Expanding the Applicability of Electroactive Polymers for Tissue Engineering Through Surface Biofunctionalization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Functionalization of the PVDF Membranes
2.2. Protein Immobilization on the PVDF-PMAA and PVDF-PAAC Membranes
2.3. Physicochemical Characterization of the Membranes
2.4. Human Dental Pulp Stem Cell (Hdpsc) Isolation and Culture
2.5. Fluorescent Labelling of Cells
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fukada, E.; Iwao, Y. Piezoelectric Effects in Collagen. Jpn. J. Appl. Phys. 1964, 3, 117. [Google Scholar] [CrossRef]
- D’Alessandro, D.; Ricci, C.; Milazzo, M.; Strangis, G.; Forli, F.; Buda, G.; Petrini, M.; Berrettini, S.; Uddin, M.J.; Danti, S.; et al. Piezoelectric Signals in Vascularized Bone Regeneration. Biomolecules 2021, 11, 1731. [Google Scholar] [CrossRef]
- Khare, D.; Basu, B.; Dubey, A.K. Electrical Stimulation and Piezoelectric Biomaterials for Bone Tissue Engineering Applications. Biomaterials 2020, 258, 120280. [Google Scholar] [CrossRef]
- Barbosa, F.; Ferreira, F.C.; Silva, J.C. Piezoelectric Electrospun Fibrous Scaffolds for Bone, Articular Cartilage and Osteochondral Tissue Engineering. Int. J. Mol. Sci. 2022, 23, 2907. [Google Scholar] [CrossRef]
- Meira, R.M.; Ribeiro, S.; Irastorza, I.; Silván, U.; Lanceros-Mendez, S.; Ribeiro, C. Electroactive Poly(Vinylidene Fluoride-Trifluoroethylene)/Graphene Composites for Cardiac Tissue Engineering Applications. J. Colloid Interface Sci. 2024, 663, 73–81. [Google Scholar] [CrossRef]
- Marques-Almeida, T.; Ribeiro, C.; Irastorza, I.; Miranda-Azpiazu, P.; Torres-Alemán, I.; Silván, U.; Lanceros-Mendez, S. Electroactive Materials Surface Charge Impacts Neuron Viability and Maturation in 2D Cultures. ACS Appl. Mater. Interfaces 2023, 15, 31206–31213. [Google Scholar] [CrossRef]
- Martin-Iglesias, S.; Herrera, L.; Santos, S.; Vesga, M.Á.; Eguizabal, C.; Lanceros-Mendez, S.; Silván, U. Analysis of the Impact of Handling and Culture on the Expansion and Functionality of NK Cells. Front. Immunol. 2023, 14, 1225549. [Google Scholar] [CrossRef]
- Ribeiro, C.; Costa, C.M.; Correia, D.M.; Nunes-Pereira, J.; Oliveira, J.; Martins, P.; Gonçalves, R.; Cardoso, V.F.; Lanceros-Méndez, S. Electroactive Poly(Vinylidene Fluoride)-Based Structures for Advanced Applications. Nat. Protoc. 2018, 13, 681–704. [Google Scholar] [CrossRef]
- Seifarth, V.; Grosse, J.O.; Gossmann, M.; Janke, H.P.; Arndt, P.; Koch, S.; Epple, M.; Artmann, G.M.; Artmann, A.T. Mechanical Induction of Bi-Directional Orientation of Primary Porcine Bladder Smooth Muscle Cells in Tubular Fibrin-Poly(Vinylidene Fluoride) Scaffolds for Ureteral and Urethral Repair Using Cyclic and Focal Balloon Catheter Stimulation. J. Biomater. Appl. 2017, 32, 321–330. [Google Scholar] [CrossRef]
- Ruan, L.; Yao, X.; Chang, Y.; Zhou, L.; Qin, G.; Zhang, X. Properties and Applications of the β Phase Poly(Vinylidene Fluoride). Polymers 2018, 10, 228. [Google Scholar] [CrossRef]
- Martins, P.M.; Ribeiro, S.; Ribeiro, C.; Sencadas, V.; Gomes, A.C.; Gama, F.M.; Lanceros-Mendez, S. Effect of Poling State and Morphology of Piezoelectric Poly(Vinylidene Fluoride) Membranes for Skeletal Muscle Tissue Engineering. RSC Adv. 2013, 3, 17938–17944. [Google Scholar] [CrossRef]
