The Next Frontier in Neuroprosthetics: Integration of Biomimetic Somatosensory Feedback
Abstract
:1. Introduction
2. Biomimetic Somatosensory Feedback for Upper Limbs
3. Biomimetic Somatosensory Feedback for Lower Limbs
4. Next-Generation Neuroprosthetics with Biomimetic Somatosensory Feedback
4.1. Electronic Skins
4.2. Subcellular-Scale Neuroelectronic Interface
4.3. Regenerative Surgical Interfaces
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Zawadka, M.; Gaweł, M.; Tomczyk-Warunek, A.; Turżańska, K.; Blicharski, T. Relationship between Upper Limb Functional Assessment and Clinical Tests of Shoulder Mobility and Posture in Individuals Participating in Recreational Strength Training. J. Clin. Med. 2024, 13, 1028. [Google Scholar] [CrossRef] [PubMed]
- Jaworski, Ł.; Karpiński, R.; Dobrowolska, A. Biomechanics of the upper limb. J. Technol. Exploit. Mech. Eng. 2016, 2, 53–59. [Google Scholar] [CrossRef]
- Murray, C.D.; Havlin, H.; Molyneaux, V. Considering the psychological experience of amputation and rehabilitation for military veterans: A systematic review and metasynthesis of qualitative research. Disabil. Rehabil. 2024, 46, 1053–1072. [Google Scholar] [CrossRef]
- McDonald, C.L.; Westcott-McCoy, S.; Weaver, M.R.; Haagsma, J.; Kartin, D. Global prevalence of traumatic non-fatal limb amputation. Prosthet. Orthot. Int. 2021, 45, 105–114. [Google Scholar] [CrossRef]
- Winslow, B.D.; Ruble, M.; Huber, Z. Mobile, Game-Based Training for Myoelectric Prosthesis Control. Front. Bioeng. Biotechnol. 2018, 6, 94. [Google Scholar] [CrossRef]
- Ziegler-Graham, K.; MacKenzie, E.J.; Ephraim, P.L.; Travison, T.G.; Brookmeyer, R. Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 2008, 89, 422–429. [Google Scholar] [CrossRef]
- DeVivo, M.J. Epidemiology of traumatic spinal cord injury: Trends and future implications. Spinal Cord 2012, 50, 365–372. [Google Scholar] [CrossRef]
- Barbiellini Amidei, C.; Salmaso, L.; Bellio, S.; Saia, M. Epidemiology of traumatic spinal cord injury: A large population-based study. Spinal Cord 2022, 60, 812–819. [Google Scholar] [CrossRef]
- Cordella, F.; Ciancio, A.L.; Sacchetti, R.; Davalli, A.; Cutti, A.G.; Guglielmelli, E.; Zollo, L. Literature Review on Needs of Upper Limb Prosthesis Users. Front. Neurosci. 2016, 10, 209. [Google Scholar] [CrossRef]
- Flor, H.; Nikolajsen, L.; Staehelin Jensen, T. Phantom limb pain: A case of maladaptive CNS plasticity? Nat. Rev. Neurosci. 2006, 7, 873–881. [Google Scholar] [CrossRef]
- Bensmaia, S.J.; Tyler, D.J.; Micera, S. Restoration of sensory information via bionic hands. Nat. Biomed. Eng. 2023, 7, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Vaskov, A.K.; Adidharma, W.; Cederna, P.S.; Kemp, S.W.P. Merging Humans and Neuroprosthetics through Regenerative Peripheral Nerve Interfaces. Semin. Plast. Surg. 2024, 38, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Quinn, K.N.; Tian, Y.; Budde, R.; Irazoqui, P.P.; Tuffaha, S.; Thakor, N.V. Neuromuscular implants: Interfacing with skeletal muscle for improved clinical translation of prosthetic limbs. Muscle Nerve 2024, 69, 134–147. [Google Scholar] [CrossRef]
- Farina, D.; Vujaklija, I.; Brånemark, R.; Bull, A.M.J.; Dietl, H.; Graimann, B.; Hargrove, L.J.; Hoffmann, K.-P.; Huang, H.; Ingvarsson, T.; et al. Toward higher-performance bionic limbs for wider clinical use. Nat. Biomed. Eng. 2023, 7, 473–485. [Google Scholar] [CrossRef]
- Yildiz, K.A.; Shin, A.Y.; Kaufman, K.R. Interfaces with the peripheral nervous system for the control of a neuroprosthetic limb: A review. J. Neuroeng. Rehabil. 2020, 17, 43. [Google Scholar] [CrossRef]
- Pandarinath, C.; Bensmaia, S.J. The science and engineering behind sensitized brain-controlled bionic hands. Physiol. Rev. 2022, 102, 551–604. [Google Scholar] [CrossRef]
- Vu, P.P.; Vaskov, A.K.; Irwin, Z.T.; Henning, P.T.; Lueders, D.R.; Laidlaw, A.T.; Davis, A.J.; Nu, C.S.; Gates, D.H.; Gillespie, R.B.; et al. A regenerative peripheral nerve interface allows real-time control of an artificial hand in upper limb amputees. Sci. Transl. Med. 2020, 12, eaay2857. [Google Scholar] [CrossRef]
