390/biomimetics10030176
Chicago/Turabian StyleTang, Wenkai, Shangqing Shi, Zengtong Lu, Mengying Lin, and Hao Cheng. 2025. "EDECO: An Enhanced Educational Competition Optimizer for Numerical Optimization Problems" Biomimetics 10, no. 3: 176. https://doi.org/10.3390/biomimetics10030176
APA StyleTang, W., Shi, S., Lu, Z., Lin, M., & Cheng, H. (2025). EDECO: An Enhanced Educational Competition Optimizer for Numerical Optimization Problems. Biomimetics, 10(3), 176. https://doi.org/10.3390/biomimetics10030176