- Pärssinen, J.; Hammarén, H.; Rahikainen, R.; Sencadas, V.; Ribeiro, C.; Vanhatupa, S.; Miettinen, S.; Lanceros-Méndez, S.; Hytönen, V.P. Enhancement of Adhesion and Promotion of Osteogenic Differentiation of Human Adipose Stem Cells by Poled Electroactive Poly(Vinylidene Fluoride). J. Biomed. Mater. Res. Part A 2015, 103, 919–928. [Google Scholar] [CrossRef]
- Rodriguez-Lejarraga, P.; Martin-Iglesias, S.; Moneo-Corcuera, A.; Colom, A.; Redondo-Morata, L.; Giannotti, M.I.; Petrenko, V.; Monleón-Guinot, I.; Mata, M.; Silvan, U.; et al. The Surface Charge of Electroactive Materials Governs Cell Behaviour Through Its Effect on Protein Deposition. Acta Biomater. 2024, 184, 201–209. [Google Scholar] [CrossRef]
- Kang, D.G.; Cao, Y.M. Application and Modification of Poly(Vinylidene Fluoride) (PVDF) Membranes—A Review. J. Membr. Sci. 2014, 463, 145–165. [Google Scholar] [CrossRef]
- Wu, L.; Sun, J.; Tong, F. Surface Modification of a PVDF Membrane by Cross-Linked Collagen. RSC Adv. 2014, 4, 63989–63996. [Google Scholar] [CrossRef]
- Wang, J.K.; Xiong, G.M.; Luo, B.; Choo, C.C.; Yuan, S.; Tan, N.S.; Choong, C. Surface Modification of PVDF Using Non-Mammalian Sources of Collagen for Enhancement of Endothelial Cell Functionality. J. Mater. Sci. Mater. Med. 2016, 27, 45. [Google Scholar] [CrossRef] [PubMed]
- Klee, D.; Ademovic, Z.; Bosserhoff, A.; Hoecker, H.; Maziolis, G.; Erli, H.J. Surface Modification of Poly(Vinylidene Fluoride) to Improve the Osteoblast Adhesion. Biomaterials 2003, 24, 3663–3670. [Google Scholar] [CrossRef] [PubMed]
- Junge, K.; Klinge, U.; Rosch, R.; Lynen, P.; Binnebösel, M.; Conze, J.; Mertens, P.R.; Schwab, R.; Schumpelick, V. Improved Collagen Type I/III Ratio at the Interface of Gentamicin-Supplemented Poly(Vinylidene Fluoride) Mesh Materials. Langenbeck’s Arch Surg. 2007, 392, 465–471. [Google Scholar] [CrossRef]
- Young, T.H.; Lu, J.N.; Lin, D.J.; Chang, C.L.; Chang, H.H.; Cheng, L.P. Immobilization of L-lysine on Dense and Porous Poly(Vinylidene Fluoride) Surfaces for Neuron Culture. Desalination 2008, 234, 134–143. [Google Scholar] [CrossRef]
- Akashi, N.; Kuroda, S.I. Protein Immobilization onto Poly(Vinylidene Fluoride) Microporous Membranes Activated by the Atmospheric Pressure Low-Temperature Plasma. Polymer 2014, 55, 2780–2791. [Google Scholar] [CrossRef]
- Akashi, N.; Kuroda, S. Preparation and Characterization of Protein A-Immobilized PVDF and PES Membranes. EXPRESS Polym. Lett. 2015, 9, 2–13. [Google Scholar] [CrossRef]
- Lin, D.J.; Lin, D.T.; Young, T.H.; Huang, F.M.; Chen, C.C.; Cheng, L.P. Immobilization of Heparin on PVDF Membranes with Microporous Structures. J. Membr. Sci. 2004, 245, 137–146. [Google Scholar] [CrossRef]
- Zhu, L.P.; Yu, J.Z.; Xu, Y.Y.; Xi, Z.Y.; Zhu, B.K. Surface Modification of PVDF Porous Membranes Via Poly(DOPA) Coating and Heparin Immobilization. Colloids Surf. B Biointerfaces 2009, 69, 152–155. [Google Scholar] [CrossRef]
- Guillot-Ferriols, M.; Rodríguez-Hernández, J.C.; Correia, D.M.; Carabineiro, S.A.C.; Lanceros-Méndez, S.; Gómez Ribelles, J.L.; Ferrer, G.G. Poly(vinylidene) Fluoride Membranes Coated by Heparin/Collagen Layer-by-Layer, Smart Biomimetic Approaches for Mesenchymal Stem Cell Culture. Mater. Sci. Eng. C 2020, 117, 111281. [Google Scholar] [CrossRef]