- Vu, P.P.; Vaskov, A.K.; Lee, C.; Jillala, R.R.; Wallace, D.M.; Davis, A.J.; Kung, T.A.; Kemp, S.W.P.; Gates, D.H.; Chestek, C.A.; et al. Long-term upper-extremity prosthetic control using regenerative peripheral nerve interfaces and implanted EMG electrodes. J. Neural. Eng. 2023, 20, 026039. [Google Scholar] [CrossRef]
- Ortiz-Catalan, M.; Mastinu, E.; Sassu, P.; Aszmann, O.; Brånemark, R. Self-Contained Neuromusculoskeletal Arm Prostheses. N. Engl. J. Med. 2020, 382, 1732–1738. [Google Scholar] [CrossRef]
- Salminger, S.; Sturma, A.; Hofer, C.; Evangelista, M.; Perrin, M.; Bergmeister, K.D.; Roche, A.D.; Hasenoehrl, T.; Dietl, H.; Farina, D.; et al. Long-term implant of intramuscular sensors and nerve transfers for wireless control of robotic arms in above-elbow amputees. Sci. Robot. 2019, 4, eaaw6306. [Google Scholar] [CrossRef]
- Song, H.; Hsieh, T.-H.; Yeon, S.H.; Shu, T.; Nawrot, M.; Landis, C.F.; Friedman, G.N.; Israel, E.A.; Gutierrez-Arango, S.; Carty, M.J.; et al. Continuous neural control of a bionic limb restores biomimetic gait after amputation. Nature Medicine 2024, 30, 2010–2019. [Google Scholar] [CrossRef] [PubMed]
- Flesher, S.N.; Downey, J.E.; Weiss, J.M.; Hughes, C.L.; Herrera, A.J.; Tyler-Kabara, E.C.; Boninger, M.L.; Collinger, J.L.; Gaunt, R.A. A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 2021, 372, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Collinger, J.L.; Wodlinger, B.; Downey, J.E.; Wang, W.; Tyler-Kabara, E.C.; Weber, D.J.; McMorland, A.J.; Velliste, M.; Boninger, M.L.; Schwartz, A.B. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 2013, 381, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Raspopovic, S.; Valle, G.; Petrini, F.M. Sensory feedback for limb prostheses in amputees. Nature Materials 2021, 20, 925–939. [Google Scholar] [CrossRef]
- McFarland, L.V.; Hubbard Winkler, S.L.; Heinemann, A.W.; Jones, M.; Esquenazi, A. Unilateral upper-limb loss: Satisfaction and prosthetic-device use in veterans and servicemembers from Vietnam and OIF/OEF conflicts. J. Rehabil. Res. Dev. 2010, 47, 299–316. [Google Scholar] [CrossRef]
- Smail, L.C.; Neal, C.; Wilkins, C.; Packham, T.L. Comfort and function remain key factors in upper limb prosthetic abandonment: Findings of a scoping review. Disabil. Rehabil. Assist. Technol. 2021, 16, 821–830. [Google Scholar] [CrossRef]
- Johansson, R.S.; Flanagan, J.R. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 2009, 10, 345–359. [Google Scholar] [CrossRef]
- Tabot, G.A.; Kim, S.S.; Winberry, J.E.; Bensmaia, S.J. Restoring tactile and proprioceptive sensation through a brain interface. Neurobiol. Dis. 2015, 83, 191–198. [Google Scholar] [CrossRef]
- Kirsch, L.P.; Krahé, C.; Blom, N.; Crucianelli, L.; Moro, V.; Jenkinson, P.M.; Fotopoulou, A. Reading the mind in the touch: Neurophysiological specificity in the communication of emotions by touch. Neuropsychologia 2018, 116, 136–149. [Google Scholar] [CrossRef]
- von Mohr, M.; Kirsch, L.P.; Fotopoulou, A. The soothing function of touch: Affective touch reduces feelings of social exclusion. Sci. Rep. 2017, 7, 13516. [Google Scholar] [CrossRef]
- Heatley Tejada, A.; Dunbar, R.I.M.; Montero, M. Physical Contact and Loneliness: Being Touched Reduces Perceptions of Loneliness. Adapt. Hum. Behav. Physiol. 2020, 6, 292–306. [Google Scholar] [CrossRef] [PubMed]
- Wijk, U.; Carlsson, I. Forearm amputees’ views of prosthesis use and sensory feedback. J. Hand Ther. 2015, 28, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Flesher, S.N.; Collinger, J.L.; Foldes, S.T.; Weiss, J.M.; Downey, J.E.; Tyler-Kabara, E.C.; Bensmaia, S.J.; Schwartz, A.B.; Boninger, M.L.; Gaunt, R.A. Intracortical microstimulation of human somatosensory cortex. Sci. Transl. Med. 2016, 8, 361ra141. [Google Scholar] [CrossRef] [PubMed]
- Zollo, L.; Di Pino, G.; Ciancio, A.L.; Ranieri, F.; Cordella, F.; Gentile, C.; Noce, E.; Romeo, R.A.; Bellingegni, A.D.; Vadalà, G.; et al. Restoring Tactile sensations via neural interfaces for real-time force-and-slippage closed-loop control of bionic hands. Sci. Robot. 2019, 4, eaau9924. [Google Scholar] [CrossRef]