- Mokhames, Z.; Rezaie, Z.; Ardeshirylajimi, A.; Basiri, A.; Taheri, M.; Omrani, M.D. VEGF-Incorporated PVDF/Collagen Nanofibrous Scaffold for Bladder Wall Regeneration and Angiogenesis. Int. J. Polym. Mater. Polym. Biomater. 2021, 70, 521–529. [Google Scholar] [CrossRef]
- Staniowski, T.; Zawadzka-Knefel, A.; Skośkiewicz-Malinowska, K. Therapeutic Potential of Dental Pulp Stem Cells According to Different Transplant Types. Molecules 2021, 26, 7423. [Google Scholar] [CrossRef]
- Kaur, S.; Ma, Z.; Gopal, R.; Singh, G.; Ramakrishna, S.; Matsuura, T. Plasma-Induced Graft Copolymerization of Poly(Methacrylic Acid) on Electrospun Poly(Vinylidene Fluoride) Nanofiber Membrane. Langmuir 2007, 23, 13085–13092. [Google Scholar] [CrossRef]
- Qu, Z.; Xu, H.; Gu, H. Synthesis and Biomedical Applications of Poly((Meth)Acrylic Acid) Brushes. ACS Appl. Mater. Interfaces 2015, 7, 14537–14551. [Google Scholar] [CrossRef]
- Liang, S.; Kang, Y.; Tiraferri, A.; Giannelis, E.P.; Huang, X.; Elimelech, M. Highly Hydrophilic Polyvinylidene Fluoride (PVDF) Ultrafiltration Membranes Via Postfabrication Grafting of Surface-Tailored Silica Nanoparticles. ACS Appl. Mater. Interfaces 2013, 5, 6694–6703. [Google Scholar] [CrossRef]
- Carvalho, E.O.; Fernandes, M.M.; Padrao, J.; Nicolau, A.; Marqués-Marchán, J.; Asenjo, A.; Gama, F.M.; Ribeiro, C.; Lanceros-Méndez, S. Tailoring Bacteria Response by Piezoelectric Stimulation. ACS Appl. Mater. Interfaces 2019, 11, 27297–27305. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Shibaev, A.; Carvalho, R.; Lanceros-Mendez, S.; Martins, P.; Rodriguez-Lejarraga, P.; Petrenko, V.I.; Kohlbrecher, J. Insights into the electroactive impact of magnetic nanostructures in PVDF composites via small-angle neutron scattering. Nanoscale 2025. [Google Scholar] [CrossRef]
- Pineda, J.R.; Polo, Y.; Pardo-Rodríguez, B.; Luzuriaga, J.; Uribe-Etxebarria, V.; García-Gallastegui, P.; Sarasua, J.R.; Larrañaga, A.; Ibarretxe, G. In Vitro Preparation of Human Dental Pulp Stem Cell Grafts with Biodegradable Polymer Scaffolds for Nerve Tissue Engineering. Methods Cell Biol. 2022, 170, 147–167. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, T.; Bach, M.; Geiger, A.; Lusiola, T.; Kozielski, L.; Clemens, F. Investigation of Electromechanical Properties on 3-D Printed Piezoelectric Composite Scaffold Structures. Materials 2021, 14, 20. [Google Scholar] [CrossRef]
- Fernandes, B.F.; Silva, N.; Marques, J.F.; Da Cruz, M.B.; Tiainen, L.; Gasik, M.; Carvalho, O.; Silva, F.S.; Caramês, J.; Mata, A. Bio-Piezoelectric Ceramic Composites for Electroactive Implants—Biological Performance. Biomimetics 2023, 8, 338. [Google Scholar] [CrossRef]
- Kilian, K.A.; Mrksich, M. Directing Stem Cell Fate by Controlling the Affinity and Density of Ligand-Receptor Interactions at the Biomaterials Interface. Angew. Chem. Int. Ed. 2012, 51, 4891–4895. [Google Scholar] [CrossRef]
- Gaudet, C.; Marganski, W.A.; Kim, S.; Brown, C.T.; Gunderia, V.; Dembo, M.; Wong, J.Y. Influence of Type I Collagen Surface Density on Fibroblast Spreading, Motility, and Contractility. Biophys. J. 2003, 85, 3329–3335. [Google Scholar] [CrossRef]