- Armenta Salas, M.; Bashford, L.; Kellis, S.; Jafari, M.; Jo, H.; Kramer, D.; Shanfield, K.; Pejsa, K.; Lee, B.; Liu, C.Y.; et al. Proprioceptive and cutaneous sensations in humans elicited by intracortical microstimulation. eLife 2018, 7, e32904. [Google Scholar] [CrossRef]
- Schiefer, M.A.; Graczyk, E.L.; Sidik, S.M.; Tan, D.W.; Tyler, D.J. Artificial tactile and proprioceptive feedback improves performance and confidence on object identification tasks. PLoS ONE 2018, 13, e0207659. [Google Scholar] [CrossRef]
- Tan, D.W.; Schiefer, M.A.; Keith, M.W.; Anderson, J.R.; Tyler, J.; Tyler, D.J. A neural interface provides long-term stable natural touch perception. Sci. Transl. Med. 2014, 6, 257ra138. [Google Scholar] [CrossRef]
- Schmitt, M.S.; Wright, J.D.; Triolo, R.J.; Charkhkar, H.; Graczyk, E.L. The experience of sensorimotor integration of a lower limb sensory neuroprosthesis: A qualitative case study. Front. Hum. Neurosci. 2022, 16, 1074033. [Google Scholar] [CrossRef]
- Petrini, F.M.; Valle, G.; Bumbasirevic, M.; Barberi, F.; Bortolotti, D.; Cvancara, P.; Hiairrassary, A.; Mijovic, P.; Sverrisson, A.; Pedrocchi, A.; et al. Enhancing functional abilities and cognitive integration of the lower limb prosthesis. Sci. Transl. Med. 2019, 11, eaav8939. [Google Scholar] [CrossRef]
- Fifer, M.S.; McMullen, D.P.; Osborn, L.E.; Thomas, T.M.; Christie, B.; Nickl, R.W.; Candrea, D.N.; Pohlmeyer, E.A.; Thompson, M.C.; Anaya, M.A.; et al. Intracortical Somatosensory Stimulation to Elicit Fingertip Sensations in an Individual With Spinal Cord Injury. Neurology 2022, 98, e679–e687. [Google Scholar] [CrossRef]
- Graczyk, E.L.; Resnik, L.; Schiefer, M.A.; Schmitt, M.S.; Tyler, D.J. Home Use of a Neural-connected Sensory Prosthesis Provides the Functional and Psychosocial Experience of Having a Hand Again. Sci. Rep. 2018, 8, 9866. [Google Scholar] [CrossRef] [PubMed]
- Di Pino, G.; Romano, D.; Spaccasassi, C.; Mioli, A.; D’Alonzo, M.; Sacchetti, R.; Guglielmelli, E.; Zollo, L.; Di Lazzaro, V.; Denaro, V.; et al. Sensory- and Action-Oriented Embodiment of Neurally-Interfaced Robotic Hand Prostheses. Front. Neurosci. 2020, 14, 389. [Google Scholar] [CrossRef] [PubMed]
- Ding, K.; Rakhshan, M.; Paredes-Acuña, N.; Cheng, G.; Thakor, N.V. Sensory integration for neuroprostheses: From functional benefits to neural correlates. Med. Biol. Eng. Comput. 2024, 62, 2939–2960. [Google Scholar] [CrossRef]
- Graczyk, E.L.; Christie, B.P.; He, Q.; Tyler, D.J.; Bensmaia, S.J. Frequency Shapes the Quality of Tactile Percepts Evoked through Electrical Stimulation of the Nerves. J. Neurosci. 2022, 42, 2052. [Google Scholar] [CrossRef]
- Schiefer, M.; Tan, D.; Sidek, S.M.; Tyler, D.J. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. J. Neural. Eng. 2016, 13, 016001. [Google Scholar] [CrossRef]
- Raspopovic, S.; Capogrosso, M.; Petrini, F.M.; Bonizzato, M.; Rigosa, J.; Di Pino, G.; Carpaneto, J.; Controzzi, M.; Boretius, T.; Fernandez, E.; et al. Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses. Sci. Transl. Med. 2014, 6, ra219–ra222. [Google Scholar] [CrossRef]
- Greenspon, C.M.; Valle, G.; Shelchkova, N.D.; Hobbs, T.G.; Verbaarschot, C.; Callier, T.; Berger-Wolf, E.I.; Okorokova, E.V.; Hutchison, B.C.; Dogruoz, E.; et al. Evoking stable and precise tactile sensations via multi-electrode intracortical microstimulation of the somatosensory cortex. Nat. Biomed. Eng. 2024. [Google Scholar] [CrossRef]
- Tian, Y.; Slepyan, A.; Iskarous, M.M.; Sankar, S.; Hunt, C.L.; Thakor, N.V. Real-Time, Dynamic Sensory Feedback Using Neuromorphic Tactile Signals and Transcutaneous Electrical Nerve Stimulation. In Proceedings of the 2022 IEEE Biomedical Circuits and Systems Conference (BioCAS), Taipei, Taiwan, 13–15 October 2022; pp. 399–403. [Google Scholar]
- D’Anna, E.; Valle, G.; Mazzoni, A.; Strauss, I.; Iberite, F.; Patton, J.; Petrini, F.M.; Raspopovic, S.; Granata, G.; Di Iorio, R.; et al. A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback. Sci. Robot. 2019, 4, eaau8892. [Google Scholar] [CrossRef]
- Bucciarelli, V.; Gozzi, N.; Katic, N.; Aiello, G.; Razzoli, M.; Valle, G.; Raspopovic, S. Multiparametric non-linear TENS modulation to integrate intuitive sensory feedback. J. Neural Eng. 2023, 20, 036026. [Google Scholar] [CrossRef]
- Hughes, C.L.; Flesher, S.N.; Weiss, J.M.; Boninger, M.; Collinger, J.L.; Gaunt, R.A. Perception of microstimulation frequency in human somatosensory cortex. eLife 2021, 10, e65128. [Google Scholar] [CrossRef]
- Valle, G.; Alamri, A.H.; Downey, J.E.; Lienkämper, R.; Jordan, P.M.; Sobinov, A.R.; Endsley, L.J.; Prasad, D.; Boninger, M.L.; Collinger, J.L.; et al. Tactile edges and motion via patterned microstimulation of the human somatosensory cortex. Science 2025, 387, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Saal, H.P.; Bensmaia, S.J. Biomimetic approaches to bionic touch through a peripheral nerve interface. Neuropsychologia 2015, 79, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Valle, G. Peripheral neurostimulation for encoding artificial somatosensations. Eur. J. Neurosci. 2022, 56, 5888–5901. [Google Scholar] [CrossRef]
- Abraira, V.E.; Ginty, D.D. The sensory neurons of touch. Neuron 2013, 79, 618–639. [Google Scholar] [CrossRef]
- Vickery, R.M.; Ng, K.K.W.; Potas, J.R.; Shivdasani, M.N.; McIntyre, S.; Nagi, S.S.; Birznieks, I. Tapping Into the Language of Touch: Using Non-invasive Stimulation to Specify Tactile Afferent Firing Patterns. Front. Neurosci. 2020, 14, 500. [Google Scholar] [CrossRef]
- Saal, H.P.; Delhaye, B.P.; Rayhaun, B.C.; Bensmaia, S.J. Simulating tactile signals from the whole hand with millisecond precision. Proc. Natl. Acad. Sci. 2017, 114, E5693–E5702. [Google Scholar] [CrossRef]
- Graczyk, E.; Hutchison, B.; Valle, G.; Bjanes, D.; Gates, D.; Raspopovic, S.; Gaunt, R. Clinical Applications and Future Translation of Somatosensory Neuroprostheses. J. Neurosci. 2024, 44, e1237242024. [Google Scholar] [CrossRef]
- Delmas, P.; Hao, J.; Rodat-Despoix, L. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat. Rev. Neurosci. 2011, 12, 139–153. [Google Scholar] [CrossRef]
- Handler, A.; Ginty, D.D. The mechanosensory neurons of touch and their mechanisms of activation. Nat. Rev. Neurosci. 2021, 22, 521–537. [Google Scholar] [CrossRef]
- Deflorio, D.; Di Luca, M.; Wing, A.M. Skin and Mechanoreceptor Contribution to Tactile Input for Perception: A Review of Simulation Models. Front. Hum. Neurosci. 2022, 16, 862344. [Google Scholar] [CrossRef]
- Donati, E.; Valle, G. Neuromorphic hardware for somatosensory neuroprostheses. Nat. Commun. 2024, 15, 556. [Google Scholar] [CrossRef] [PubMed]
- Osborn, L.E.; Dragomir, A.; Betthauser, J.L.; Hunt, C.L.; Nguyen, H.H.; Kaliki, R.R.; Thakor, N.V. Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain. Sci. Robot. 2018, 3, eaat3818. [Google Scholar] [CrossRef] [PubMed]
- George, J.A.; Kluger, D.T.; Davis, T.S.; Wendelken, S.M.; Okorokova, E.V.; He, Q.; Duncan, C.C.; Hutchinson, D.T.; Thumser, Z.C.; Beckler, D.T.; et al. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. Sci. Robot. 2019, 4, eaax2352. [Google Scholar] [CrossRef]
- Valle, G.; Mazzoni, A.; Iberite, F.; D’Anna, E.; Strauss, I.; Granata, G.; Controzzi, M.; Clemente, F.; Rognini, G.; Cipriani, C.; et al. Biomimetic Intraneural Sensory Feedback Enhances Sensation Naturalness, Tactile Sensitivity, and Manual Dexterity in a Bidirectional Prosthesis. Neuron 2018, 100, 37–45.e37. [Google Scholar] [CrossRef]
- Shelchkova, N.D.; Downey, J.E.; Greenspon, C.M.; Okorokova, E.V.; Sobinov, A.R.; Verbaarschot, C.; He, Q.; Sponheim, C.; Tortolani, A.F.; Moore, D.D.; et al. Microstimulation of human somatosensory cortex evokes task-dependent, spatially patterned responses in motor cortex. Nat. Commun. 2023, 14, 7270. [Google Scholar] [CrossRef]
- Hobbs, T.G.; Greenspon, C.M.; Verbaarschot, C.; Valle, G.; Boninger, M.; Bensmaia, S.J.; Gaunt, R.A. Biomimetic stimulation patterns drive natural artificial touch percepts using intracortical microstimulation in humans. medRxiv 2024. [Google Scholar] [CrossRef]