- Deng, B.; Yu, M.; Yang, X.; Zhang, B.; Li, L.; Xie, L.; Li, J.; Lu, X. Antifouling Microfiltration Membranes Prepared from Acrylic Acid or Methacrylic Acid Grafted Poly(vinylidene Fluoride) Powder Synthesized via Pre-Irradiation Induced Graft Polymerization. J. Membr. Sci. 2010, 350, 252–258. [Google Scholar] [CrossRef]
- Menzies, K.L.; Lyndon, J. The Impact of Contact Angle on the Biocompatibility of Biomaterials. Optom. Vis. Sci. 2010, 87, 387–399. [Google Scholar] [CrossRef]
- Stachewicz, U.; Qiao, T.; Rawlinson, S.C.F.; Almeida, F.V.; Li, W.Q.; Cattell, M.; Barber, A.H. 3D Imaging of Cell Interactions with Electrospun PLGA Nanofiber Membranes for Bone Regeneration. Acta Biomater. 2015, 27, 88–100. [Google Scholar] [CrossRef]
- Diomede, F.; Fonticoli, L.; Marconi, G.D.; Della Rocca, Y.; Rajan, T.S.; Trubiani, O.; Murmura, G.; Pizzicannella, J. Decellularized Dental Pulp, Extracellular Vesicles, and 5-Azacytidine: A New Tool for Endodontic Regeneration. Biomedicines 2022, 10, 403. [Google Scholar] [CrossRef] [PubMed]
- Walkowiak, J.; Gradzielski, M.; Zauscher, S.; Ballauff, M. Interaction of Proteins with a Planar Poly(Acrylic Acid) Brush: Analysis by Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D). Polymers 2021, 13, 122. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yan, Q.; Liu, H.B.; Zhou, X.H.; Xiao, S.J. Different EDC/NHS Activation Mechanisms Between PAA and PMAA Brushes and the Following Amidation Reactions. Langmuir 2011, 27, 12058–12068. [Google Scholar] [CrossRef] [PubMed]
- Halperin, C.; Mutchnik, S.; Agronin, A.; Molotskii, M.; Urenski, P.; Salai, M.; Rosenman, G. Piezoelectric Effect in Human Bones Studied in Nanometer Scale. Nano Lett. 2004, 4, 1253–1256. [Google Scholar] [CrossRef]
- Enkhmandakh, B.; Bayarsaihan, D. Single-Cell Transcriptome Profiling Reveals Distinct Expression Patterns Among Sox Genes in the Mouse Incisor Dental Pulp. Int. J. Dev. Biol. 2023, 67, 19–33. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leiva, B.; Irastorza, I.; Moneo, A.; Ibarretxe, G.; Silvan, U.; Lanceros-Méndez, S. Expanding the Applicability of Electroactive Polymers for Tissue Engineering Through Surface Biofunctionalization. Biomimetics 2025, 10, 126. https://doi.org/10.3390/biomimetics10020126
Leiva B, Irastorza I, Moneo A, Ibarretxe G, Silvan U, Lanceros-Méndez S. Expanding the Applicability of Electroactive Polymers for Tissue Engineering Through Surface Biofunctionalization. Biomimetics. 2025; 10(2):126. https://doi.org/10.3390/biomimetics10020126
Chicago/Turabian StyleLeiva, Beatriz, Igor Irastorza, Andrea Moneo, Gaskon Ibarretxe, Unai Silvan, and Senentxu Lanceros-Méndez. 2025. "Expanding the Applicability of Electroactive Polymers for Tissue Engineering Through Surface Biofunctionalization" Biomimetics 10, no. 2: 126. https://doi.org/10.3390/biomimetics10020126
APA StyleLeiva, B., Irastorza, I., Moneo, A., Ibarretxe, G., Silvan, U., & Lanceros-Méndez, S. (2025). Expanding the Applicability of Electroactive Polymers for Tissue Engineering Through Surface Biofunctionalization. Biomimetics, 10(2), 126. https://doi.org/10.3390/biomimetics10020126