- Valle, G.; Katic Secerovic, N.; Eggemann, D.; Gorskii, O.; Pavlova, N.; Petrini, F.M.; Cvancara, P.; Stieglitz, T.; Musienko, P.; Bumbasirevic, M.; et al. Biomimetic computer-to-brain communication enhancing naturalistic touch sensations via peripheral nerve stimulation. Nat. Commun. 2024, 15, 1151. [Google Scholar] [CrossRef]
- Dong, Y.; Mihalas, S.; Kim, S.S.; Yoshioka, T.; Bensmaia, S.; Niebur, E. A simple model of mechanotransduction in primate glabrous skin. J. Neurophysiol. 2013, 109, 1350–1359. [Google Scholar] [CrossRef]
- Gerling, G.J.; Rivest, I.I.; Lesniak, D.R.; Scanlon, J.R.; Wan, L. Validating a population model of tactile mechanotransduction of slowly adapting type I afferents at levels of skin mechanics, single-unit response and psychophysics. IEEE Trans. Haptics 2014, 7, 216–228. [Google Scholar] [CrossRef]
- Osborn, L.; Fifer, M.; Moran, C.; Betthauser, J.; Armiger, R.; Kaliki, R.; Thakor, N. Targeted transcutaneous electrical nerve stimulation for phantom limb sensory feedback. In Proceedings of the 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), Torino, Italy, 19–21 October 2017; pp. 1–4. [Google Scholar]
- Izhikevich, E.M. Simple model of spiking neurons. IEEE Transactions on Neural Networks 2003, 14, 1569–1572. [Google Scholar] [CrossRef]
- Sankar, S.; Balamurugan, D.; Brown, A.; Ding, K.; Xu, X.; Low, J.H.; Yeow, C.H.; Thakor, N. Texture Discrimination with a Soft Biomimetic Finger Using a Flexible Neuromorphic Tactile Sensor Array That Provides Sensory Feedback. Soft Robotics 2020, 8, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Okorokova, E.V.; He, Q.; Bensmaia, S.J. Biomimetic encoding model for restoring touch in bionic hands through a nerve interface. J Neural Eng 2018, 15, 066033. [Google Scholar] [CrossRef] [PubMed]
- Petrini, F.M.; Bumbasirevic, M.; Valle, G.; Ilic, V.; Mijović, P.; Čvančara, P.; Barberi, F.; Katic, N.; Bortolotti, D.; Andreu, D.; et al. Sensory feedback restoration in leg amputees improves walking speed, metabolic cost and phantom pain. Nat. Med. 2019, 25, 1356–1363. [Google Scholar] [CrossRef]
- Valle, G.; Saliji, A.; Fogle, E.; Cimolato, A.; Petrini, F.M.; Raspopovic, S. Mechanisms of neuro-robotic prosthesis operation in leg amputees. Sci. Adv. 2021, 7, eabd8354. [Google Scholar] [CrossRef]
- Basla, C.; Chee, L.; Valle, G.; Raspopovic, S. A non-invasive wearable sensory leg neuroprosthesis: Mechanical, electrical and functional validation. J. Neural Eng. 2022, 19, 016008. [Google Scholar] [CrossRef]
- Chee, L.; Valle, G.; Preatoni, G.; Basla, C.; Marazzi, M.; Raspopovic, S. Cognitive benefits of using non-invasive compared to implantable neural feedback. Sci. Rep. 2022, 12, 16696. [Google Scholar] [CrossRef]
- Charkhkar, H.; Christie, B.P.; Triolo, R.J. Sensory neuroprosthesis improves postural stability during Sensory Organization Test in lower-limb amputees. Sci. Rep. 2020, 10, 6984. [Google Scholar] [CrossRef]
- Christie, B.P.; Charkhkar, H.; Shell, C.E.; Burant, C.J.; Tyler, D.J.; Triolo, R.J. Ambulatory searching task reveals importance of somatosensation for lower-limb amputees. Sci. Rep. 2020, 10, 10216. [Google Scholar] [CrossRef]
- Katic, N.; Siqueira, R.K.; Cleland, L.; Strzalkowski, N.; Bent, L.; Raspopovic, S.; Saal, H. Modeling foot sole cutaneous afferents: FootSim. iScience 2023, 26, 105874. [Google Scholar] [CrossRef]
- Liu, X. The more and less of electronic-skin sensors. Science 2020, 370, 910–911. [Google Scholar] [CrossRef]
- Sekitani, T. The disappearing boundary between organism and machine. Science 2023, 380, 690–691. [Google Scholar] [CrossRef] [PubMed]
- Iskarous, M.M.; Thakor, N.V. E-Skins: Biomimetic Sensing and Encoding for Upper Limb Prostheses. Proc. IEEE 2019, 107, 2052–2064. [Google Scholar] [CrossRef]
- Lee, W.W.; Tan, Y.J.; Yao, H.; Li, S.; See, H.H.; Hon, M.; Ng, K.A.; Xiong, B.; Ho, J.S.; Tee, B.C.K. A neuro-inspired artificial peripheral nervous system for scalable electronic skins. Sci. Robot. 2019, 4, eaax2198. [Google Scholar] [CrossRef] [PubMed]
- Castagnola, E.; Zheng, X.S.; Cui, X.T. Flexible and Soft Materials and Devices for Neural Interface. In Handbook of Neuroengineering; Thakor, N.V., Ed.; Springer Nature: Singapore, 2023; pp. 79–139. [Google Scholar]
- Russell, C.; Roche, A.D.; Chakrabarty, S. Peripheral nerve bionic interface: A review of electrodes. Int. J. Intell. Robot. Appl. 2019, 3, 11–18. [Google Scholar] [CrossRef]
- Adidharma, W.; Khouri, A.N.; Lee, J.C.; Vanderboll, K.; Kung, T.A.; Cederna, P.S.; Kemp, S.W.P. Sensory nerve regeneration and reinnervation in muscle following peripheral nerve injury. Muscle Nerve 2022, 66, 384–396. [Google Scholar] [CrossRef]
- Shu, T.; Herrera-Arcos, G.; Taylor, C.R.; Herr, H.M. Mechanoneural interfaces for bionic integration. Nat. Rev. Bioeng. 2024, 2, 374–391. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, X.; Bo, R.; Yang, Y.; Cheng, X.; Pang, W.; Liu, Q.; Wang, Y.; Wang, S.; Xu, S.; et al. A three-dimensionally architected electronic skin mimicking human mechanosensation. Science 2024, 384, 987–994. [Google Scholar] [CrossRef]
- Kim, D.-H.; Lu, N.; Ma, R.; Kim, Y.-S.; Kim, R.-H.; Wang, S.; Wu, J.; Won, S.M.; Tao, H.; Islam, A.; et al. Epidermal Electronics. Science 2011, 333, 838–843. [Google Scholar] [CrossRef]
- Yu, X.; Xie, Z.; Yu, Y.; Lee, J.; Vazquez-Guardado, A.; Luan, H.; Ruban, J.; Ning, X.; Akhtar, A.; Li, D.; et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019, 575, 473–479. [Google Scholar] [CrossRef]
- Dagdeviren, C.; Su, Y.; Joe, P.; Yona, R.; Liu, Y.; Kim, Y.-S.; Huang, Y.; Damadoran, A.R.; Xia, J.; Martin, L.W.; et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 2014, 5, 4496. [Google Scholar] [CrossRef]
- Tee, B.C.K.; Chortos, A.; Berndt, A.; Nguyen, A.K.; Tom, A.; McGuire, A.; Lin, Z.C.; Tien, K.; Bae, W.-G.; Wang, H.; et al. A skin-inspired organic digital mechanoreceptor. Science 2015, 350, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Jiang, Y.; Zhong, D.; Zhang, Z.; Choudhury, S.; Lai, J.-C.; Gong, H.; Niu, S.; Yan, X.; Zheng, Y.; et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 2023, 380, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Chortos, A.; Liu, J.; Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 2016, 15, 937–950. [Google Scholar] [CrossRef] [PubMed]
- Boutry, C.M.; Negre, M.; Jorda, M.; Vardoulis, O.; Chortos, A.; Khatib, O.; Bao, Z. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot. 2018, 3, eaau6914. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.; Ye, S.; Jeong, C.; Jeong, J.; Ye, Y.-s.; Jeong, J.-Y.; Kim, Y.-J.; Lim, S.; Kim, T.H.; Kim, K.Y.; et al. Bionic artificial skin with a fully implantable wireless tactile sensory system for wound healing and restoring skin tactile function. Nat. Commun. 2024, 15, 10. [Google Scholar] [CrossRef]
- Huan, Y.; Gill, J.P.; Fritzinger, J.B.; Patel, P.R.; Richie, J.M.; Della Valle, E.; Weiland, J.D.; Chestek, C.A.; Chiel, H.J. Carbon fiber electrodes for intracellular recording and stimulation. J. Neural Eng. 2021, 18, 066033. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhu, H.; Li, X.; Sun, L.; He, F.; Chung, J.E.; Liu, D.F.; Frank, L.; Luan, L.; Xie, C. Ultraflexible electrode arrays for months-long high-density electrophysiological mapping of thousands of neurons in rodents. Nat. Biomed. Eng. 2023, 7, 520–532. [Google Scholar] [CrossRef]
- Svientek, S.R.; Ursu, D.C.; Cederna, P.S.; Kemp, S.W.P. Fabrication of the Composite Regenerative Peripheral Nerve Interface (C-RPNI) in the Adult Rat. J. Vis. Exp. 2020. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Horch, K.W. Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 468–472. [Google Scholar] [CrossRef]
- Davis, T.S.; Wark, H.A.C.; Hutchinson, D.T.; Warren, D.J.; O’Neill, K.; Scheinblum, T.; Clark, G.A.; Normann, R.A.; Greger, B. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves. J. Neural Eng. 2016, 13, 036001. [Google Scholar] [CrossRef]
- Wendelken, S.; Page, D.M.; Davis, T.; Wark, H.A.C.; Kluger, D.T.; Duncan, C.; Warren, D.J.; Hutchinson, D.T.; Clark, G.A. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves. J. NeuroEng. Rehabil. 2017, 14, 121. [Google Scholar] [CrossRef] [PubMed]
- Charkhkar, H.; Shell, C.E.; Marasco, P.D.; Pinault, G.J.; Tyler, D.J.; Triolo, R.J. High-density peripheral nerve cuffs restore natural sensation to individuals with lower-limb amputations. J. Neural Eng. 2018, 15, 056002. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Catalan, M.; Håkansson, B.; Brånemark, R. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci. Transl. Med. 2014, 6, re256–re257. [Google Scholar] [CrossRef]
- Fisher, L.E.; Gaunt, R.A.; Huang, H. Sensory restoration for improved motor control of prostheses. Curr. Opin. Biomed. Eng. 2023, 28, 100498. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Zeng, P.; Ji, L.; Zhou, Y.; Zhou, L.; Tao, Y. Electrical nerve stimulation for sensory-neural pathway reconstruction in upper-limb amputees. Front. Neurosci. 2023, 17, 1114962. [Google Scholar] [CrossRef]
- Patel, P.R.; Zhang, H.; Robbins, M.T.; Nofar, J.B.; Marshall, S.P.; Kobylarek, M.J.; Kozai, T.D.Y.; Kotov, N.A.; Chestek, C.A. Chronic in vivo stability assessment of carbon fiber microelectrode arrays. J. Neural Eng. 2016, 13, 066002. [Google Scholar] [CrossRef]
- Patel, P.R.; Na, K.; Zhang, H.; Kozai, T.D.Y.; Kotov, N.A.; Yoon, E.; Chestek, C.A. Insertion of linear 8.4 μm diameter 16 channel carbon fiber electrode arrays for single unit recordings. J. Neural Eng. 2015, 12, 046009. [Google Scholar] [CrossRef]
- Patel, P.R.; Popov, P.; Caldwell, C.M.; Welle, E.J.; Egert, D.; Pettibone, J.R.; Roossien, D.H.; Becker, J.B.; Berke, J.D.; Chestek, C.A.; et al. High density carbon fiber arrays for chronic electrophysiology, fast scan cyclic voltammetry, and correlative anatomy. J. Neural Eng. 2020, 17, 056029. [Google Scholar] [CrossRef]
- Welle, E.J.; Patel, P.R.; Woods, J.E.; Petrossians, A.; della Valle, E.; Vega-Medina, A.; Richie, J.M.; Cai, D.; Weiland, J.D.; Chestek, C.A. Ultra-small carbon fiber electrode recording site optimization and improved in vivo chronic recording yield. J. Neural Eng. 2020, 17, 026037. [Google Scholar] [CrossRef]
- Welle, E.J.; Woods, J.E.; Jiman, A.A.; Richie, J.M.; Bottorff, E.C.; Ouyang, Z.; Seymour, J.P.; Patel, P.R.; Bruns, T.M.; Chestek, C.A. Sharpened and Mechanically Durable Carbon Fiber Electrode Arrays for Neural Recording. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 993–1003. [Google Scholar] [CrossRef]
- Richie, J.; Letner, J.G.; Mclane-Svoboda, A.; Huan, Y.; Ghaffari, D.H.; Valle, E.D.; Patel, P.R.; Chiel, H.J.; Pelled, G.; Weiland, J.D.; et al. Fabrication and Validation of Sub-Cellular Carbon Fiber Electrodes. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Vargas, L.; Fleming, A.; Hu, X.; Zhu, Y.; Huang, H.H. Evoking haptic sensations in the foot through high-density transcutaneous electrical nerve stimulations. J. Neural. Eng. 2020, 17, 036020. [Google Scholar] [CrossRef] [PubMed]
- D’Anna, E.; Petrini, F.M.; Artoni, F.; Popovic, I.; Simanić, I.; Raspopovic, S.; Micera, S. A somatotopic bidirectional hand prosthesis with transcutaneous electrical nerve stimulation based sensory feedback. Sci. Rep. 2017, 7, 10930. [Google Scholar] [CrossRef]
- Soghoyan, G.; Biktimirov, A.; Matvienko, Y.; Chekh, I.; Sintsov, M.; Lebedev, M.A. Peripheral nerve stimulation enables somatosensory feedback while suppressing phantom limb pain in transradial amputees. Brain Stimul. Basic Transl. Clin. Res. Neuromodulation 2023, 16, 756–758. [Google Scholar] [CrossRef]
- Ortiz-Catalan, M.; Zbinden, J.; Millenaar, J.; D’Accolti, D.; Controzzi, M.; Clemente, F.; Cappello, L.; Earley, E.J.; Mastinu, E.; Kolankowska, J.; et al. A highly integrated bionic hand with neural control and feedback for use in daily life. Sci. Robot. 2023, 8, eadf7360. [Google Scholar] [CrossRef]
- Tan, D.W.; Schiefer, M.A.; Keith, M.W.; Anderson, J.R.; Tyler, D.J. Stability and selectivity of a chronic, multi-contact cuff electrode for sensory stimulation in human amputees. J. Neural Eng. 2015, 12, 026002. [Google Scholar] [CrossRef]
- Petrini, F.M.; Valle, G.; Strauss, I.; Granata, G.; Di Iorio, R.; D’Anna, E.; Čvančara, P.; Mueller, M.; Carpaneto, J.; Clemente, F.; et al. Six-Month Assessment of a Hand Prosthesis with Intraneural Tactile Feedback. Ann. Neurol. 2019, 85, 137–154. [Google Scholar] [CrossRef]
- Čvančara, P.; Valle, G.; Müller, M.; Bartels, I.; Guiho, T.; Hiairrassary, A.; Petrini, F.; Raspopovic, S.; Strauss, I.; Granata, G.; et al. Bringing sensation to prosthetic hands—Chronic assessment of implanted thin-film electrodes in humans. Npj Flex. Electron. 2023, 7, 51. [Google Scholar] [CrossRef]
- Sando, I.C.; Adidharma, W.; Nedic, A.; Ursu, D.C.; Mays, E.A.; Hu, Y.; Kubiak, C.A.; Sugg, K.B.; Kung, T.A.; Cederna, P.S.; et al. Dermal Sensory Regenerative Peripheral Nerve Interface for Reestablishing Sensory Nerve Feedback in Peripheral Afferents in the Rat. Plast. Reconstr. Surg. 2023, 151, 804e–813e. [Google Scholar] [CrossRef]
- Festin, C.; Ortmayr, J.; Maierhofer, U.; Tereshenko, V.; Blumer, R.; Schmoll, M.; Carrero-Rojas, G.; Luft, M.; Laengle, G.; Farina, D.; et al. Creation of a biological sensorimotor interface for bionic reconstruction. Nat. Commun. 2024, 15, 5337. [Google Scholar] [CrossRef]
- Srinivasan, S.; Herr, M.H. A cutaneous mechanoneural interface for neuroprosthetic feedback. Nat. Biomed. Eng. 2022, 6, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Kuiken, T.A.; Marasco, P.D.; Lock, B.A.; Harden, R.N.; Dewald, J.P.A. Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation. Proc. Natl. Acad. Sci. 2007, 104, 20061–20066. [Google Scholar] [CrossRef] [PubMed]
- Sando, I.C.; Gerling, G.J.; Ursu, D.C.; Sugg, K.B.; Hu, Y.; Haase, S.C.; Langhals, N.B.; Cederna, P.S.; Urbanchek, M.G. Dermal-Based Peripheral Nerve Interface for Transduction of Sensory Feedback. Plast. Reconstr. Surg. 2015, 136, 19–20. [Google Scholar] [CrossRef]
- Ortiz-Catalan, M. Thermally sentient bionic limbs. Nat. Biomed. Eng. 2024, 8, 938–940. [Google Scholar] [CrossRef]
- Osborn, L.E.; Venkatasubramanian, R.; Himmtann, M.; Moran, C.W.; Pierce, J.M.; Gajendiran, P.; Wormley, J.M.; Ung, R.J.; Nguyen, H.H.; Crego, A.C.G.; et al. Evoking natural thermal perceptions using a thin-film thermoelectric device with high cooling power density and speed. Nat. Biomed. Eng. 2024, 8, 1004–1017. [Google Scholar] [CrossRef]
- Iberite, F.; Muheim, J.; Akouissi, O.; Gallo, S.; Rognini, G.; Morosato, F.; Clerc, A.; Kalff, M.; Gruppioni, E.; Micera, S.; et al. Restoration of natural thermal sensation in upper-limb amputees. Science 2023, 380, 731–735. [Google Scholar] [CrossRef]
- Clites, T.R.; Carty, M.J.; Ullauri, J.B.; Carney, M.E.; Mooney, L.M.; Duval, J.-F.; Srinivasan, S.S.; Herr, H.M. Proprioception from a neurally controlled lower-extremity prosthesis. Sci. Transl. Med. 2018, 10, eaap8373. [Google Scholar] [CrossRef]
- Cimolato, A.; Ciotti, F.; Kljajić, J.; Valle, G.; Raspopovic, S. Symbiotic electroneural and musculoskeletal framework to encode proprioception via neurostimulation: ProprioStim. iScience 2023, 26, 106248. [Google Scholar] [CrossRef]
- Papaleo, E.D.; D’Alonzo, M.; Fiori, F.; Piombino, V.; Falato, E.; Pilato, F.; De Liso, A.; Di Lazzaro, V.; Di Pino, G. Integration of proprioception in upper limb prostheses through non-invasive strategies: A review. J. Neuroeng. Rehabil. 2023, 20, 118. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Valle, G.; Cederna, P.S.; Kemp, S.W.P. The Next Frontier in Neuroprosthetics: Integration of Biomimetic Somatosensory Feedback. Biomimetics 2025, 10, 130. https://doi.org/10.3390/biomimetics10030130
Tian Y, Valle G, Cederna PS, Kemp SWP. The Next Frontier in Neuroprosthetics: Integration of Biomimetic Somatosensory Feedback. Biomimetics. 2025; 10(3):130. https://doi.org/10.3390/biomimetics10030130
Chicago/Turabian StyleTian, Yucheng, Giacomo Valle, Paul S. Cederna, and Stephen W. P. Kemp. 2025. "The Next Frontier in Neuroprosthetics: Integration of Biomimetic Somatosensory Feedback" Biomimetics 10, no. 3: 130. https://doi.org/10.3390/biomimetics10030130
APA StyleTian, Y., Valle, G., Cederna, P. S., & Kemp, S. W. P. (2025). The Next Frontier in Neuroprosthetics: Integration of Biomimetic Somatosensory Feedback. Biomimetics, 10(3), 130. https://doi.org/10.3390/biomimetics10030130